generic_array/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
//! This crate implements a structure that can be used as a generic array type.
//!
//! **Requires minimum Rust version of 1.65.0
//!
//! [Documentation on GH Pages](https://fizyk20.github.io/generic-array/generic_array/)
//! may be required to view certain types on foreign crates.
//!
//! Before Rust 1.51, arrays `[T; N]` were problematic in that they couldn't be
//! generic with respect to the length `N`, so this wouldn't work:
//!
//! ```compile_fail
//! struct Foo<N> {
//! data: [i32; N],
//! }
//! ```
//!
//! Since 1.51, the below syntax is valid:
//!
//! ```rust
//! struct Foo<const N: usize> {
//! data: [i32; N],
//! }
//! ```
//!
//! However, the const-generics we have as of writing this are still the minimum-viable product (`min_const_generics`), so many situations still result in errors, such as this example:
//!
//! ```compile_fail
//! # struct Foo<const N: usize> {
//! # data: [i32; N],
//! # }
//! trait Bar {
//! const LEN: usize;
//!
//! // Error: cannot perform const operation using `Self`
//! fn bar(&self) -> Foo<{ Self::LEN }>;
//! }
//! ```
//!
//! **generic-array** defines a new trait [`ArrayLength`] and a struct [`GenericArray<T, N: ArrayLength>`](GenericArray),
//! which lets the above be implemented as:
//!
//! ```rust
//! use generic_array::{GenericArray, ArrayLength};
//!
//! struct Foo<N: ArrayLength> {
//! data: GenericArray<i32, N>
//! }
//!
//! trait Bar {
//! type LEN: ArrayLength;
//! fn bar(&self) -> Foo<Self::LEN>;
//! }
//! ```
//!
//! The [`ArrayLength`] trait is implemented for
//! [unsigned integer types](typenum::Unsigned) from
//! [typenum]. For example, [`GenericArray<T, U5>`] would work almost like `[T; 5]`:
//!
//! ```rust
//! # use generic_array::{ArrayLength, GenericArray};
//! use generic_array::typenum::U5;
//!
//! struct Foo<T, N: ArrayLength> {
//! data: GenericArray<T, N>
//! }
//!
//! let foo = Foo::<i32, U5> { data: GenericArray::default() };
//! ```
//!
//! The `arr!` macro is provided to allow easier creation of literal arrays, as shown below:
//!
//! ```rust
//! # use generic_array::arr;
//! let array = arr![1, 2, 3];
//! // array: GenericArray<i32, typenum::U3>
//! assert_eq!(array[2], 3);
//! ```
//! ## Feature flags
//!
//! ```toml
//! [dependencies.generic-array]
//! features = [
//! "more_lengths", # Expands From/Into implementation for more array lengths
//! "serde", # Serialize/Deserialize implementation
//! "zeroize", # Zeroize implementation for setting array elements to zero
//! "const-default", # Compile-time const default value support via trait
//! "alloc", # Enables From/TryFrom implementations between GenericArray and Vec<T>/Box<[T]>
//! "faster-hex" # Enables internal use of the `faster-hex` crate for faster hex encoding via SIMD
//! ]
//! ```
#![deny(missing_docs)]
#![deny(meta_variable_misuse)]
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
pub extern crate typenum;
#[doc(hidden)]
#[cfg(feature = "alloc")]
pub extern crate alloc;
mod hex;
mod impls;
mod iter;
#[cfg(feature = "alloc")]
mod impl_alloc;
#[cfg(feature = "const-default")]
mod impl_const_default;
#[cfg(feature = "serde")]
mod impl_serde;
#[cfg(feature = "zeroize")]
mod impl_zeroize;
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem::{ManuallyDrop, MaybeUninit};
use core::ops::{Deref, DerefMut};
use core::{mem, ptr, slice};
use typenum::bit::{B0, B1};
use typenum::generic_const_mappings::{Const, ToUInt};
use typenum::uint::{UInt, UTerm, Unsigned};
#[doc(hidden)]
#[cfg_attr(test, macro_use)]
pub mod arr;
pub mod functional;
pub mod sequence;
mod internal;
use internal::{ArrayConsumer, IntrusiveArrayBuilder, Sealed};
// re-export to allow doc_auto_cfg to handle it
#[cfg(feature = "internals")]
pub mod internals {
//! Very unsafe internal functionality.
//!
//! These are used internally for building and consuming generic arrays. When used correctly,
//! they can ensure elements are correctly dropped if something panics while using them.
//!
//! The API of these is not guaranteed to be stable, as they are not intended for general use.
pub use crate::internal::{ArrayBuilder, ArrayConsumer, IntrusiveArrayBuilder};
}
use self::functional::*;
use self::sequence::*;
pub use self::iter::GenericArrayIter;
/// Trait used to define the number of elements in a [`GenericArray`].
///
/// `ArrayLength` is a superset of [`typenum::Unsigned`].
///
/// Consider `N: ArrayLength` to be equivalent to `const N: usize`
///
/// ```
/// # use generic_array::{GenericArray, ArrayLength};
/// fn foo<N: ArrayLength>(arr: GenericArray<i32, N>) -> i32 {
/// arr.iter().sum()
/// }
/// ```
/// is equivalent to:
/// ```
/// fn foo<const N: usize>(arr: [i32; N]) -> i32 {
/// arr.iter().sum()
/// }
/// ```
///
/// # Safety
///
/// This trait is effectively sealed due to only being allowed on [`Unsigned`] types,
/// and therefore cannot be implemented in user code.
pub unsafe trait ArrayLength: Unsigned + 'static {
/// Associated type representing the underlying contiguous memory
/// that constitutes an array with the given number of elements.
///
/// This is an implementation detail, but is required to be public in cases where certain attributes
/// of the inner type of [`GenericArray`] cannot be proven, such as [`Copy`] bounds.
///
/// [`Copy`] example:
/// ```
/// # use generic_array::{GenericArray, ArrayLength};
/// struct MyType<N: ArrayLength> {
/// data: GenericArray<f32, N>,
/// }
///
/// impl<N: ArrayLength> Clone for MyType<N> where N::ArrayType<f32>: Copy {
/// fn clone(&self) -> Self { MyType { ..*self } }
/// }
///
/// impl<N: ArrayLength> Copy for MyType<N> where N::ArrayType<f32>: Copy {}
/// ```
///
/// Alternatively, using the entire `GenericArray<f32, N>` type as the bounds works:
/// ```ignore
/// where GenericArray<f32, N>: Copy
/// ```
type ArrayType<T>: Sealed;
}
unsafe impl ArrayLength for UTerm {
#[doc(hidden)]
type ArrayType<T> = [T; 0];
}
/// Implemented for types which can have an associated [`ArrayLength`],
/// such as [`Const<N>`] for use with const-generics.
///
/// ```
/// use generic_array::{GenericArray, IntoArrayLength, ConstArrayLength, typenum::Const};
///
/// fn some_array_interopt<const N: usize>(value: [u32; N]) -> GenericArray<u32, ConstArrayLength<N>>
/// where
/// Const<N>: IntoArrayLength,
/// {
/// let ga = GenericArray::from(value);
/// // do stuff
/// ga
/// }
/// ```
///
/// This is mostly to simplify the `where` bounds, equivalent to:
///
/// ```
/// use generic_array::{GenericArray, ArrayLength, typenum::{Const, U, ToUInt}};
///
/// fn some_array_interopt<const N: usize>(value: [u32; N]) -> GenericArray<u32, U<N>>
/// where
/// Const<N>: ToUInt,
/// U<N>: ArrayLength,
/// {
/// let ga = GenericArray::from(value);
/// // do stuff
/// ga
/// }
/// ```
pub trait IntoArrayLength {
/// The associated `ArrayLength`
type ArrayLength: ArrayLength;
}
impl<const N: usize> IntoArrayLength for Const<N>
where
Const<N>: ToUInt,
typenum::U<N>: ArrayLength,
{
type ArrayLength = typenum::U<N>;
}
impl<N> IntoArrayLength for N
where
N: ArrayLength,
{
type ArrayLength = Self;
}
/// Associated [`ArrayLength`] for one [`Const<N>`]
///
/// See [`IntoArrayLength`] for more information.
pub type ConstArrayLength<const N: usize> = <Const<N> as IntoArrayLength>::ArrayLength;
/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
#[doc(hidden)]
pub struct GenericArrayImplEven<T, U> {
parent1: U,
parent2: U,
_marker: PhantomData<T>,
}
/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
#[doc(hidden)]
pub struct GenericArrayImplOdd<T, U> {
parent1: U,
parent2: U,
data: T,
}
impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
#[inline(always)]
fn clone(&self) -> GenericArrayImplEven<T, U> {
// Clone is never called on the GenericArrayImpl types,
// as we use `self.map(clone)` elsewhere. This helps avoid
// extra codegen for recursive clones when they are never used.
unsafe { core::hint::unreachable_unchecked() }
}
}
impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
#[inline(always)]
fn clone(&self) -> GenericArrayImplOdd<T, U> {
unsafe { core::hint::unreachable_unchecked() }
}
}
// Even if Clone is never used, they can still be byte-copyable.
impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}
impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}
impl<T, U> Sealed for GenericArrayImplEven<T, U> {}
impl<T, U> Sealed for GenericArrayImplOdd<T, U> {}
unsafe impl<N: ArrayLength> ArrayLength for UInt<N, B0> {
#[doc(hidden)]
type ArrayType<T> = GenericArrayImplEven<T, N::ArrayType<T>>;
}
unsafe impl<N: ArrayLength> ArrayLength for UInt<N, B1> {
#[doc(hidden)]
type ArrayType<T> = GenericArrayImplOdd<T, N::ArrayType<T>>;
}
/// Struct representing a generic array - `GenericArray<T, N>` works like `[T; N]`
///
/// For how to implement [`Copy`] on structs using a generic-length `GenericArray` internally, see
/// the docs for [`ArrayLength::ArrayType`].
///
/// # Usage Notes
///
/// ### Initialization
///
/// Initialization of known-length `GenericArray`s can be done via the [`arr![]`](arr!) macro,
/// or [`from_array`](GenericArray::from_array)/[`from_slice`](GenericArray::from_slice).
///
/// For generic arrays of unknown/generic length, several safe methods are included to initialize
/// them, such as the [`GenericSequence::generate`] method:
///
/// ```rust
/// use generic_array::{GenericArray, sequence::GenericSequence, typenum, arr};
///
/// let evens: GenericArray<i32, typenum::U4> =
/// GenericArray::generate(|i: usize| i as i32 * 2);
///
/// assert_eq!(evens, arr![0, 2, 4, 6]);
/// ```
///
/// Furthermore, [`FromIterator`] and [`try_from_iter`](GenericArray::try_from_iter) exist to construct them
/// from iterators, but will panic/fail if not given exactly the correct number of elements.
///
/// ### Utilities
///
/// The [`GenericSequence`], [`FunctionalSequence`], [`Lengthen`], [`Shorten`], [`Split`], and [`Concat`] traits implement
/// some common operations on generic arrays.
///
/// ### Optimizations
///
/// Prefer to use the slice iterators like `.iter()`/`.iter_mut()` rather than by-value [`IntoIterator`]/[`GenericArrayIter`] if you can.
/// Slices optimize better. Using the [`FunctionalSequence`] methods also optimize well.
///
/// # How it works
///
/// The `typenum` crate uses Rust's type system to define binary integers as nested types,
/// and allows for operations which can be applied to those type-numbers, such as `Add`, `Sub`, etc.
///
/// e.g. `6` would be `UInt<UInt<UInt<UTerm, B1>, B1>, B0>`
///
/// `generic-array` uses this nested type to recursively allocate contiguous elements, statically.
/// The [`ArrayLength`] trait is implemented on `UInt<N, B0>`, `UInt<N, B1>` and `UTerm`,
/// which correspond to even, odd and zero numeric values, respectively.
/// Together, these three cover all cases of `Unsigned` integers from `typenum`.
/// For `UInt<N, B0>` and `UInt<N, B1>`, it peels away the highest binary digit and
/// builds up a recursive structure that looks almost like a binary tree.
/// Then, within `GenericArray`, the recursive structure is reinterpreted as a contiguous
/// chunk of memory and allowing access to it as a slice.
///
/// <details>
/// <summary><strong>Expand for internal structure demonstration</strong></summary>
///
/// For example, `GenericArray<T, U6>` more or less expands to (at compile time):
///
/// ```ignore
/// GenericArray {
/// // 6 = UInt<UInt<UInt<UTerm, B1>, B1>, B0>
/// data: EvenData {
/// // 3 = UInt<UInt<UTerm, B1>, B1>
/// left: OddData {
/// // 1 = UInt<UTerm, B1>
/// left: OddData {
/// left: (), // UTerm
/// right: (), // UTerm
/// data: T, // Element 0
/// },
/// // 1 = UInt<UTerm, B1>
/// right: OddData {
/// left: (), // UTerm
/// right: (), // UTerm
/// data: T, // Element 1
/// },
/// data: T // Element 2
/// },
/// // 3 = UInt<UInt<UTerm, B1>, B1>
/// right: OddData {
/// // 1 = UInt<UTerm, B1>
/// left: OddData {
/// left: (), // UTerm
/// right: (), // UTerm
/// data: T, // Element 3
/// },
/// // 1 = UInt<UTerm, B1>
/// right: OddData {
/// left: (), // UTerm
/// right: (), // UTerm
/// data: T, // Element 4
/// },
/// data: T // Element 5
/// }
/// }
/// }
/// ```
///
/// This has the added benefit of only being `log2(N)` deep, which is important for things like `Drop`
/// to avoid stack overflows, since we can't implement `Drop` manually.
///
/// Then, we take the contiguous block of data and cast it to `*const T` or `*mut T` and use it as a slice:
///
/// ```ignore
/// unsafe {
/// slice::from_raw_parts(
/// self as *const GenericArray<T, N> as *const T,
/// <N as Unsigned>::USIZE
/// )
/// }
/// ```
///
/// </details>
#[repr(transparent)]
pub struct GenericArray<T, N: ArrayLength> {
#[allow(dead_code)] // data is never accessed directly
data: N::ArrayType<T>,
}
unsafe impl<T: Send, N: ArrayLength> Send for GenericArray<T, N> {}
unsafe impl<T: Sync, N: ArrayLength> Sync for GenericArray<T, N> {}
impl<T, N: ArrayLength> Deref for GenericArray<T, N> {
type Target = [T];
#[inline(always)]
fn deref(&self) -> &[T] {
GenericArray::as_slice(self)
}
}
impl<T, N: ArrayLength> DerefMut for GenericArray<T, N> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut [T] {
GenericArray::as_mut_slice(self)
}
}
impl<'a, T: 'a, N: ArrayLength> IntoIterator for &'a GenericArray<T, N> {
type IntoIter = slice::Iter<'a, T>;
type Item = &'a T;
fn into_iter(self: &'a GenericArray<T, N>) -> Self::IntoIter {
self.as_slice().iter()
}
}
impl<'a, T: 'a, N: ArrayLength> IntoIterator for &'a mut GenericArray<T, N> {
type IntoIter = slice::IterMut<'a, T>;
type Item = &'a mut T;
fn into_iter(self: &'a mut GenericArray<T, N>) -> Self::IntoIter {
self.as_mut_slice().iter_mut()
}
}
impl<T, N: ArrayLength> FromIterator<T> for GenericArray<T, N> {
/// Create a `GenericArray` from an iterator.
///
/// Will panic if the number of elements is not exactly the array length.
///
/// See [`GenericArray::try_from_iter]` for a fallible alternative.
#[inline]
fn from_iter<I>(iter: I) -> GenericArray<T, N>
where
I: IntoIterator<Item = T>,
{
match Self::try_from_iter(iter) {
Ok(res) => res,
Err(_) => from_iter_length_fail(N::USIZE),
}
}
}
#[inline(never)]
#[cold]
pub(crate) fn from_iter_length_fail(length: usize) -> ! {
panic!("GenericArray::from_iter expected {length} items");
}
unsafe impl<T, N: ArrayLength> GenericSequence<T> for GenericArray<T, N>
where
Self: IntoIterator<Item = T>,
{
type Length = N;
type Sequence = Self;
#[inline(always)]
fn generate<F>(mut f: F) -> GenericArray<T, N>
where
F: FnMut(usize) -> T,
{
unsafe {
let mut array = GenericArray::<T, N>::uninit();
let mut builder = IntrusiveArrayBuilder::new(&mut array);
{
let (builder_iter, position) = builder.iter_position();
builder_iter.enumerate().for_each(|(i, dst)| {
dst.write(f(i));
*position += 1;
});
}
builder.finish();
IntrusiveArrayBuilder::array_assume_init(array)
}
}
#[inline(always)]
fn inverted_zip<B, U, F>(
self,
lhs: GenericArray<B, Self::Length>,
mut f: F,
) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
where
GenericArray<B, Self::Length>:
GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
Self: MappedGenericSequence<T, U>,
F: FnMut(B, Self::Item) -> U,
{
unsafe {
if mem::needs_drop::<T>() || mem::needs_drop::<B>() {
let mut left = ArrayConsumer::new(lhs);
let mut right = ArrayConsumer::new(self);
let (left_array_iter, left_position) = left.iter_position();
let (right_array_iter, right_position) = right.iter_position();
FromIterator::from_iter(left_array_iter.zip(right_array_iter).map(|(l, r)| {
let left_value = ptr::read(l);
let right_value = ptr::read(r);
*left_position += 1;
*right_position = *left_position;
f(left_value, right_value)
}))
} else {
// Despite neither needing `Drop`, they may not be `Copy`, so be paranoid
// and avoid anything related to drop anyway. Assume it's moved out on each read.
let left = ManuallyDrop::new(lhs);
let right = ManuallyDrop::new(self);
// Neither right nor left require `Drop` be called, so choose an iterator that's easily optimized
//
// Note that because ArrayConsumer checks for `needs_drop` itself, if `f` panics then nothing
// would have been done about it anyway. Only the other branch needs `ArrayConsumer`
FromIterator::from_iter(left.iter().zip(right.iter()).map(|(l, r)| {
f(ptr::read(l), ptr::read(r)) //
}))
}
}
}
#[inline(always)]
fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
where
Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
Self: MappedGenericSequence<T, U>,
F: FnMut(Lhs::Item, Self::Item) -> U,
{
unsafe {
if mem::needs_drop::<T>() {
let mut right = ArrayConsumer::new(self);
let (right_array_iter, right_position) = right.iter_position();
FromIterator::from_iter(right_array_iter.zip(lhs).map(|(r, left_value)| {
let right_value = ptr::read(r);
*right_position += 1;
f(left_value, right_value)
}))
} else {
let right = ManuallyDrop::new(self);
// Similar logic to `inverted_zip`'s no-drop branch
FromIterator::from_iter(right.iter().zip(lhs).map(|(r, left_value)| {
f(left_value, ptr::read(r)) //
}))
}
}
}
}
impl<T, U, N: ArrayLength> MappedGenericSequence<T, U> for GenericArray<T, N>
where
GenericArray<U, N>: GenericSequence<U, Length = N>,
{
type Mapped = GenericArray<U, N>;
}
impl<T, N: ArrayLength> FunctionalSequence<T> for GenericArray<T, N>
where
Self: GenericSequence<T, Item = T, Length = N>,
{
#[inline(always)]
fn map<U, F>(self, mut f: F) -> MappedSequence<Self, T, U>
where
Self: MappedGenericSequence<T, U>,
F: FnMut(T) -> U,
{
unsafe {
let mut source = ArrayConsumer::new(self);
let (array_iter, position) = source.iter_position();
FromIterator::from_iter(array_iter.map(|src| {
let value = ptr::read(src);
*position += 1;
f(value)
}))
}
}
#[inline(always)]
fn zip<B, Rhs, U, F>(self, rhs: Rhs, f: F) -> MappedSequence<Self, T, U>
where
Self: MappedGenericSequence<T, U>,
Rhs: MappedGenericSequence<B, U, Mapped = MappedSequence<Self, T, U>>,
Rhs: GenericSequence<B, Length = Self::Length>,
F: FnMut(T, Rhs::Item) -> U,
{
rhs.inverted_zip(self, f)
}
#[inline(always)]
fn fold<U, F>(self, init: U, mut f: F) -> U
where
F: FnMut(U, T) -> U,
{
unsafe {
let mut source = ArrayConsumer::new(self);
let (array_iter, position) = source.iter_position();
array_iter.fold(init, |acc, src| {
let value = ptr::read(src);
*position += 1;
f(acc, value)
})
}
}
}
impl<T, N: ArrayLength> GenericArray<T, N> {
/// Returns the number of elements in the array.
///
/// Equivalent to [`<N as Unsigned>::USIZE`](typenum::Unsigned) where `N` is the array length.
///
/// Useful for when only a type alias is available.
pub const fn len() -> usize {
N::USIZE
}
/// Extracts a slice containing the entire array.
#[inline(always)]
pub const fn as_slice(&self) -> &[T] {
unsafe { slice::from_raw_parts(self as *const Self as *const T, N::USIZE) }
}
/// Extracts a mutable slice containing the entire array.
#[inline(always)]
pub fn as_mut_slice(&mut self) -> &mut [T] {
unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::USIZE) }
}
/// Converts a slice to a generic array reference with inferred length.
///
/// # Panics
///
/// Panics if the slice is not equal to the length of the array.
///
/// Consider [`TryFrom`]/[`TryInto`] for a fallible conversion,
/// or [`try_from_slice`](GenericArray::try_from_slice) for use in const expressions.
#[inline(always)]
pub const fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
if slice.len() != N::USIZE {
panic!("slice.len() != N in GenericArray::from_slice");
}
unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
}
/// Converts a slice to a generic array reference with inferred length.
///
/// This is a fallible alternative to [`from_slice`](GenericArray::from_slice), and can be used in const expressions,
/// but [`TryFrom`]/[`TryInto`] are also available to do the same thing.
#[inline(always)]
pub const fn try_from_slice(slice: &[T]) -> Result<&GenericArray<T, N>, LengthError> {
if slice.len() != N::USIZE {
return Err(LengthError);
}
Ok(unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) })
}
/// Converts a mutable slice to a mutable generic array reference with inferred length.
///
/// # Panics
///
/// Panics if the slice is not equal to the length of the array.
///
/// Consider [`TryFrom`]/[`TryInto`] for a fallible conversion.
#[inline(always)]
pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
assert_eq!(
slice.len(),
N::USIZE,
"slice.len() != N in GenericArray::from_mut_slice"
);
unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
}
/// Converts a mutable slice to a mutable generic array reference with inferred length.
///
/// This is a fallible alternative to [`from_mut_slice`](GenericArray::from_mut_slice),
/// and current just calls [`TryFrom`] internally, but is provided for
/// future compatibility when we can make it const.
#[inline(always)]
pub fn try_from_mut_slice(slice: &mut [T]) -> Result<&mut GenericArray<T, N>, LengthError> {
TryFrom::try_from(slice)
}
/// Converts a slice of `T` elements into a slice of `GenericArray<T, N>` chunks.
///
/// Any remaining elements that do not fill the array will be returned as a second slice.
///
/// # Panics
///
/// Panics if `N` is `U0` _AND_ the input slice is not empty.
pub const fn chunks_from_slice(slice: &[T]) -> (&[GenericArray<T, N>], &[T]) {
if N::USIZE == 0 {
assert!(slice.is_empty(), "GenericArray length N must be non-zero");
return (&[], &[]);
}
// NOTE: Using `slice.split_at` adds an unnecessary assert
let num_chunks = slice.len() / N::USIZE; // integer division
let num_in_chunks = num_chunks * N::USIZE;
let num_remainder = slice.len() - num_in_chunks;
unsafe {
(
slice::from_raw_parts(slice.as_ptr() as *const GenericArray<T, N>, num_chunks),
slice::from_raw_parts(slice.as_ptr().add(num_in_chunks), num_remainder),
)
}
}
/// Converts a mutable slice of `T` elements into a mutable slice `GenericArray<T, N>` chunks.
///
/// Any remaining elements that do not fill the array will be returned as a second slice.
///
/// # Panics
///
/// Panics if `N` is `U0` _AND_ the input slice is not empty.
pub fn chunks_from_slice_mut(slice: &mut [T]) -> (&mut [GenericArray<T, N>], &mut [T]) {
if N::USIZE == 0 {
assert!(slice.is_empty(), "GenericArray length N must be non-zero");
return (&mut [], &mut []);
}
// NOTE: Using `slice.split_at_mut` adds an unnecessary assert
let num_chunks = slice.len() / N::USIZE; // integer division
let num_in_chunks = num_chunks * N::USIZE;
let num_remainder = slice.len() - num_in_chunks;
unsafe {
(
slice::from_raw_parts_mut(
slice.as_mut_ptr() as *mut GenericArray<T, N>,
num_chunks,
),
slice::from_raw_parts_mut(slice.as_mut_ptr().add(num_in_chunks), num_remainder),
)
}
}
/// Convert a slice of `GenericArray<T, N>` into a slice of `T`, effectively flattening the arrays.
#[inline(always)]
pub const fn slice_from_chunks(slice: &[GenericArray<T, N>]) -> &[T] {
unsafe { slice::from_raw_parts(slice.as_ptr() as *const T, slice.len() * N::USIZE) }
}
/// Convert a slice of `GenericArray<T, N>` into a slice of `T`, effectively flattening the arrays.
#[inline(always)]
pub fn slice_from_chunks_mut(slice: &mut [GenericArray<T, N>]) -> &mut [T] {
unsafe { slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut T, slice.len() * N::USIZE) }
}
/// Convert a native array into `GenericArray` of the same length and type.
///
/// This is the `const` equivalent of using the standard [`From`]/[`Into`] traits methods.
#[inline(always)]
pub const fn from_array<const U: usize>(value: [T; U]) -> Self
where
Const<U>: IntoArrayLength<ArrayLength = N>,
{
unsafe { crate::const_transmute(value) }
}
/// Convert the `GenericArray` into a native array of the same length and type.
///
/// This is the `const` equivalent of using the standard [`From`]/[`Into`] traits methods.
#[inline(always)]
pub const fn into_array<const U: usize>(self) -> [T; U]
where
Const<U>: IntoArrayLength<ArrayLength = N>,
{
unsafe { crate::const_transmute(self) }
}
/// Convert a slice of native arrays into a slice of `GenericArray`s.
#[inline(always)]
pub const fn from_chunks<const U: usize>(chunks: &[[T; U]]) -> &[GenericArray<T, N>]
where
Const<U>: IntoArrayLength<ArrayLength = N>,
{
unsafe { mem::transmute(chunks) }
}
/// Convert a mutable slice of native arrays into a mutable slice of `GenericArray`s.
#[inline(always)]
pub fn from_chunks_mut<const U: usize>(chunks: &mut [[T; U]]) -> &mut [GenericArray<T, N>]
where
Const<U>: IntoArrayLength<ArrayLength = N>,
{
unsafe { mem::transmute(chunks) }
}
/// Converts a slice `GenericArray<T, N>` into a slice of `[T; N]`
#[inline(always)]
pub const fn into_chunks<const U: usize>(chunks: &[GenericArray<T, N>]) -> &[[T; U]]
where
Const<U>: IntoArrayLength<ArrayLength = N>,
{
unsafe { mem::transmute(chunks) }
}
/// Converts a mutable slice `GenericArray<T, N>` into a mutable slice of `[T; N]`
#[inline(always)]
pub fn into_chunks_mut<const U: usize>(chunks: &mut [GenericArray<T, N>]) -> &mut [[T; U]]
where
Const<U>: IntoArrayLength<ArrayLength = N>,
{
unsafe { mem::transmute(chunks) }
}
}
impl<T, N: ArrayLength> GenericArray<T, N> {
/// Create a new array of `MaybeUninit<T>` items, in an uninitialized state.
///
/// See [`GenericArray::assume_init`] for a full example.
#[inline(always)]
#[allow(clippy::uninit_assumed_init)]
pub const fn uninit() -> GenericArray<MaybeUninit<T>, N> {
unsafe {
// SAFETY: An uninitialized `[MaybeUninit<_>; N]` is valid, same as regular array
MaybeUninit::<GenericArray<MaybeUninit<T>, N>>::uninit().assume_init()
}
}
/// Extracts the values from a generic array of `MaybeUninit` containers.
///
/// # Safety
///
/// It is up to the caller to guarantee that all elements of the array are in an initialized state.
///
/// # Example
///
/// ```
/// # use core::mem::MaybeUninit;
/// # use generic_array::{GenericArray, typenum::U3, arr};
/// let mut array: GenericArray<MaybeUninit<i32>, U3> = GenericArray::uninit();
/// array[0].write(0);
/// array[1].write(1);
/// array[2].write(2);
///
/// // SAFETY: Now safe as we initialised all elements
/// let array = unsafe {
/// GenericArray::assume_init(array)
/// };
///
/// assert_eq!(array, arr![0, 1, 2]);
/// ```
#[inline(always)]
pub const unsafe fn assume_init(array: GenericArray<MaybeUninit<T>, N>) -> Self {
const_transmute::<_, MaybeUninit<GenericArray<T, N>>>(array).assume_init()
}
}
/// Error for [`TryFrom`] and [`try_from_iter`](GenericArray::try_from_iter)
#[derive(Debug, Clone, Copy)]
pub struct LengthError;
// TODO: Impl core::error::Error when when https://github.com/rust-lang/rust/issues/103765 is finished
impl core::fmt::Display for LengthError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("LengthError: Slice or iterator does not match GenericArray length")
}
}
impl<'a, T, N: ArrayLength> TryFrom<&'a [T]> for &'a GenericArray<T, N> {
type Error = LengthError;
#[inline(always)]
fn try_from(slice: &'a [T]) -> Result<Self, Self::Error> {
GenericArray::try_from_slice(slice)
}
}
impl<'a, T, N: ArrayLength> TryFrom<&'a mut [T]> for &'a mut GenericArray<T, N> {
type Error = LengthError;
#[inline(always)]
fn try_from(slice: &'a mut [T]) -> Result<Self, Self::Error> {
match slice.len() == N::USIZE {
true => Ok(GenericArray::from_mut_slice(slice)),
false => Err(LengthError),
}
}
}
impl<T, N: ArrayLength> GenericArray<T, N> {
/// Fallible equivalent of [`FromIterator::from_iter`]
///
/// Given iterator must yield exactly `N` elements or an error will be returned. Using [`.take(N)`](Iterator::take)
/// with an iterator longer than the array may be helpful.
#[inline]
pub fn try_from_iter<I>(iter: I) -> Result<Self, LengthError>
where
I: IntoIterator<Item = T>,
{
let mut iter = iter.into_iter();
// pre-checks
match iter.size_hint() {
// if the lower bound is greater than N, array will overflow
(n, _) if n > N::USIZE => return Err(LengthError),
// if the upper bound is smaller than N, array cannot be filled
(_, Some(n)) if n < N::USIZE => return Err(LengthError),
_ => {}
}
unsafe {
let mut array = GenericArray::uninit();
let mut builder = IntrusiveArrayBuilder::new(&mut array);
builder.extend(&mut iter);
if !builder.is_full() || iter.next().is_some() {
return Err(LengthError);
}
Ok({
builder.finish();
IntrusiveArrayBuilder::array_assume_init(array)
})
}
}
}
/// A const reimplementation of the [`transmute`](core::mem::transmute) function,
/// avoiding problems when the compiler can't prove equal sizes.
///
/// # Safety
/// Treat this the same as [`transmute`](core::mem::transmute), or (preferably) don't use it at all.
#[inline(always)]
#[cfg_attr(not(feature = "internals"), doc(hidden))]
pub const unsafe fn const_transmute<A, B>(a: A) -> B {
if mem::size_of::<A>() != mem::size_of::<B>() {
panic!("Size mismatch for generic_array::const_transmute");
}
#[repr(C)]
union Union<A, B> {
a: ManuallyDrop<A>,
b: ManuallyDrop<B>,
}
let a = ManuallyDrop::new(a);
ManuallyDrop::into_inner(Union { a }.b)
}
#[cfg(test)]
mod test {
// Compile with:
// cargo rustc --lib --profile test --release --
// -C target-cpu=native -C opt-level=3 --emit asm
// and view the assembly to make sure test_assembly generates
// SIMD instructions instead of a naive loop.
#[inline(never)]
pub fn black_box<T>(val: T) -> T {
use core::{mem, ptr};
let ret = unsafe { ptr::read_volatile(&val) };
mem::forget(val);
ret
}
#[test]
fn test_assembly() {
use crate::functional::*;
let a = black_box(arr![1, 3, 5, 7]);
let b = black_box(arr![2, 4, 6, 8]);
let c = (&a).zip(b, |l, r| l + r);
let d = a.fold(0, |a, x| a + x);
assert_eq!(c, arr![3, 7, 11, 15]);
assert_eq!(d, 16);
}
}