Struct generic_array::GenericArray
[−]
[src]
pub struct GenericArray<T, U: ArrayLength<T>> { /* fields omitted */ }
Struct representing a generic array - GenericArray<T, N>
works like [T; N]
Methods
impl<T, N> GenericArray<T, N> where N: ArrayLength<T>
[src]
fn map_slice<S, F: Fn(&S) -> T>(s: &[S], f: F) -> GenericArray<T, N>
map a function over a slice to a GenericArray
.
The length of the slice must be equal to the length of the array
fn map<U, F>(self, f: F) -> GenericArray<U, N> where F: Fn(&T) -> U, N: ArrayLength<U>
map a function over a GenericArray
.
impl<T: Default, N> GenericArray<T, N> where N: ArrayLength<T>
[src]
fn new() -> GenericArray<T, N>
Function constructing an array filled with default values
impl<T: Clone, N> GenericArray<T, N> where N: ArrayLength<T>
[src]
fn from_slice(list: &[T]) -> GenericArray<T, N>
Function constructing an array from a slice; the length of the slice must be equal to the length of the array
Methods from Deref<Target=[T]>
fn len(&self) -> usize
1.0.0
fn is_empty(&self) -> bool
1.0.0
fn first(&self) -> Option<&T>
1.0.0
Returns the first element of a slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());Run
fn first_mut(&mut self) -> Option<&mut T>
1.0.0
Returns a mutable pointer to the first element of a slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some(first) = x.first_mut() { *first = 5; } assert_eq!(x, &[5, 1, 2]);Run
fn split_first(&self) -> Option<(&T, &[T])>
1.5.0
Returns the first and all the rest of the elements of a slice.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }Run
fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0
Returns the first and all the rest of the elements of a slice.
Examples
let x = &mut [0, 1, 2]; if let Some((first, elements)) = x.split_first_mut() { *first = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[3, 4, 5]);Run
fn split_last(&self) -> Option<(&T, &[T])>
1.5.0
Returns the last and all the rest of the elements of a slice.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }Run
fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0
Returns the last and all the rest of the elements of a slice.
Examples
let x = &mut [0, 1, 2]; if let Some((last, elements)) = x.split_last_mut() { *last = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[4, 5, 3]);Run
fn last(&self) -> Option<&T>
1.0.0
Returns the last element of a slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());Run
fn last_mut(&mut self) -> Option<&mut T>
1.0.0
Returns a mutable pointer to the last item in the slice.
Examples
let x = &mut [0, 1, 2]; if let Some(last) = x.last_mut() { *last = 10; } assert_eq!(x, &[0, 1, 10]);Run
fn get(&self, index: usize) -> Option<&T>
1.0.0
Returns the element of a slice at the given index, or None
if the
index is out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3));Run
fn get_mut(&mut self, index: usize) -> Option<&mut T>
1.0.0
Returns a mutable reference to the element at the given index.
Examples
let x = &mut [0, 1, 2]; if let Some(elem) = x.get_mut(1) { *elem = 42; } assert_eq!(x, &[0, 42, 2]);Run
or None
if the index is out of bounds
unsafe fn get_unchecked(&self, index: usize) -> &T
1.0.0
Returns a pointer to the element at the given index, without doing bounds checking. So use it very carefully!
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }Run
unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
1.0.0
Returns an unsafe mutable pointer to the element in index. So use it very carefully!
Examples
let x = &mut [1, 2, 4]; unsafe { let elem = x.get_unchecked_mut(1); *elem = 13; } assert_eq!(x, &[1, 13, 4]);Run
fn as_ptr(&self) -> *const T
1.0.0
Returns an raw pointer to the slice's buffer
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }Run
fn as_mut_ptr(&mut self) -> *mut T
1.0.0
Returns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &mut [1, 2, 4]; let x_ptr = x.as_mut_ptr(); unsafe { for i in 0..x.len() { *x_ptr.offset(i as isize) += 2; } } assert_eq!(x, &[3, 4, 6]);Run
fn swap(&mut self, a: usize, b: usize)
1.0.0
Swaps two elements in a slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a
or b
are out of bounds.
Examples
let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);Run
fn reverse(&mut self)
1.0.0
Reverse the order of elements in a slice, in place.
Example
let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);Run
fn iter(&self) -> Iter<T>
1.0.0
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);Run
fn iter_mut(&mut self) -> IterMut<T>
1.0.0
Returns an iterator that allows modifying each value.
Examples
let x = &mut [1, 2, 4]; { let iterator = x.iter_mut(); for elem in iterator { *elem += 2; } } assert_eq!(x, &[3, 4, 6]);Run
fn windows(&self, size: usize) -> Windows<T>
1.0.0
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Example
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());Run
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());Run
fn chunks(&self, size: usize) -> Chunks<T>
1.0.0
Returns an iterator over size
elements of the slice at a
time. The chunks are slices and do not overlap. If size
does not divide the
length of the slice, then the last chunk will not have length
size
.
Panics
Panics if size
is 0.
Example
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());Run
fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
1.0.0
Returns an iterator over chunk_size
elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will not
have length chunk_size
.
Panics
Panics if chunk_size
is 0.
Examples
let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 3]);Run
fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2);Run
fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
1.0.0
Divides one &mut
into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }Run
fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());Run
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());Run
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());Run
fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over mutable subslices separated by elements that
match pred
. The matched element is not contained in the subslices.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.split_mut(|num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 1]);Run
fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }Run
fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.splitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 50]);Run
fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }Run
fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool
1.0.0
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut s = [10, 40, 30, 20, 60, 50]; for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(s, [1, 40, 30, 20, 60, 1]);Run
fn contains(&self, x: &T) -> bool where T: PartialEq<T>
1.0.0
Returns true if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));Run
fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
1.0.0
Returns true if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));Run
fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
1.0.0
Returns true if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));Run
fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord
1.0.0
Binary search a sorted slice for a given element.
If the value is found then Ok
is returned, containing the
index of the matching element; if the value is not found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });Run
fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where F: FnMut(&'a T) -> Ordering
1.0.0
Binary search a sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing
the index for the matched element; if no match is found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });Run
fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> where B: Ord, F: FnMut(&'a T) -> B
1.10.0
Binary search a sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If a matching value is found then returns Ok
, containing the
index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could
be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1,4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });Run
fn sort(&mut self) where T: Ord
1.0.0
This is equivalent to self.sort_by(|a, b| a.cmp(b))
.
This sort is stable and O(n log n)
worst-case but allocates
approximately 2 * n
where n
is the length of self
.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);Run
fn sort_by_key<B, F>(&mut self, f: F) where B: Ord, F: FnMut(&T) -> B
1.7.0
Sorts the slice, in place, using key
to extract a key by which to
order the sort by.
This sort is stable and O(n log n)
worst-case but allocates
approximately 2 * n
, where n
is the length of self
.
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);Run
fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering
1.0.0
Sorts the slice, in place, using compare
to compare
elements.
This sort is stable and O(n log n)
worst-case but allocates
approximately 2 * n
, where n
is the length of self
.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);Run
fn clone_from_slice(&mut self, src: &[T]) where T: Clone
1.7.0
Copies the elements from src
into self
.
The length of src
must be the same as self
.
Panics
This function will panic if the two slices have different lengths.
Example
let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.clone_from_slice(&src); assert!(dst == [1, 2, 3]);Run
fn copy_from_slice(&mut self, src: &[T]) where T: Copy
1.9.0
Copies all elements from src
into self
, using a memcpy.
The length of src
must be the same as self
.
Panics
This function will panic if the two slices have different lengths.
Example
let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.copy_from_slice(&src); assert_eq!(src, dst);Run
fn to_vec(&self) -> Vec<T> where T: Clone
1.0.0
Copies self
into a new Vec
.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.Run
fn into_vec(self: Box<[T]>) -> Vec<T>
1.0.0
Trait Implementations
impl<T, N> IntoIterator for GenericArray<T, N> where N: ArrayLength<T>
[src]
type Item = T
The type of the elements being iterated over.
type IntoIter = GenericArrayIter<T, N>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
Creates an iterator from a value. Read more
impl<T, N> Deref for GenericArray<T, N> where N: ArrayLength<T>
[src]
type Target = [T]
The resulting type after dereferencing
fn deref(&self) -> &[T]
The method called to dereference a value
impl<T, N> DerefMut for GenericArray<T, N> where N: ArrayLength<T>
[src]
impl<T: Clone, N> Clone for GenericArray<T, N> where N: ArrayLength<T>
[src]
fn clone(&self) -> GenericArray<T, N>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl<T: Copy, N> Copy for GenericArray<T, N> where N: ArrayLength<T>, N::ArrayType: Copy
[src]
impl<T: PartialEq, N> PartialEq for GenericArray<T, N> where N: ArrayLength<T>
[src]
fn eq(&self, other: &Self) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0
This method tests for !=
.