1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
//! The pass that tries to make stack overflows deterministic, by introducing
//! an upper bound of the stack size.
//!
//! This pass introduces a global mutable variable to track stack height,
//! and instruments all calls with preamble and postamble.
//!
//! Stack height is increased prior the call. Otherwise, the check would
//! be made after the stack frame is allocated.
//!
//! The preamble is inserted before the call. It increments
//! the global stack height variable with statically determined "stack cost"
//! of the callee. If after the increment the stack height exceeds
//! the limit (specified by the `rules`) then execution traps.
//! Otherwise, the call is executed.
//!
//! The postamble is inserted after the call. The purpose of the postamble is to decrease
//! the stack height by the "stack cost" of the callee function.
//!
//! Note, that we can't instrument all possible ways to return from the function. The simplest
//! example would be a trap issued by the host function.
//! That means stack height global won't be equal to zero upon the next execution after such trap.
//!
//! # Thunks
//!
//! Because stack height is increased prior the call few problems arises:
//!
//! - Stack height isn't increased upon an entry to the first function, i.e. exported function.
//! - Start function is executed externally (similar to exported functions).
//! - It is statically unknown what function will be invoked in an indirect call.
//!
//! The solution for this problems is to generate a intermediate functions, called 'thunks', which
//! will increase before and decrease the stack height after the call to original function, and
//! then make exported function and table entries, start section to point to a corresponding thunks.
//!
//! # Stack cost
//!
//! Stack cost of the function is calculated as a sum of it's locals
//! and the maximal height of the value stack.
//!
//! All values are treated equally, as they have the same size.
//!
//! The rationale is that this makes it possible to use the following very naive wasm executor:
//!
//! - values are implemented by a union, so each value takes a size equal to
//!   the size of the largest possible value type this union can hold. (In MVP it is 8 bytes)
//! - each value from the value stack is placed on the native stack.
//! - each local variable and function argument is placed on the native stack.
//! - arguments pushed by the caller are copied into callee stack rather than shared
//!   between the frames.
//! - upon entry into the function entire stack frame is allocated.

use crate::std::{mem, string::String, vec::Vec};

use parity_wasm::{
	builder,
	elements::{self, Instruction, Instructions, Type},
};

/// Macro to generate preamble and postamble.
macro_rules! instrument_call {
	($callee_idx: expr, $callee_stack_cost: expr, $stack_height_global_idx: expr, $stack_limit: expr) => {{
		use $crate::parity_wasm::elements::Instruction::*;
		[
			// stack_height += stack_cost(F)
			GetGlobal($stack_height_global_idx),
			I32Const($callee_stack_cost),
			I32Add,
			SetGlobal($stack_height_global_idx),
			// if stack_counter > LIMIT: unreachable
			GetGlobal($stack_height_global_idx),
			I32Const($stack_limit as i32),
			I32GtU,
			If(elements::BlockType::NoResult),
			Unreachable,
			End,
			// Original call
			Call($callee_idx),
			// stack_height -= stack_cost(F)
			GetGlobal($stack_height_global_idx),
			I32Const($callee_stack_cost),
			I32Sub,
			SetGlobal($stack_height_global_idx),
		]
	}};
}

mod max_height;
mod thunk;

/// Error that occured during processing the module.
///
/// This means that the module is invalid.
#[derive(Debug)]
pub struct Error(String);

pub(crate) struct Context {
	stack_height_global_idx: u32,
	func_stack_costs: Vec<u32>,
	stack_limit: u32,
}

impl Context {
	/// Returns index in a global index space of a stack_height global variable.
	fn stack_height_global_idx(&self) -> u32 {
		self.stack_height_global_idx
	}

	/// Returns `stack_cost` for `func_idx`.
	fn stack_cost(&self, func_idx: u32) -> Option<u32> {
		self.func_stack_costs.get(func_idx as usize).cloned()
	}

	/// Returns stack limit specified by the rules.
	fn stack_limit(&self) -> u32 {
		self.stack_limit
	}
}

/// Instrument a module with stack height limiter.
///
/// See module-level documentation for more details.
///
/// # Errors
///
/// Returns `Err` if module is invalid and can't be
pub fn inject_limiter(
	mut module: elements::Module,
	stack_limit: u32,
) -> Result<elements::Module, Error> {
	let mut ctx = Context {
		stack_height_global_idx: generate_stack_height_global(&mut module),
		func_stack_costs: compute_stack_costs(&module)?,
		stack_limit,
	};

	instrument_functions(&mut ctx, &mut module)?;
	let module = thunk::generate_thunks(&mut ctx, module)?;

	Ok(module)
}

/// Generate a new global that will be used for tracking current stack height.
fn generate_stack_height_global(module: &mut elements::Module) -> u32 {
	let global_entry = builder::global()
		.value_type()
		.i32()
		.mutable()
		.init_expr(Instruction::I32Const(0))
		.build();

	// Try to find an existing global section.
	for section in module.sections_mut() {
		if let elements::Section::Global(gs) = section {
			gs.entries_mut().push(global_entry);
			return (gs.entries().len() as u32) - 1
		}
	}

	// Existing section not found, create one!
	module
		.sections_mut()
		.push(elements::Section::Global(elements::GlobalSection::with_entries(vec![global_entry])));
	0
}

/// Calculate stack costs for all functions.
///
/// Returns a vector with a stack cost for each function, including imports.
fn compute_stack_costs(module: &elements::Module) -> Result<Vec<u32>, Error> {
	let func_imports = module.import_count(elements::ImportCountType::Function);

	// TODO: optimize!
	(0..module.functions_space())
		.map(|func_idx| {
			if func_idx < func_imports {
				// We can't calculate stack_cost of the import functions.
				Ok(0)
			} else {
				compute_stack_cost(func_idx as u32, module)
			}
		})
		.collect()
}

/// Stack cost of the given *defined* function is the sum of it's locals count (that is,
/// number of arguments plus number of local variables) and the maximal stack
/// height.
fn compute_stack_cost(func_idx: u32, module: &elements::Module) -> Result<u32, Error> {
	// To calculate the cost of a function we need to convert index from
	// function index space to defined function spaces.
	let func_imports = module.import_count(elements::ImportCountType::Function) as u32;
	let defined_func_idx = func_idx
		.checked_sub(func_imports)
		.ok_or_else(|| Error("This should be a index of a defined function".into()))?;

	let code_section = module
		.code_section()
		.ok_or_else(|| Error("Due to validation code section should exists".into()))?;
	let body = &code_section
		.bodies()
		.get(defined_func_idx as usize)
		.ok_or_else(|| Error("Function body is out of bounds".into()))?;

	let mut locals_count: u32 = 0;
	for local_group in body.locals() {
		locals_count = locals_count
			.checked_add(local_group.count())
			.ok_or_else(|| Error("Overflow in local count".into()))?;
	}

	let max_stack_height = max_height::compute(defined_func_idx, module)?;

	locals_count
		.checked_add(max_stack_height)
		.ok_or_else(|| Error("Overflow in adding locals_count and max_stack_height".into()))
}

fn instrument_functions(ctx: &mut Context, module: &mut elements::Module) -> Result<(), Error> {
	for section in module.sections_mut() {
		if let elements::Section::Code(code_section) = section {
			for func_body in code_section.bodies_mut() {
				let opcodes = func_body.code_mut();
				instrument_function(ctx, opcodes)?;
			}
		}
	}
	Ok(())
}

/// This function searches `call` instructions and wrap each call
/// with preamble and postamble.
///
/// Before:
///
/// ```text
/// get_local 0
/// get_local 1
/// call 228
/// drop
/// ```
///
/// After:
///
/// ```text
/// get_local 0
/// get_local 1
///
/// < ... preamble ... >
///
/// call 228
///
/// < .. postamble ... >
///
/// drop
/// ```
fn instrument_function(ctx: &mut Context, func: &mut Instructions) -> Result<(), Error> {
	use Instruction::*;

	struct InstrumentCall {
		offset: usize,
		callee: u32,
		cost: u32,
	}

	let calls: Vec<_> = func
		.elements()
		.iter()
		.enumerate()
		.filter_map(|(offset, instruction)| {
			if let Call(callee) = instruction {
				ctx.stack_cost(*callee).and_then(|cost| {
					if cost > 0 {
						Some(InstrumentCall { callee: *callee, offset, cost })
					} else {
						None
					}
				})
			} else {
				None
			}
		})
		.collect();

	// The `instrumented_call!` contains the call itself. This is why we need to subtract one.
	let len = func.elements().len() + calls.len() * (instrument_call!(0, 0, 0, 0).len() - 1);
	let original_instrs = mem::replace(func.elements_mut(), Vec::with_capacity(len));
	let new_instrs = func.elements_mut();

	let mut calls = calls.into_iter().peekable();
	for (original_pos, instr) in original_instrs.into_iter().enumerate() {
		// whether there is some call instruction at this position that needs to be instrumented
		let did_instrument = if let Some(call) = calls.peek() {
			if call.offset == original_pos {
				let new_seq = instrument_call!(
					call.callee,
					call.cost as i32,
					ctx.stack_height_global_idx(),
					ctx.stack_limit()
				);
				new_instrs.extend(new_seq);
				true
			} else {
				false
			}
		} else {
			false
		};

		if did_instrument {
			calls.next();
		} else {
			new_instrs.push(instr);
		}
	}

	if calls.next().is_some() {
		return Err(Error("Not all calls were used".into()))
	}

	Ok(())
}

fn resolve_func_type(
	func_idx: u32,
	module: &elements::Module,
) -> Result<&elements::FunctionType, Error> {
	let types = module.type_section().map(|ts| ts.types()).unwrap_or(&[]);
	let functions = module.function_section().map(|fs| fs.entries()).unwrap_or(&[]);

	let func_imports = module.import_count(elements::ImportCountType::Function);
	let sig_idx = if func_idx < func_imports as u32 {
		module
			.import_section()
			.expect("function import count is not zero; import section must exists; qed")
			.entries()
			.iter()
			.filter_map(|entry| match entry.external() {
				elements::External::Function(idx) => Some(*idx),
				_ => None,
			})
			.nth(func_idx as usize)
			.expect(
				"func_idx is less than function imports count;
				nth function import must be `Some`;
				qed",
			)
	} else {
		functions
			.get(func_idx as usize - func_imports)
			.ok_or_else(|| Error(format!("Function at index {} is not defined", func_idx)))?
			.type_ref()
	};
	let Type::Function(ty) = types.get(sig_idx as usize).ok_or_else(|| {
		Error(format!("Signature {} (specified by func {}) isn't defined", sig_idx, func_idx))
	})?;
	Ok(ty)
}

#[cfg(test)]
mod tests {
	use super::*;
	use parity_wasm::elements;

	fn parse_wat(source: &str) -> elements::Module {
		elements::deserialize_buffer(&wabt::wat2wasm(source).expect("Failed to wat2wasm"))
			.expect("Failed to deserialize the module")
	}

	fn validate_module(module: elements::Module) {
		let binary = elements::serialize(module).expect("Failed to serialize");
		wabt::Module::read_binary(&binary, &Default::default())
			.expect("Wabt failed to read final binary")
			.validate()
			.expect("Invalid module");
	}

	#[test]
	fn test_with_params_and_result() {
		let module = parse_wat(
			r#"
(module
	(func (export "i32.add") (param i32 i32) (result i32)
		get_local 0
	get_local 1
	i32.add
	)
)
"#,
		);

		let module = inject_limiter(module, 1024).expect("Failed to inject stack counter");
		validate_module(module);
	}
}