gear_core/
buffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// This file is part of Gear.

// Copyright (C) 2021-2024 Gear Technologies Inc.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Vector with limited len realization.

use core::{
    convert::TryFrom,
    fmt::{self, Debug, Display, Formatter},
    marker::PhantomData,
};

use alloc::{vec, vec::Vec};
use scale_info::{
    scale::{Decode, Encode},
    TypeInfo,
};

/// Limited len vector.
/// `T` is data type.
/// `E` is overflow error type.
/// `N` is max len which a vector can have.
#[derive(Clone, Default, Eq, Hash, Ord, PartialEq, PartialOrd, Decode, Encode, TypeInfo)]
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize))]
pub struct LimitedVec<T, E, const N: usize>(Vec<T>, PhantomData<E>);

/// Formatter for [`LimitedVec`] will print to precision of 8 by default, to print the whole data, use `{:+}`.
impl<T: Clone + Default, E: Default, const N: usize> Display for LimitedVec<T, E, N>
where
    [T]: AsRef<[u8]>,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let len = self.0.len();
        let median = (len + 1) / 2;

        let mut e1 = median;
        let mut s2 = median;

        if let Some(precision) = f.precision() {
            if precision < median {
                e1 = precision;
                s2 = len - precision;
            }
        } else if !f.sign_plus() && median > 8 {
            e1 = 8;
            s2 = len - 8;
        }

        let p1 = hex::encode(&self.0[..e1]);
        let p2 = hex::encode(&self.0[s2..]);
        let sep = e1.ne(&s2).then_some("..").unwrap_or_default();

        if f.alternate() {
            write!(f, "LimitedVec(0x{p1}{sep}{p2})")
        } else {
            write!(f, "0x{p1}{sep}{p2}")
        }
    }
}

impl<T: Clone + Default, E: Default, const N: usize> Debug for LimitedVec<T, E, N>
where
    [T]: AsRef<[u8]>,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        core::fmt::Display::fmt(self, f)
    }
}

impl<T, E: Default, const N: usize> TryFrom<Vec<T>> for LimitedVec<T, E, N> {
    type Error = E;
    fn try_from(x: Vec<T>) -> Result<Self, Self::Error> {
        (x.len() <= N).then_some(()).ok_or_else(E::default)?;
        Ok(Self(x, PhantomData))
    }
}

impl<T: Clone + Default, E: Default, const N: usize> LimitedVec<T, E, N> {
    /// Constructs a new, empty `LimitedVec<T>`.
    pub const fn new() -> Self {
        Self(Vec::new(), PhantomData)
    }

    /// Tries to create new limited vector of length `len`
    /// with default initialized elements.
    pub fn try_new_default(len: usize) -> Result<Self, E> {
        (len <= N).then_some(()).ok_or_else(E::default)?;
        Ok(Self(vec![T::default(); len], PhantomData))
    }

    /// Creates new limited vector with default initialized elements.
    pub fn new_default() -> Self {
        Self(vec![T::default(); N], PhantomData)
    }

    /// Creates limited vector filled with the specified `value`.
    pub fn filled_with(value: T) -> Self {
        Self(vec![value; N], PhantomData)
    }

    /// Extends the array to its limit and fills with the specified `value`.
    pub fn extend_with(&mut self, value: T) {
        self.0.resize(N, value);
    }

    /// Append `value` to the end of vector.
    pub fn try_push(&mut self, value: T) -> Result<(), E> {
        (self.0.len() != N).then_some(()).ok_or_else(E::default)?;
        self.0.push(value);
        Ok(())
    }

    /// Append `values` to the end of vector.
    pub fn try_extend_from_slice(&mut self, values: &[T]) -> Result<(), E> {
        self.0
            .len()
            .checked_add(values.len())
            .and_then(|len| (len <= N).then_some(()))
            .ok_or_else(E::default)?;

        self.0.extend_from_slice(values);

        Ok(())
    }

    /// Append `values` to the begin of vector.
    pub fn try_prepend(&mut self, values: Self) -> Result<(), E> {
        self.0
            .len()
            .checked_add(values.0.len())
            .and_then(|len| (len <= N).then_some(()))
            .ok_or_else(E::default)?;

        self.0.splice(0..0, values.0);

        Ok(())
    }

    /// Returns ref to the internal data.
    pub fn inner(&self) -> &[T] {
        &self.0
    }

    /// Returns mut ref to the internal data slice.
    pub fn inner_mut(&mut self) -> &mut [T] {
        &mut self.0
    }

    /// Destruct limited vector and returns inner vector.
    pub fn into_vec(self) -> Vec<T> {
        self.0
    }

    /// Returns max len which this type of limited vector can have.
    pub const fn max_len() -> usize {
        N
    }
}

/// Max memory size, which runtime can allocate at once.
/// Substrate allocator restrict allocations bigger then 512 wasm pages at once.
/// See more information about:
/// https://github.com/paritytech/substrate/blob/cc4d5cc8654d280f03a13421669ba03632e14aa7/client/allocator/src/freeing_bump.rs#L136-L149
/// https://github.com/paritytech/substrate/blob/cc4d5cc8654d280f03a13421669ba03632e14aa7/primitives/core/src/lib.rs#L385-L388
const RUNTIME_MAX_ALLOC_SIZE: usize = 512 * 0x10000;

/// Take half from [RUNTIME_MAX_ALLOC_SIZE] in order to avoid problems with capacity overflow.
const RUNTIME_MAX_BUFF_SIZE: usize = RUNTIME_MAX_ALLOC_SIZE / 2;

/// Runtime buffer size exceed error
#[derive(
    Clone, Copy, Default, Debug, Eq, Hash, Ord, PartialEq, PartialOrd, Decode, Encode, TypeInfo,
)]
pub struct RuntimeBufferSizeError;

impl From<RuntimeBufferSizeError> for &str {
    fn from(_: RuntimeBufferSizeError) -> Self {
        "Runtime buffer size exceed"
    }
}

impl Display for RuntimeBufferSizeError {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.write_str((*self).into())
    }
}

/// Buffer which size cannot be bigger then max allowed allocation size in runtime.
pub type RuntimeBuffer = LimitedVec<u8, RuntimeBufferSizeError, RUNTIME_MAX_BUFF_SIZE>;

#[cfg(test)]
mod test {
    use super::{LimitedVec, RuntimeBufferSizeError};
    use alloc::{string::String, vec, vec::Vec};
    use core::convert::{TryFrom, TryInto};

    const N: usize = 1000;
    type TestBuffer = LimitedVec<u8, RuntimeBufferSizeError, N>;
    const M: usize = 64;
    type SmallTestBuffer = LimitedVec<u8, RuntimeBufferSizeError, M>;

    #[test]
    fn test_try_from() {
        let v1 = vec![1; N];
        let v2 = vec![1; N + 1];
        let v3 = vec![1; N - 1];

        let x = TestBuffer::try_from(v1).unwrap();
        let _ = TestBuffer::try_from(v2).expect_err("Must be err because of size overflow");
        let z = TestBuffer::try_from(v3).unwrap();

        assert_eq!(x.inner().len(), N);
        assert_eq!(z.inner().len(), N - 1);
        assert_eq!(x.inner()[N / 2], 1);
        assert_eq!(z.inner()[N / 2], 1);
    }

    #[test]
    fn test_new_default() {
        let x = LimitedVec::<String, RuntimeBufferSizeError, N>::try_new_default(N).unwrap();
        assert!(
            LimitedVec::<u64, RuntimeBufferSizeError, N>::try_new_default(N + 1).is_err(),
            "Must be error because of size overflow"
        );
        let z = LimitedVec::<Vec<u8>, RuntimeBufferSizeError, N>::try_new_default(0).unwrap();

        assert_eq!(x.inner().len(), N);
        assert_eq!(z.inner().len(), 0);
        assert_eq!(x.inner()[N / 2], "");
    }

    #[test]
    fn test_prepend_works() {
        let mut buf = TestBuffer::try_from(vec![1, 2, 3, 4, 5]).unwrap();
        let prepend_buf = TestBuffer::try_from(vec![6, 7, 8]).unwrap();
        buf.try_prepend(prepend_buf).unwrap();

        assert_eq!(buf.inner(), &[6, 7, 8, 1, 2, 3, 4, 5]);
    }

    #[test]
    fn test_full() {
        let mut x = TestBuffer::try_from(vec![1; N]).unwrap();
        let mut y = TestBuffer::try_from(vec![2; N / 2]).unwrap();
        let mut z = TestBuffer::try_from(vec![3; 0]).unwrap();

        x.try_push(42).unwrap_err();
        y.try_push(42).unwrap();
        z.try_push(42).unwrap();

        x.try_extend_from_slice(&[1, 2, 3]).unwrap_err();
        y.try_extend_from_slice(&[1, 2, 3]).unwrap();
        z.try_extend_from_slice(&[1, 2, 3]).unwrap();

        x.try_prepend(vec![1, 2, 3].try_into().unwrap())
            .unwrap_err();
        y.try_prepend(vec![1, 2, 3].try_into().unwrap()).unwrap();
        z.try_prepend(vec![1, 2, 3].try_into().unwrap()).unwrap();

        z.inner_mut()[0] = 0;

        assert_eq!(&z.into_vec(), &[0, 2, 3, 42, 1, 2, 3]);
        assert_eq!(TestBuffer::max_len(), N);
    }

    #[test]
    fn formatting_test() {
        use alloc::format;

        let buffer = SmallTestBuffer::try_from(b"abcdefghijklmnopqrstuvwxyz012345".to_vec())
            .expect("String is 64 bytes");

        // `Debug`/`Display`.
        assert_eq!(
            format!("{buffer:+?}"),
            "0x6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435"
        );
        // `Debug`/`Display` with default precision.
        assert_eq!(
            format!("{buffer:?}"),
            "0x6162636465666768..797a303132333435"
        );
        // `Debug`/`Display` with precision 0.
        assert_eq!(format!("{buffer:.0?}"), "0x..");
        // `Debug`/`Display` with precision 1.
        assert_eq!(format!("{buffer:.1?}"), "0x61..35");
        // `Debug`/`Display` with precision 2.
        assert_eq!(format!("{buffer:.2?}"), "0x6162..3435");
        // `Debug`/`Display` with precision 4.
        assert_eq!(format!("{buffer:.4?}"), "0x61626364..32333435");
        // `Debug`/`Display` with precision 15.
        assert_eq!(
            format!("{buffer:.15?}"),
            "0x6162636465666768696a6b6c6d6e6f..72737475767778797a303132333435"
        );
        // `Debug`/`Display` with precision 30.
        assert_eq!(
            format!("{buffer:.30?}"),
            "0x6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435"
        );
        // Alternate formatter with default precision.
        assert_eq!(
            format!("{buffer:#}"),
            "LimitedVec(0x6162636465666768..797a303132333435)"
        );
        // Alternate formatter with max precision.
        assert_eq!(
            format!("{buffer:+#}"),
            "LimitedVec(0x6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435)"
        );
        // Alternate formatter with precision 2.
        assert_eq!(format!("{buffer:#.2}"), "LimitedVec(0x6162..3435)");
    }
}