geo_types/geometry/
polygon.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
use crate::{CoordFloat, CoordNum, LineString, Point, Rect, Triangle};
use alloc::vec;
use alloc::vec::Vec;
use num_traits::{Float, Signed};

#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};

/// A bounded two-dimensional area.
///
/// A `Polygon`’s outer boundary (_exterior ring_) is represented by a
/// [`LineString`]. It may contain zero or more holes (_interior rings_), also
/// represented by `LineString`s.
///
/// A `Polygon` can be created with the [`Polygon::new`] constructor or the [`polygon!`][`crate::polygon!`] macro.
///
/// # Semantics
///
/// The _boundary_ of the polygon is the union of the
/// boundaries of the exterior and interiors. The interior
/// is all the points inside the polygon (not on the
/// boundary).
///
/// The `Polygon` structure guarantees that all exterior and interior rings will
/// be _closed_, such that the first and last `Coord` of each ring has
/// the same value.
///
/// # Validity
///
/// - The exterior and interior rings must be valid
///   `LinearRing`s (see [`LineString`]).
///
/// - No two rings in the boundary may cross, and may
///   intersect at a `Point` only as a tangent. In other
///   words, the rings must be distinct, and for every pair of
///   common points in two of the rings, there must be a
///   neighborhood (a topological open set) around one that
///   does not contain the other point.
///
/// - The closure of the interior of the `Polygon` must
///   equal the `Polygon` itself. For instance, the exterior
///   may not contain a spike.
///
/// - The interior of the polygon must be a connected
///   point-set. That is, any two distinct points in the
///   interior must admit a curve between these two that lies
///   in the interior.
///
/// Refer to section 6.1.11.1 of the OGC-SFA for a formal
/// definition of validity. Besides the closed `LineString`
/// guarantee, the `Polygon` structure does not enforce
/// validity at this time. For example, it is possible to
/// construct a `Polygon` that has:
///
/// - fewer than 3 coordinates per `LineString` ring
/// - interior rings that intersect other interior rings
/// - interior rings that extend beyond the exterior ring
///
/// # `LineString` closing operation
///
/// Some APIs on `Polygon` result in a closing operation on a `LineString`. The
/// operation is as follows:
///
/// If a `LineString`’s first and last `Coord` have different values, a
/// new `Coord` will be appended to the `LineString` with a value equal to
/// the first `Coord`.
///
/// [`LineString`]: line_string/struct.LineString.html
#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Polygon<T: CoordNum = f64> {
    exterior: LineString<T>,
    interiors: Vec<LineString<T>>,
}

impl<T: CoordNum> Polygon<T> {
    /// Create a new `Polygon` with the provided exterior `LineString` ring and
    /// interior `LineString` rings.
    ///
    /// Upon calling `new`, the exterior and interior `LineString` rings [will
    /// be closed].
    ///
    /// [will be closed]: #linestring-closing-operation
    ///
    /// # Examples
    ///
    /// Creating a `Polygon` with no interior rings:
    ///
    /// ```
    /// use geo_types::{LineString, Polygon};
    ///
    /// let polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![],
    /// );
    /// ```
    ///
    /// Creating a `Polygon` with an interior ring:
    ///
    /// ```
    /// use geo_types::{LineString, Polygon};
    ///
    /// let polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![LineString::from(vec![
    ///         (0.1, 0.1),
    ///         (0.9, 0.9),
    ///         (0.9, 0.1),
    ///         (0.1, 0.1),
    ///     ])],
    /// );
    /// ```
    ///
    /// If the first and last `Coord`s of the exterior or interior
    /// `LineString`s no longer match, those `LineString`s [will be closed]:
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let mut polygon = Polygon::new(LineString::from(vec![(0., 0.), (1., 1.), (1., 0.)]), vec![]);
    ///
    /// assert_eq!(
    ///     polygon.exterior(),
    ///     &LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.),])
    /// );
    /// ```
    pub fn new(mut exterior: LineString<T>, mut interiors: Vec<LineString<T>>) -> Self {
        exterior.close();
        for interior in &mut interiors {
            interior.close();
        }
        Self {
            exterior,
            interiors,
        }
    }

    /// Consume the `Polygon`, returning the exterior `LineString` ring and
    /// a vector of the interior `LineString` rings.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{LineString, Polygon};
    ///
    /// let mut polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![LineString::from(vec![
    ///         (0.1, 0.1),
    ///         (0.9, 0.9),
    ///         (0.9, 0.1),
    ///         (0.1, 0.1),
    ///     ])],
    /// );
    ///
    /// let (exterior, interiors) = polygon.into_inner();
    ///
    /// assert_eq!(
    ///     exterior,
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.),])
    /// );
    ///
    /// assert_eq!(
    ///     interiors,
    ///     vec![LineString::from(vec![
    ///         (0.1, 0.1),
    ///         (0.9, 0.9),
    ///         (0.9, 0.1),
    ///         (0.1, 0.1),
    ///     ])]
    /// );
    /// ```
    pub fn into_inner(self) -> (LineString<T>, Vec<LineString<T>>) {
        (self.exterior, self.interiors)
    }

    /// Return a reference to the exterior `LineString` ring.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{LineString, Polygon};
    ///
    /// let exterior = LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]);
    ///
    /// let polygon = Polygon::new(exterior.clone(), vec![]);
    ///
    /// assert_eq!(polygon.exterior(), &exterior);
    /// ```
    pub fn exterior(&self) -> &LineString<T> {
        &self.exterior
    }

    /// Execute the provided closure `f`, which is provided with a mutable
    /// reference to the exterior `LineString` ring.
    ///
    /// After the closure executes, the exterior `LineString` [will be closed].
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let mut polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![],
    /// );
    ///
    /// polygon.exterior_mut(|exterior| {
    ///     exterior.0[1] = coord! { x: 1., y: 2. };
    /// });
    ///
    /// assert_eq!(
    ///     polygon.exterior(),
    ///     &LineString::from(vec![(0., 0.), (1., 2.), (1., 0.), (0., 0.),])
    /// );
    /// ```
    ///
    /// If the first and last `Coord`s of the exterior `LineString` no
    /// longer match, the `LineString` [will be closed]:
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let mut polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![],
    /// );
    ///
    /// polygon.exterior_mut(|exterior| {
    ///     exterior.0[0] = coord! { x: 0., y: 1. };
    /// });
    ///
    /// assert_eq!(
    ///     polygon.exterior(),
    ///     &LineString::from(vec![(0., 1.), (1., 1.), (1., 0.), (0., 0.), (0., 1.),])
    /// );
    /// ```
    ///
    /// [will be closed]: #linestring-closing-operation
    pub fn exterior_mut<F>(&mut self, f: F)
    where
        F: FnOnce(&mut LineString<T>),
    {
        f(&mut self.exterior);
        self.exterior.close();
    }

    /// Fallible alternative to [`exterior_mut`](Polygon::exterior_mut).
    pub fn try_exterior_mut<F, E>(&mut self, f: F) -> Result<(), E>
    where
        F: FnOnce(&mut LineString<T>) -> Result<(), E>,
    {
        f(&mut self.exterior)?;
        self.exterior.close();
        Ok(())
    }

    /// Return a slice of the interior `LineString` rings.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let interiors = vec![LineString::from(vec![
    ///     (0.1, 0.1),
    ///     (0.9, 0.9),
    ///     (0.9, 0.1),
    ///     (0.1, 0.1),
    /// ])];
    ///
    /// let polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     interiors.clone(),
    /// );
    ///
    /// assert_eq!(interiors, polygon.interiors());
    /// ```
    pub fn interiors(&self) -> &[LineString<T>] {
        &self.interiors
    }

    /// Execute the provided closure `f`, which is provided with a mutable
    /// reference to the interior `LineString` rings.
    ///
    /// After the closure executes, each of the interior `LineString`s [will be
    /// closed].
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let mut polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![LineString::from(vec![
    ///         (0.1, 0.1),
    ///         (0.9, 0.9),
    ///         (0.9, 0.1),
    ///         (0.1, 0.1),
    ///     ])],
    /// );
    ///
    /// polygon.interiors_mut(|interiors| {
    ///     interiors[0].0[1] = coord! { x: 0.8, y: 0.8 };
    /// });
    ///
    /// assert_eq!(
    ///     polygon.interiors(),
    ///     &[LineString::from(vec![
    ///         (0.1, 0.1),
    ///         (0.8, 0.8),
    ///         (0.9, 0.1),
    ///         (0.1, 0.1),
    ///     ])]
    /// );
    /// ```
    ///
    /// If the first and last `Coord`s of any interior `LineString` no
    /// longer match, those `LineString`s [will be closed]:
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let mut polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![LineString::from(vec![
    ///         (0.1, 0.1),
    ///         (0.9, 0.9),
    ///         (0.9, 0.1),
    ///         (0.1, 0.1),
    ///     ])],
    /// );
    ///
    /// polygon.interiors_mut(|interiors| {
    ///     interiors[0].0[0] = coord! { x: 0.1, y: 0.2 };
    /// });
    ///
    /// assert_eq!(
    ///     polygon.interiors(),
    ///     &[LineString::from(vec![
    ///         (0.1, 0.2),
    ///         (0.9, 0.9),
    ///         (0.9, 0.1),
    ///         (0.1, 0.1),
    ///         (0.1, 0.2),
    ///     ])]
    /// );
    /// ```
    ///
    /// [will be closed]: #linestring-closing-operation
    pub fn interiors_mut<F>(&mut self, f: F)
    where
        F: FnOnce(&mut [LineString<T>]),
    {
        f(&mut self.interiors);
        for interior in &mut self.interiors {
            interior.close();
        }
    }

    /// Fallible alternative to [`interiors_mut`](Self::interiors_mut).
    pub fn try_interiors_mut<F, E>(&mut self, f: F) -> Result<(), E>
    where
        F: FnOnce(&mut [LineString<T>]) -> Result<(), E>,
    {
        f(&mut self.interiors)?;
        for interior in &mut self.interiors {
            interior.close();
        }
        Ok(())
    }

    /// Add an interior ring to the `Polygon`.
    ///
    /// The new `LineString` interior ring [will be closed]:
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let mut polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![],
    /// );
    ///
    /// assert_eq!(polygon.interiors().len(), 0);
    ///
    /// polygon.interiors_push(vec![(0.1, 0.1), (0.9, 0.9), (0.9, 0.1)]);
    ///
    /// assert_eq!(
    ///     polygon.interiors(),
    ///     &[LineString::from(vec![
    ///         (0.1, 0.1),
    ///         (0.9, 0.9),
    ///         (0.9, 0.1),
    ///         (0.1, 0.1),
    ///     ])]
    /// );
    /// ```
    ///
    /// [will be closed]: #linestring-closing-operation
    pub fn interiors_push(&mut self, new_interior: impl Into<LineString<T>>) {
        let mut new_interior = new_interior.into();
        new_interior.close();
        self.interiors.push(new_interior);
    }

    /// Wrap-around previous-vertex
    fn previous_vertex(&self, current_vertex: usize) -> usize
    where
        T: Float,
    {
        (current_vertex + (self.exterior.0.len() - 1) - 1) % (self.exterior.0.len() - 1)
    }

    /// Count the total number of rings (interior and exterior) in the polygon
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![],
    /// );
    ///
    /// assert_eq!(polygon.num_rings(), 1);
    ///
    /// let polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![LineString::from(vec![(0.1, 0.1), (0.9, 0.9), (0.9, 0.1)])],
    /// );
    ///
    /// assert_eq!(polygon.num_rings(), 2);
    /// ```
    pub fn num_rings(&self) -> usize {
        self.num_interior_rings() + 1
    }

    /// Count the number of interior rings in the polygon
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{coord, LineString, Polygon};
    ///
    /// let polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![],
    /// );
    ///
    /// assert_eq!(polygon.num_interior_rings(), 0);
    ///
    /// let polygon = Polygon::new(
    ///     LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
    ///     vec![LineString::from(vec![(0.1, 0.1), (0.9, 0.9), (0.9, 0.1)])],
    /// );
    ///
    /// assert_eq!(polygon.num_interior_rings(), 1);
    /// ```
    pub fn num_interior_rings(&self) -> usize {
        self.interiors.len()
    }
}

// used to check the sign of a vec of floats
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum ListSign {
    Empty,
    Positive,
    Negative,
    Mixed,
}

impl<T: CoordFloat + Signed> Polygon<T> {
    /// Determine whether a Polygon is convex
    // For each consecutive pair of edges of the polygon (each triplet of points),
    // compute the z-component of the cross product of the vectors defined by the
    // edges pointing towards the points in increasing order.
    // Take the cross product of these vectors
    // The polygon is convex if the z-components of the cross products are either
    // all positive or all negative. Otherwise, the polygon is non-convex.
    // see: http://stackoverflow.com/a/1881201/416626
    #[deprecated(
        since = "0.6.1",
        note = "Please use `geo::is_convex` on `poly.exterior()` instead"
    )]
    pub fn is_convex(&self) -> bool {
        let convex = self
            .exterior
            .0
            .iter()
            .enumerate()
            .map(|(idx, _)| {
                let prev_1 = self.previous_vertex(idx);
                let prev_2 = self.previous_vertex(prev_1);
                Point::from(self.exterior[prev_2]).cross_prod(
                    Point::from(self.exterior[prev_1]),
                    Point::from(self.exterior[idx]),
                )
            })
            // accumulate and check cross-product result signs in a single pass
            // positive implies ccw convexity, negative implies cw convexity
            // anything else implies non-convexity
            .fold(ListSign::Empty, |acc, n| match (acc, n.is_positive()) {
                (ListSign::Empty, true) | (ListSign::Positive, true) => ListSign::Positive,
                (ListSign::Empty, false) | (ListSign::Negative, false) => ListSign::Negative,
                _ => ListSign::Mixed,
            });
        convex != ListSign::Mixed
    }
}

impl<T: CoordNum> From<Rect<T>> for Polygon<T> {
    fn from(r: Rect<T>) -> Self {
        Polygon::new(
            vec![
                (r.min().x, r.min().y),
                (r.max().x, r.min().y),
                (r.max().x, r.max().y),
                (r.min().x, r.max().y),
                (r.min().x, r.min().y),
            ]
            .into(),
            Vec::new(),
        )
    }
}

impl<T: CoordNum> From<Triangle<T>> for Polygon<T> {
    fn from(t: Triangle<T>) -> Self {
        Polygon::new(vec![t.0, t.1, t.2, t.0].into(), Vec::new())
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for Polygon<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    /// Equality assertion within a relative limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{Polygon, polygon};
    ///
    /// let a: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7., y: 9.), (x: 0., y: 0.)];
    /// let b: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7.01, y: 9.), (x: 0., y: 0.)];
    ///
    /// approx::assert_relative_eq!(a, b, max_relative=0.1);
    /// approx::assert_relative_ne!(a, b, max_relative=0.001);
    /// ```
    ///
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        if !self
            .exterior
            .relative_eq(&other.exterior, epsilon, max_relative)
        {
            return false;
        }

        if self.interiors.len() != other.interiors.len() {
            return false;
        }
        let mut zipper = self.interiors.iter().zip(other.interiors.iter());
        zipper.all(|(lhs, rhs)| lhs.relative_eq(rhs, epsilon, max_relative))
    }
}

#[cfg(any(feature = "approx", test))]
impl<T: AbsDiffEq<Epsilon = T> + CoordNum> AbsDiffEq for Polygon<T> {
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    /// Equality assertion with an absolute limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{Polygon, polygon};
    ///
    /// let a: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7., y: 9.), (x: 0., y: 0.)];
    /// let b: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7.01, y: 9.), (x: 0., y: 0.)];
    ///
    /// approx::assert_abs_diff_eq!(a, b, epsilon=0.1);
    /// approx::assert_abs_diff_ne!(a, b, epsilon=0.001);
    /// ```
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        if !self.exterior.abs_diff_eq(&other.exterior, epsilon) {
            return false;
        }

        if self.interiors.len() != other.interiors.len() {
            return false;
        }
        let mut zipper = self.interiors.iter().zip(other.interiors.iter());
        zipper.all(|(lhs, rhs)| lhs.abs_diff_eq(rhs, epsilon))
    }
}

#[cfg(any(
    feature = "rstar_0_8",
    feature = "rstar_0_9",
    feature = "rstar_0_10",
    feature = "rstar_0_11",
    feature = "rstar_0_12"
))]
macro_rules! impl_rstar_polygon {
    ($rstar:ident) => {
        impl<T> $rstar::RTreeObject for Polygon<T>
        where
            T: ::num_traits::Float + ::$rstar::RTreeNum,
        {
            type Envelope = ::$rstar::AABB<Point<T>>;

            fn envelope(&self) -> Self::Envelope {
                self.exterior.envelope()
            }
        }
    };
}

#[cfg(feature = "rstar_0_8")]
impl_rstar_polygon!(rstar_0_8);

#[cfg(feature = "rstar_0_9")]
impl_rstar_polygon!(rstar_0_9);

#[cfg(feature = "rstar_0_10")]
impl_rstar_polygon!(rstar_0_10);

#[cfg(feature = "rstar_0_11")]
impl_rstar_polygon!(rstar_0_11);

#[cfg(feature = "rstar_0_12")]
impl_rstar_polygon!(rstar_0_12);