1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
//! This module is used to instrument a Wasm module with gas metering code.
//!
//! The primary public interface is the `inject_gas_counter` function which transforms a given
//! module into one that charges gas for code to be executed. See function documentation for usage
//! and details.

#[cfg(test)]
mod validation;

use crate::std::{cmp::min, mem, vec::Vec};

use crate::rules::Rules;
use parity_wasm::{builder, elements, elements::ValueType};

pub fn update_call_index(instructions: &mut elements::Instructions, inserted_index: u32) {
	use parity_wasm::elements::Instruction::*;
	for instruction in instructions.elements_mut().iter_mut() {
		if let Call(call_index) = instruction {
			if *call_index >= inserted_index {
				*call_index += 1
			}
		}
	}
}

/// A control flow block is opened with the `block`, `loop`, and `if` instructions and is closed
/// with `end`. Each block implicitly defines a new label. The control blocks form a stack during
/// program execution.
///
/// An example of block:
///
/// ```ignore
/// loop
///   i32.const 1
///   get_local 0
///   i32.sub
///   tee_local 0
///   br_if 0
/// end
/// ```
///
/// The start of the block is `i32.const 1`.
///
#[derive(Debug)]
struct ControlBlock {
	/// The lowest control stack index corresponding to a forward jump targeted by a br, br_if, or
	/// br_table instruction within this control block. The index must refer to a control block
	/// that is not a loop, meaning it is a forward jump. Given the way Wasm control flow is
	/// structured, the lowest index on the stack represents the furthest forward branch target.
	///
	/// This value will always be at most the index of the block itself, even if there is no
	/// explicit br instruction targeting this control block. This does not affect how the value is
	/// used in the metering algorithm.
	lowest_forward_br_target: usize,

	/// The active metering block that new instructions contribute a gas cost towards.
	active_metered_block: MeteredBlock,

	/// Whether the control block is a loop. Loops have the distinguishing feature that branches to
	/// them jump to the beginning of the block, not the end as with the other control blocks.
	is_loop: bool,
}

/// A block of code that metering instructions will be inserted at the beginning of. Metered blocks
/// are constructed with the property that, in the absence of any traps, either all instructions in
/// the block are executed or none are.
#[derive(Debug)]
pub(crate) struct MeteredBlock {
	/// Index of the first instruction (aka `Opcode`) in the block.
	start_pos: usize,
	/// Sum of costs of all instructions until end of the block.
	cost: u32,
}

/// Counter is used to manage state during the gas metering algorithm implemented by
/// `inject_counter`.
struct Counter {
	/// A stack of control blocks. This stack grows when new control blocks are opened with
	/// `block`, `loop`, and `if` and shrinks when control blocks are closed with `end`. The first
	/// block on the stack corresponds to the function body, not to any labelled block. Therefore
	/// the actual Wasm label index associated with each control block is 1 less than its position
	/// in this stack.
	stack: Vec<ControlBlock>,

	/// A list of metered blocks that have been finalized, meaning they will no longer change.
	finalized_blocks: Vec<MeteredBlock>,
}

impl Counter {
	fn new() -> Counter {
		Counter { stack: Vec::new(), finalized_blocks: Vec::new() }
	}

	/// Open a new control block. The cursor is the position of the first instruction in the block.
	fn begin_control_block(&mut self, cursor: usize, is_loop: bool) {
		let index = self.stack.len();
		self.stack.push(ControlBlock {
			lowest_forward_br_target: index,
			active_metered_block: MeteredBlock { start_pos: cursor, cost: 0 },
			is_loop,
		})
	}

	/// Close the last control block. The cursor is the position of the final (pseudo-)instruction
	/// in the block.
	fn finalize_control_block(&mut self, cursor: usize) -> Result<(), ()> {
		// This either finalizes the active metered block or merges its cost into the active
		// metered block in the previous control block on the stack.
		self.finalize_metered_block(cursor)?;

		// Pop the control block stack.
		let closing_control_block = self.stack.pop().ok_or(())?;
		let closing_control_index = self.stack.len();

		if self.stack.is_empty() {
			return Ok(())
		}

		// Update the lowest_forward_br_target for the control block now on top of the stack.
		{
			let control_block = self.stack.last_mut().ok_or(())?;
			control_block.lowest_forward_br_target = min(
				control_block.lowest_forward_br_target,
				closing_control_block.lowest_forward_br_target,
			);
		}

		// If there may have been a branch to a lower index, then also finalize the active metered
		// block for the previous control block. Otherwise, finalize it and begin a new one.
		let may_br_out = closing_control_block.lowest_forward_br_target < closing_control_index;
		if may_br_out {
			self.finalize_metered_block(cursor)?;
		}

		Ok(())
	}

	/// Finalize the current active metered block.
	///
	/// Finalized blocks have final cost which will not change later.
	fn finalize_metered_block(&mut self, cursor: usize) -> Result<(), ()> {
		let closing_metered_block = {
			let control_block = self.stack.last_mut().ok_or(())?;
			mem::replace(
				&mut control_block.active_metered_block,
				MeteredBlock { start_pos: cursor + 1, cost: 0 },
			)
		};

		// If the block was opened with a `block`, then its start position will be set to that of
		// the active metered block in the control block one higher on the stack. This is because
		// any instructions between a `block` and the first branch are part of the same basic block
		// as the preceding instruction. In this case, instead of finalizing the block, merge its
		// cost into the other active metered block to avoid injecting unnecessary instructions.
		let last_index = self.stack.len() - 1;
		if last_index > 0 {
			let prev_control_block = self
				.stack
				.get_mut(last_index - 1)
				.expect("last_index is greater than 0; last_index is stack size - 1; qed");
			let prev_metered_block = &mut prev_control_block.active_metered_block;
			if closing_metered_block.start_pos == prev_metered_block.start_pos {
				prev_metered_block.cost += closing_metered_block.cost;
				return Ok(())
			}
		}

		if closing_metered_block.cost > 0 {
			self.finalized_blocks.push(closing_metered_block);
		}
		Ok(())
	}

	/// Handle a branch instruction in the program. The cursor is the index of the branch
	/// instruction in the program. The indices are the stack positions of the target control
	/// blocks. Recall that the index is 0 for a `return` and relatively indexed from the top of
	/// the stack by the label of `br`, `br_if`, and `br_table` instructions.
	fn branch(&mut self, cursor: usize, indices: &[usize]) -> Result<(), ()> {
		self.finalize_metered_block(cursor)?;

		// Update the lowest_forward_br_target of the current control block.
		for &index in indices {
			let target_is_loop = {
				let target_block = self.stack.get(index).ok_or(())?;
				target_block.is_loop
			};
			if target_is_loop {
				continue
			}

			let control_block = self.stack.last_mut().ok_or(())?;
			control_block.lowest_forward_br_target =
				min(control_block.lowest_forward_br_target, index);
		}

		Ok(())
	}

	/// Returns the stack index of the active control block. Returns None if stack is empty.
	fn active_control_block_index(&self) -> Option<usize> {
		self.stack.len().checked_sub(1)
	}

	/// Get a reference to the currently active metered block.
	fn active_metered_block(&mut self) -> Result<&mut MeteredBlock, ()> {
		let top_block = self.stack.last_mut().ok_or(())?;
		Ok(&mut top_block.active_metered_block)
	}

	/// Increment the cost of the current block by the specified value.
	fn increment(&mut self, val: u32) -> Result<(), ()> {
		let top_block = self.active_metered_block()?;
		top_block.cost = top_block.cost.checked_add(val).ok_or(())?;
		Ok(())
	}
}

fn inject_grow_counter(instructions: &mut elements::Instructions, grow_counter_func: u32) -> usize {
	use parity_wasm::elements::Instruction::*;
	let mut counter = 0;
	for instruction in instructions.elements_mut() {
		if let GrowMemory(_) = *instruction {
			*instruction = Call(grow_counter_func);
			counter += 1;
		}
	}
	counter
}

fn add_grow_counter<R: Rules>(
	module: elements::Module,
	rules: &R,
	gas_func: u32,
) -> elements::Module {
	use crate::rules::MemoryGrowCost;
	use parity_wasm::elements::Instruction::*;

	let cost = match rules.memory_grow_cost() {
		None => return module,
		Some(MemoryGrowCost::Linear(val)) => val.get(),
	};

	let mut b = builder::from_module(module);
	b.push_function(
		builder::function()
			.signature()
			.with_param(ValueType::I32)
			.with_result(ValueType::I32)
			.build()
			.body()
			.with_instructions(elements::Instructions::new(vec![
				GetLocal(0),
				GetLocal(0),
				I32Const(cost as i32),
				I32Mul,
				// todo: there should be strong guarantee that it does not return anything on stack?
				Call(gas_func),
				GrowMemory(0),
				End,
			]))
			.build()
			.build(),
	);

	b.build()
}

pub(crate) fn determine_metered_blocks<R: Rules>(
	instructions: &elements::Instructions,
	rules: &R,
) -> Result<Vec<MeteredBlock>, ()> {
	use parity_wasm::elements::Instruction::*;

	let mut counter = Counter::new();

	// Begin an implicit function (i.e. `func...end`) block.
	counter.begin_control_block(0, false);

	for cursor in 0..instructions.elements().len() {
		let instruction = &instructions.elements()[cursor];
		let instruction_cost = rules.instruction_cost(instruction).ok_or(())?;
		match instruction {
			Block(_) => {
				counter.increment(instruction_cost)?;

				// Begin new block. The cost of the following opcodes until `end` or `else` will
				// be included into this block. The start position is set to that of the previous
				// active metered block to signal that they should be merged in order to reduce
				// unnecessary metering instructions.
				let top_block_start_pos = counter.active_metered_block()?.start_pos;
				counter.begin_control_block(top_block_start_pos, false);
			},
			If(_) => {
				counter.increment(instruction_cost)?;
				counter.begin_control_block(cursor + 1, false);
			},
			Loop(_) => {
				counter.increment(instruction_cost)?;
				counter.begin_control_block(cursor + 1, true);
			},
			End => {
				counter.finalize_control_block(cursor)?;
			},
			Else => {
				counter.finalize_metered_block(cursor)?;
			},
			Br(label) | BrIf(label) => {
				counter.increment(instruction_cost)?;

				// Label is a relative index into the control stack.
				let active_index = counter.active_control_block_index().ok_or(())?;
				let target_index = active_index.checked_sub(*label as usize).ok_or(())?;
				counter.branch(cursor, &[target_index])?;
			},
			BrTable(br_table_data) => {
				counter.increment(instruction_cost)?;

				let active_index = counter.active_control_block_index().ok_or(())?;
				let target_indices = [br_table_data.default]
					.iter()
					.chain(br_table_data.table.iter())
					.map(|label| active_index.checked_sub(*label as usize))
					.collect::<Option<Vec<_>>>()
					.ok_or(())?;
				counter.branch(cursor, &target_indices)?;
			},
			Return => {
				counter.increment(instruction_cost)?;
				counter.branch(cursor, &[0])?;
			},
			_ => {
				// An ordinal non control flow instruction increments the cost of the current block.
				counter.increment(instruction_cost)?;
			},
		}
	}

	counter.finalized_blocks.sort_unstable_by_key(|block| block.start_pos);
	Ok(counter.finalized_blocks)
}

pub fn inject_counter<R: Rules>(
	instructions: &mut elements::Instructions,
	rules: &R,
	gas_func: u32,
) -> Result<(), ()> {
	let blocks = determine_metered_blocks(instructions, rules)?;
	insert_metering_calls(instructions, blocks, gas_func)
}

// Then insert metering calls into a sequence of instructions given the block locations and costs.
fn insert_metering_calls(
	instructions: &mut elements::Instructions,
	blocks: Vec<MeteredBlock>,
	gas_func: u32,
) -> Result<(), ()> {
	use parity_wasm::elements::Instruction::*;

	// To do this in linear time, construct a new vector of instructions, copying over old
	// instructions one by one and injecting new ones as required.
	let new_instrs_len = instructions.elements().len() + 2 * blocks.len();
	let original_instrs =
		mem::replace(instructions.elements_mut(), Vec::with_capacity(new_instrs_len));
	let new_instrs = instructions.elements_mut();

	let mut block_iter = blocks.into_iter().peekable();
	for (original_pos, instr) in original_instrs.into_iter().enumerate() {
		// If there the next block starts at this position, inject metering instructions.
		let used_block = if let Some(block) = block_iter.peek() {
			if block.start_pos == original_pos {
				new_instrs.push(I32Const(block.cost as i32));
				new_instrs.push(Call(gas_func));
				true
			} else {
				false
			}
		} else {
			false
		};

		if used_block {
			block_iter.next();
		}

		// Copy over the original instruction.
		new_instrs.push(instr);
	}

	if block_iter.next().is_some() {
		return Err(())
	}

	Ok(())
}

/// Transforms a given module into one that charges gas for code to be executed by proxy of an
/// imported gas metering function.
///
/// The output module imports a function "gas" from the specified module with type signature
/// [i32] -> []. The argument is the amount of gas required to continue execution. The external
/// function is meant to keep track of the total amount of gas used and trap or otherwise halt
/// execution of the runtime if the gas usage exceeds some allowed limit.
///
/// The body of each function is divided into metered blocks, and the calls to charge gas are
/// inserted at the beginning of every such block of code. A metered block is defined so that,
/// unless there is a trap, either all of the instructions are executed or none are. These are
/// similar to basic blocks in a control flow graph, except that in some cases multiple basic
/// blocks can be merged into a single metered block. This is the case if any path through the
/// control flow graph containing one basic block also contains another.
///
/// Charging gas is at the beginning of each metered block ensures that 1) all instructions
/// executed are already paid for, 2) instructions that will not be executed are not charged for
/// unless execution traps, and 3) the number of calls to "gas" is minimized. The corollary is that
/// modules instrumented with this metering code may charge gas for instructions not executed in
/// the event of a trap.
///
/// Additionally, each `memory.grow` instruction found in the module is instrumented to first make
/// a call to charge gas for the additional pages requested. This cannot be done as part of the
/// block level gas charges as the gas cost is not static and depends on the stack argument to
/// `memory.grow`.
///
/// The above transformations are performed for every function body defined in the module. This
/// function also rewrites all function indices references by code, table elements, etc., since
/// the addition of an imported functions changes the indices of module-defined functions.
///
/// This routine runs in time linear in the size of the input module.
///
/// The function fails if the module contains any operation forbidden by gas rule set, returning
/// the original module as an Err.
pub fn inject_gas_counter<R: Rules>(
	module: elements::Module,
	rules: &R,
	gas_module_name: &str,
) -> Result<elements::Module, elements::Module> {
	// Injecting gas counting external
	let mut mbuilder = builder::from_module(module);
	let import_sig =
		mbuilder.push_signature(builder::signature().with_param(ValueType::I32).build_sig());

	mbuilder.push_import(
		builder::import()
			.module(gas_module_name)
			.field("gas")
			.external()
			.func(import_sig)
			.build(),
	);

	// back to plain module
	let mut module = mbuilder.build();

	// calculate actual function index of the imported definition
	//    (subtract all imports that are NOT functions)

	let gas_func = module.import_count(elements::ImportCountType::Function) as u32 - 1;
	let total_func = module.functions_space() as u32;
	let mut need_grow_counter = false;
	let mut error = false;

	// Updating calling addresses (all calls to function index >= `gas_func` should be incremented)
	for section in module.sections_mut() {
		match section {
			elements::Section::Code(code_section) =>
				for func_body in code_section.bodies_mut() {
					update_call_index(func_body.code_mut(), gas_func);
					if inject_counter(func_body.code_mut(), rules, gas_func).is_err() {
						error = true;
						break
					}
					if rules.memory_grow_cost().is_some() &&
						inject_grow_counter(func_body.code_mut(), total_func) > 0
					{
						need_grow_counter = true;
					}
				},
			elements::Section::Export(export_section) => {
				for export in export_section.entries_mut() {
					if let elements::Internal::Function(func_index) = export.internal_mut() {
						if *func_index >= gas_func {
							*func_index += 1
						}
					}
				}
			},
			elements::Section::Element(elements_section) => {
				// Note that we do not need to check the element type referenced because in the
				// WebAssembly 1.0 spec, the only allowed element type is funcref.
				for segment in elements_section.entries_mut() {
					// update all indirect call addresses initial values
					for func_index in segment.members_mut() {
						if *func_index >= gas_func {
							*func_index += 1
						}
					}
				}
			},
			elements::Section::Start(start_idx) =>
				if *start_idx >= gas_func {
					*start_idx += 1
				},
			_ => {},
		}
	}

	if error {
		return Err(module)
	}

	if need_grow_counter {
		Ok(add_grow_counter(module, rules, gas_func))
	} else {
		Ok(module)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::rules;
	use parity_wasm::{builder, elements, elements::Instruction::*, serialize};

	pub fn get_function_body(
		module: &elements::Module,
		index: usize,
	) -> Option<&[elements::Instruction]> {
		module
			.code_section()
			.and_then(|code_section| code_section.bodies().get(index))
			.map(|func_body| func_body.code().elements())
	}

	#[test]
	fn simple_grow() {
		let module = builder::module()
			.global()
			.value_type()
			.i32()
			.build()
			.function()
			.signature()
			.param()
			.i32()
			.build()
			.body()
			.with_instructions(elements::Instructions::new(vec![GetGlobal(0), GrowMemory(0), End]))
			.build()
			.build()
			.build();

		let injected_module =
			inject_gas_counter(module, &rules::Set::default().with_grow_cost(10000), "env")
				.unwrap();

		assert_eq!(
			get_function_body(&injected_module, 0).unwrap(),
			&vec![I32Const(2), Call(0), GetGlobal(0), Call(2), End][..]
		);
		assert_eq!(
			get_function_body(&injected_module, 1).unwrap(),
			&vec![GetLocal(0), GetLocal(0), I32Const(10000), I32Mul, Call(0), GrowMemory(0), End,]
				[..]
		);

		let binary = serialize(injected_module).expect("serialization failed");
		wabt::wasm2wat(&binary).unwrap();
	}

	#[test]
	fn grow_no_gas_no_track() {
		let module = builder::module()
			.global()
			.value_type()
			.i32()
			.build()
			.function()
			.signature()
			.param()
			.i32()
			.build()
			.body()
			.with_instructions(elements::Instructions::new(vec![GetGlobal(0), GrowMemory(0), End]))
			.build()
			.build()
			.build();

		let injected_module = inject_gas_counter(module, &rules::Set::default(), "env").unwrap();

		assert_eq!(
			get_function_body(&injected_module, 0).unwrap(),
			&vec![I32Const(2), Call(0), GetGlobal(0), GrowMemory(0), End][..]
		);

		assert_eq!(injected_module.functions_space(), 2);

		let binary = serialize(injected_module).expect("serialization failed");
		wabt::wasm2wat(&binary).unwrap();
	}

	#[test]
	fn call_index() {
		let module = builder::module()
			.global()
			.value_type()
			.i32()
			.build()
			.function()
			.signature()
			.param()
			.i32()
			.build()
			.body()
			.build()
			.build()
			.function()
			.signature()
			.param()
			.i32()
			.build()
			.body()
			.with_instructions(elements::Instructions::new(vec![
				Call(0),
				If(elements::BlockType::NoResult),
				Call(0),
				Call(0),
				Call(0),
				Else,
				Call(0),
				Call(0),
				End,
				Call(0),
				End,
			]))
			.build()
			.build()
			.build();

		let injected_module = inject_gas_counter(module, &rules::Set::default(), "env").unwrap();

		assert_eq!(
			get_function_body(&injected_module, 1).unwrap(),
			&vec![
				I32Const(3),
				Call(0),
				Call(1),
				If(elements::BlockType::NoResult),
				I32Const(3),
				Call(0),
				Call(1),
				Call(1),
				Call(1),
				Else,
				I32Const(2),
				Call(0),
				Call(1),
				Call(1),
				End,
				Call(1),
				End
			][..]
		);
	}

	#[test]
	fn forbidden() {
		let module = builder::module()
			.global()
			.value_type()
			.i32()
			.build()
			.function()
			.signature()
			.param()
			.i32()
			.build()
			.body()
			.with_instructions(elements::Instructions::new(vec![F32Const(555555), End]))
			.build()
			.build()
			.build();

		let rules = rules::Set::default().with_forbidden_floats();

		if inject_gas_counter(module, &rules, "env").is_ok() {
			panic!("Should be error because of the forbidden operation")
		}
	}

	fn parse_wat(source: &str) -> elements::Module {
		let module_bytes = wabt::Wat2Wasm::new()
			.validate(false)
			.convert(source)
			.expect("failed to parse module");
		elements::deserialize_buffer(module_bytes.as_ref()).expect("failed to parse module")
	}

	macro_rules! test_gas_counter_injection {
		(name = $name:ident; input = $input:expr; expected = $expected:expr) => {
			#[test]
			fn $name() {
				let input_module = parse_wat($input);
				let expected_module = parse_wat($expected);

				let injected_module =
					inject_gas_counter(input_module, &rules::Set::default(), "env")
						.expect("inject_gas_counter call failed");

				let actual_func_body = get_function_body(&injected_module, 0)
					.expect("injected module must have a function body");
				let expected_func_body = get_function_body(&expected_module, 0)
					.expect("post-module must have a function body");

				assert_eq!(actual_func_body, expected_func_body);
			}
		};
	}

	test_gas_counter_injection! {
		name = simple;
		input = r#"
		(module
			(func (result i32)
				(get_global 0)))
		"#;
		expected = r#"
		(module
			(func (result i32)
				(call 0 (i32.const 1))
				(get_global 0)))
		"#
	}

	test_gas_counter_injection! {
		name = nested;
		input = r#"
		(module
			(func (result i32)
				(get_global 0)
				(block
					(get_global 0)
					(get_global 0)
					(get_global 0))
				(get_global 0)))
		"#;
		expected = r#"
		(module
			(func (result i32)
				(call 0 (i32.const 6))
				(get_global 0)
				(block
					(get_global 0)
					(get_global 0)
					(get_global 0))
				(get_global 0)))
		"#
	}

	test_gas_counter_injection! {
		name = ifelse;
		input = r#"
		(module
			(func (result i32)
				(get_global 0)
				(if
					(then
						(get_global 0)
						(get_global 0)
						(get_global 0))
					(else
						(get_global 0)
						(get_global 0)))
				(get_global 0)))
		"#;
		expected = r#"
		(module
			(func (result i32)
				(call 0 (i32.const 3))
				(get_global 0)
				(if
					(then
						(call 0 (i32.const 3))
						(get_global 0)
						(get_global 0)
						(get_global 0))
					(else
						(call 0 (i32.const 2))
						(get_global 0)
						(get_global 0)))
				(get_global 0)))
		"#
	}

	test_gas_counter_injection! {
		name = branch_innermost;
		input = r#"
		(module
			(func (result i32)
				(get_global 0)
				(block
					(get_global 0)
					(drop)
					(br 0)
					(get_global 0)
					(drop))
				(get_global 0)))
		"#;
		expected = r#"
		(module
			(func (result i32)
				(call 0 (i32.const 6))
				(get_global 0)
				(block
					(get_global 0)
					(drop)
					(br 0)
					(call 0 (i32.const 2))
					(get_global 0)
					(drop))
				(get_global 0)))
		"#
	}

	test_gas_counter_injection! {
		name = branch_outer_block;
		input = r#"
		(module
			(func (result i32)
				(get_global 0)
				(block
					(get_global 0)
					(if
						(then
							(get_global 0)
							(get_global 0)
							(drop)
							(br_if 1)))
					(get_global 0)
					(drop))
				(get_global 0)))
		"#;
		expected = r#"
		(module
			(func (result i32)
				(call 0 (i32.const 5))
				(get_global 0)
				(block
					(get_global 0)
					(if
						(then
							(call 0 (i32.const 4))
							(get_global 0)
							(get_global 0)
							(drop)
							(br_if 1)))
					(call 0 (i32.const 2))
					(get_global 0)
					(drop))
				(get_global 0)))
		"#
	}

	test_gas_counter_injection! {
		name = branch_outer_loop;
		input = r#"
		(module
			(func (result i32)
				(get_global 0)
				(loop
					(get_global 0)
					(if
						(then
							(get_global 0)
							(br_if 0))
						(else
							(get_global 0)
							(get_global 0)
							(drop)
							(br_if 1)))
					(get_global 0)
					(drop))
				(get_global 0)))
		"#;
		expected = r#"
		(module
			(func (result i32)
				(call 0 (i32.const 3))
				(get_global 0)
				(loop
					(call 0 (i32.const 4))
					(get_global 0)
					(if
						(then
							(call 0 (i32.const 2))
							(get_global 0)
							(br_if 0))
						(else
							(call 0 (i32.const 4))
							(get_global 0)
							(get_global 0)
							(drop)
							(br_if 1)))
					(get_global 0)
					(drop))
				(get_global 0)))
		"#
	}

	test_gas_counter_injection! {
		name = return_from_func;
		input = r#"
		(module
			(func (result i32)
				(get_global 0)
				(if
					(then
						(return)))
				(get_global 0)))
		"#;
		expected = r#"
		(module
			(func (result i32)
				(call 0 (i32.const 2))
				(get_global 0)
				(if
					(then
						(call 0 (i32.const 1))
						(return)))
				(call 0 (i32.const 1))
				(get_global 0)))
		"#
	}

	test_gas_counter_injection! {
		name = branch_from_if_not_else;
		input = r#"
		(module
			(func (result i32)
				(get_global 0)
				(block
					(get_global 0)
					(if
						(then (br 1))
						(else (br 0)))
					(get_global 0)
					(drop))
				(get_global 0)))
		"#;
		expected = r#"
		(module
			(func (result i32)
				(call 0 (i32.const 5))
				(get_global 0)
				(block
					(get_global 0)
					(if
						(then
							(call 0 (i32.const 1))
							(br 1))
						(else
							(call 0 (i32.const 1))
							(br 0)))
					(call 0 (i32.const 2))
					(get_global 0)
					(drop))
				(get_global 0)))
		"#
	}

	test_gas_counter_injection! {
		name = empty_loop;
		input = r#"
		(module
			(func
				(loop
					(br 0)
				)
				unreachable
			)
		)
		"#;
		expected = r#"
		(module
			(func
				(call 0 (i32.const 2))
				(loop
					(call 0 (i32.const 1))
					(br 0)
				)
				unreachable
			)
		)
		"#
	}
}