geo_types/geometry/triangle.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
use crate::{polygon, Coord, CoordNum, Line, Polygon};
#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};
/// A bounded 2D area whose three vertices are defined by
/// `Coord`s. The semantics and validity are that of
/// the equivalent [`Polygon`]; in addition, the three
/// vertices must not be collinear and they must be distinct.
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Triangle<T: CoordNum = f64>(pub Coord<T>, pub Coord<T>, pub Coord<T>);
impl<T: CoordNum> Triangle<T> {
/// Instantiate Self from the raw content value
pub fn new(v1: Coord<T>, v2: Coord<T>, v3: Coord<T>) -> Self {
Self(v1, v2, v3)
}
pub fn to_array(&self) -> [Coord<T>; 3] {
[self.0, self.1, self.2]
}
pub fn to_lines(&self) -> [Line<T>; 3] {
[
Line::new(self.0, self.1),
Line::new(self.1, self.2),
Line::new(self.2, self.0),
]
}
/// Create a `Polygon` from the `Triangle`.
///
/// # Examples
///
/// ```rust
/// use geo_types::{coord, Triangle, polygon};
///
/// let triangle = Triangle::new(
/// coord! { x: 0., y: 0. },
/// coord! { x: 10., y: 20. },
/// coord! { x: 20., y: -10. },
/// );
///
/// assert_eq!(
/// triangle.to_polygon(),
/// polygon![
/// (x: 0., y: 0.),
/// (x: 10., y: 20.),
/// (x: 20., y: -10.),
/// (x: 0., y: 0.),
/// ],
/// );
/// ```
pub fn to_polygon(self) -> Polygon<T> {
polygon![self.0, self.1, self.2, self.0]
}
}
impl<IC: Into<Coord<T>> + Copy, T: CoordNum> From<[IC; 3]> for Triangle<T> {
fn from(array: [IC; 3]) -> Self {
Self(array[0].into(), array[1].into(), array[2].into())
}
}
#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for Triangle<T>
where
T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
/// Equality assertion within a relative limit.
///
/// # Examples
///
/// ```
/// use geo_types::{point, Triangle};
///
/// let a = Triangle::new((0.0, 0.0).into(), (10.0, 10.0).into(), (0.0, 5.0).into());
/// let b = Triangle::new((0.0, 0.0).into(), (10.01, 10.0).into(), (0.0, 5.0).into());
///
/// approx::assert_relative_eq!(a, b, max_relative=0.1);
/// approx::assert_relative_ne!(a, b, max_relative=0.0001);
/// ```
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
if !self.0.relative_eq(&other.0, epsilon, max_relative) {
return false;
}
if !self.1.relative_eq(&other.1, epsilon, max_relative) {
return false;
}
if !self.2.relative_eq(&other.2, epsilon, max_relative) {
return false;
}
true
}
}
#[cfg(any(feature = "approx", test))]
impl<T> AbsDiffEq for Triangle<T>
where
T: AbsDiffEq<Epsilon = T> + CoordNum,
T::Epsilon: Copy,
{
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
/// Equality assertion with an absolute limit.
///
/// # Examples
///
/// ```
/// use geo_types::{point, Triangle};
///
/// let a = Triangle::new((0.0, 0.0).into(), (10.0, 10.0).into(), (0.0, 5.0).into());
/// let b = Triangle::new((0.0, 0.0).into(), (10.01, 10.0).into(), (0.0, 5.0).into());
///
/// approx::abs_diff_eq!(a, b, epsilon=0.1);
/// approx::abs_diff_ne!(a, b, epsilon=0.001);
/// ```
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
if !self.0.abs_diff_eq(&other.0, epsilon) {
return false;
}
if !self.1.abs_diff_eq(&other.1, epsilon) {
return false;
}
if !self.2.abs_diff_eq(&other.2, epsilon) {
return false;
}
true
}
}