geo/algorithm/
centroid.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
use std::cmp::Ordering;

use crate::area::{get_linestring_area, Area};
use crate::dimensions::{Dimensions, Dimensions::*, HasDimensions};
use crate::geometry::*;
use crate::line_measures::{Euclidean, Length};
use crate::GeoFloat;

/// Calculation of the centroid.
/// The centroid is the arithmetic mean position of all points in the shape.
/// Informally, it is the point at which a cutout of the shape could be perfectly
/// balanced on the tip of a pin.
/// The geometric centroid of a convex object always lies in the object.
/// A non-convex object might have a centroid that _is outside the object itself_.
///
/// # Examples
///
/// ```
/// use geo::Centroid;
/// use geo::{point, polygon};
///
/// // rhombus shaped polygon
/// let polygon = polygon![
///     (x: -2., y: 1.),
///     (x: 1., y: 3.),
///     (x: 4., y: 1.),
///     (x: 1., y: -1.),
///     (x: -2., y: 1.),
/// ];
///
/// assert_eq!(
///     Some(point!(x: 1., y: 1.)),
///     polygon.centroid(),
/// );
/// ```
pub trait Centroid {
    type Output;

    /// See: <https://en.wikipedia.org/wiki/Centroid>
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{line_string, point};
    ///
    /// let line_string = line_string![
    ///     (x: 40.02f64, y: 116.34),
    ///     (x: 40.02f64, y: 118.23),
    /// ];
    ///
    /// assert_eq!(
    ///     Some(point!(x: 40.02, y: 117.285)),
    ///     line_string.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output;
}

impl<T> Centroid for Line<T>
where
    T: GeoFloat,
{
    type Output = Point<T>;

    /// The Centroid of a [`Line`] is its middle point
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{Line, point};
    ///
    /// let line = Line::new(
    ///     point!(x: 1.0f64, y: 3.0),
    ///     point!(x: 2.0f64, y: 4.0),
    /// );
    ///
    /// assert_eq!(
    ///     point!(x: 1.5, y: 3.5),
    ///     line.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        let two = T::one() + T::one();
        (self.start_point() + self.end_point()) / two
    }
}

impl<T> Centroid for LineString<T>
where
    T: GeoFloat,
{
    type Output = Option<Point<T>>;

    // The Centroid of a [`LineString`] is the mean of the middle of the segment
    // weighted by the length of the segments.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{line_string, point};
    ///
    /// let line_string = line_string![
    ///   (x: 1.0f32, y: 1.0),
    ///   (x: 2.0, y: 2.0),
    ///   (x: 4.0, y: 4.0)
    ///   ];
    ///
    /// assert_eq!(
    ///     // (1.0 * (1.5, 1.5) + 2.0 * (3.0, 3.0)) / 3.0
    ///     Some(point!(x: 2.5, y: 2.5)),
    ///     line_string.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        let mut operation = CentroidOperation::new();
        operation.add_line_string(self);
        operation.centroid()
    }
}

impl<T> Centroid for MultiLineString<T>
where
    T: GeoFloat,
{
    type Output = Option<Point<T>>;

    /// The Centroid of a [`MultiLineString`] is the mean of the centroids of all the constituent linestrings,
    /// weighted by the length of each linestring
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{MultiLineString, line_string, point};
    ///
    /// let multi_line_string = MultiLineString::new(vec![
    ///     // centroid: (2.5, 2.5)
    ///     line_string![(x: 1.0f32, y: 1.0), (x: 2.0, y: 2.0), (x: 4.0, y: 4.0)],
    ///     // centroid: (4.0, 4.0)
    ///     line_string![(x: 1.0, y: 1.0), (x: 3.0, y: 3.0), (x: 7.0, y: 7.0)],
    /// ]);
    ///
    /// assert_eq!(
    ///     // ( 3.0 * (2.5, 2.5) + 6.0 * (4.0, 4.0) ) / 9.0
    ///     Some(point!(x: 3.5, y: 3.5)),
    ///     multi_line_string.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        let mut operation = CentroidOperation::new();
        operation.add_multi_line_string(self);
        operation.centroid()
    }
}

impl<T> Centroid for Polygon<T>
where
    T: GeoFloat,
{
    type Output = Option<Point<T>>;

    /// The Centroid of a [`Polygon`] is the mean of its points
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{polygon, point};
    ///
    /// let polygon = polygon![
    ///     (x: 0.0f32, y: 0.0),
    ///     (x: 2.0, y: 0.0),
    ///     (x: 2.0, y: 1.0),
    ///     (x: 0.0, y: 1.0),
    /// ];
    ///
    /// assert_eq!(
    ///     Some(point!(x: 1.0, y: 0.5)),
    ///     polygon.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        let mut operation = CentroidOperation::new();
        operation.add_polygon(self);
        operation.centroid()
    }
}

impl<T> Centroid for MultiPolygon<T>
where
    T: GeoFloat,
{
    type Output = Option<Point<T>>;

    /// The Centroid of a [`MultiPolygon`] is the mean of the centroids of its polygons, weighted
    /// by the area of the polygons
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{MultiPolygon, polygon, point};
    ///
    /// let multi_polygon = MultiPolygon::new(vec![
    ///   // centroid (1.0, 0.5)
    ///   polygon![
    ///     (x: 0.0f32, y: 0.0),
    ///     (x: 2.0, y: 0.0),
    ///     (x: 2.0, y: 1.0),
    ///     (x: 0.0, y: 1.0),
    ///   ],
    ///   // centroid (-0.5, 0.0)
    ///   polygon![
    ///     (x: 1.0, y: 1.0),
    ///     (x: -2.0, y: 1.0),
    ///     (x: -2.0, y: -1.0),
    ///     (x: 1.0, y: -1.0),
    ///   ]
    /// ]);
    ///
    /// assert_eq!(
    ///     // ( 2.0 * (1.0, 0.5) + 6.0 * (-0.5, 0.0) ) / 8.0
    ///     Some(point!(x: -0.125, y: 0.125)),
    ///     multi_polygon.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        let mut operation = CentroidOperation::new();
        operation.add_multi_polygon(self);
        operation.centroid()
    }
}

impl<T> Centroid for Rect<T>
where
    T: GeoFloat,
{
    type Output = Point<T>;

    /// The Centroid of a [`Rect`] is the mean of its [`Point`]s
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{Rect, point};
    ///
    /// let rect = Rect::new(
    ///   point!(x: 0.0f32, y: 0.0),
    ///   point!(x: 1.0, y: 1.0),
    /// );
    ///
    /// assert_eq!(
    ///     point!(x: 0.5, y: 0.5),
    ///     rect.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        self.center().into()
    }
}

impl<T> Centroid for Triangle<T>
where
    T: GeoFloat,
{
    type Output = Point<T>;

    /// The Centroid of a [`Triangle`] is the mean of its [`Point`]s
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{Triangle, coord, point};
    ///
    /// let triangle = Triangle::new(
    ///   coord!(x: 0.0f32, y: -1.0),
    ///   coord!(x: 3.0, y: 0.0),
    ///   coord!(x: 0.0, y: 1.0),
    /// );
    ///
    /// assert_eq!(
    ///     point!(x: 1.0, y: 0.0),
    ///     triangle.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        let mut operation = CentroidOperation::new();
        operation.add_triangle(self);
        operation
            .centroid()
            .expect("triangle cannot have an empty centroid")
    }
}

impl<T> Centroid for Point<T>
where
    T: GeoFloat,
{
    type Output = Point<T>;

    /// The Centroid of a [`Point`] is the point itself
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::point;
    ///
    /// let point = point!(x: 1.0f32, y: 2.0);
    ///
    /// assert_eq!(
    ///     point!(x: 1.0f32, y: 2.0),
    ///     point.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        *self
    }
}

impl<T> Centroid for MultiPoint<T>
where
    T: GeoFloat,
{
    type Output = Option<Point<T>>;

    /// The Centroid of a [`MultiPoint`] is the mean of all [`Point`]s
    ///
    /// # Example
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{MultiPoint, Point};
    ///
    /// let empty: Vec<Point> = Vec::new();
    /// let empty_multi_points: MultiPoint<_> = empty.into();
    /// assert_eq!(empty_multi_points.centroid(), None);
    ///
    /// let points: MultiPoint<_> = vec![(5., 1.), (1., 3.), (3., 2.)].into();
    /// assert_eq!(points.centroid(), Some(Point::new(3., 2.)));
    /// ```
    fn centroid(&self) -> Self::Output {
        let mut operation = CentroidOperation::new();
        operation.add_multi_point(self);
        operation.centroid()
    }
}

impl<T> Centroid for Geometry<T>
where
    T: GeoFloat,
{
    type Output = Option<Point<T>>;

    crate::geometry_delegate_impl! {
        /// The Centroid of a [`Geometry`] is the centroid of its enum variant
        ///
        /// # Examples
        ///
        /// ```
        /// use geo::Centroid;
        /// use geo::{Geometry, Rect, point};
        ///
        /// let rect = Rect::new(
        ///   point!(x: 0.0f32, y: 0.0),
        ///   point!(x: 1.0, y: 1.0),
        /// );
        /// let geometry = Geometry::from(rect.clone());
        ///
        /// assert_eq!(
        ///     Some(rect.centroid()),
        ///     geometry.centroid(),
        /// );
        ///
        /// assert_eq!(
        ///     Some(point!(x: 0.5, y: 0.5)),
        ///     geometry.centroid(),
        /// );
        /// ```
        fn centroid(&self) -> Self::Output;
    }
}

impl<T> Centroid for GeometryCollection<T>
where
    T: GeoFloat,
{
    type Output = Option<Point<T>>;

    /// The Centroid of a [`GeometryCollection`] is the mean of the centroids of elements, weighted
    /// by the area of its elements.
    ///
    /// Note that this means, that elements which have no area are not considered when calculating
    /// the centroid.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Centroid;
    /// use geo::{Geometry, GeometryCollection, Rect, Triangle, point, coord};
    ///
    /// let rect_geometry = Geometry::from(Rect::new(
    ///   point!(x: 0.0f32, y: 0.0),
    ///   point!(x: 1.0, y: 1.0),
    /// ));
    ///
    /// let triangle_geometry = Geometry::from(Triangle::new(
    ///     coord!(x: 0.0f32, y: -1.0),
    ///     coord!(x: 3.0, y: 0.0),
    ///     coord!(x: 0.0, y: 1.0),
    /// ));
    ///
    /// let point_geometry = Geometry::from(
    ///   point!(x: 12351.0, y: 129815.0)
    /// );
    ///
    /// let geometry_collection = GeometryCollection::new_from(
    ///   vec![
    ///     rect_geometry,
    ///     triangle_geometry,
    ///     point_geometry
    ///   ]
    /// );
    ///
    /// assert_eq!(
    ///     Some(point!(x: 0.875, y: 0.125)),
    ///     geometry_collection.centroid(),
    /// );
    /// ```
    fn centroid(&self) -> Self::Output {
        let mut operation = CentroidOperation::new();
        operation.add_geometry_collection(self);
        operation.centroid()
    }
}

struct CentroidOperation<T: GeoFloat>(Option<WeightedCentroid<T>>);
impl<T: GeoFloat> CentroidOperation<T> {
    fn new() -> Self {
        CentroidOperation(None)
    }

    fn centroid(&self) -> Option<Point<T>> {
        self.0.as_ref().map(|weighted_centroid| {
            Point::from(weighted_centroid.accumulated / weighted_centroid.weight)
        })
    }

    fn centroid_dimensions(&self) -> Dimensions {
        self.0
            .as_ref()
            .map(|weighted_centroid| weighted_centroid.dimensions)
            .unwrap_or(Empty)
    }

    fn add_coord(&mut self, coord: Coord<T>) {
        self.add_centroid(ZeroDimensional, coord, T::one());
    }

    fn add_line(&mut self, line: &Line<T>) {
        match line.dimensions() {
            ZeroDimensional => self.add_coord(line.start),
            OneDimensional => self.add_centroid(
                OneDimensional,
                line.centroid().0,
                line.length::<Euclidean>(),
            ),
            _ => unreachable!("Line must be zero or one dimensional"),
        }
    }

    fn add_line_string(&mut self, line_string: &LineString<T>) {
        if self.centroid_dimensions() > OneDimensional {
            return;
        }

        if line_string.0.len() == 1 {
            self.add_coord(line_string.0[0]);
            return;
        }

        for line in line_string.lines() {
            self.add_line(&line);
        }
    }

    fn add_multi_line_string(&mut self, multi_line_string: &MultiLineString<T>) {
        if self.centroid_dimensions() > OneDimensional {
            return;
        }

        for element in &multi_line_string.0 {
            self.add_line_string(element);
        }
    }

    fn add_polygon(&mut self, polygon: &Polygon<T>) {
        // Polygons which are completely covered by their interior rings have zero area, and
        // represent a unique degeneracy into a line_string which cannot be handled by accumulating
        // directly into `self`. Instead, we perform a sub-operation, inspect the result, and only
        // then incorporate the result into `self.

        let mut exterior_operation = CentroidOperation::new();
        exterior_operation.add_ring(polygon.exterior());

        let mut interior_operation = CentroidOperation::new();
        for interior in polygon.interiors() {
            interior_operation.add_ring(interior);
        }

        if let Some(exterior_weighted_centroid) = exterior_operation.0 {
            let mut poly_weighted_centroid = exterior_weighted_centroid;
            if let Some(interior_weighted_centroid) = interior_operation.0 {
                poly_weighted_centroid.sub_assign(interior_weighted_centroid);
                if poly_weighted_centroid.weight.is_zero() {
                    // A polygon with no area `interiors` completely covers `exterior`, degenerating to a linestring
                    self.add_line_string(polygon.exterior());
                    return;
                }
            }
            self.add_weighted_centroid(poly_weighted_centroid);
        }
    }

    fn add_multi_point(&mut self, multi_point: &MultiPoint<T>) {
        if self.centroid_dimensions() > ZeroDimensional {
            return;
        }

        for element in &multi_point.0 {
            self.add_coord(element.0);
        }
    }

    fn add_multi_polygon(&mut self, multi_polygon: &MultiPolygon<T>) {
        for element in &multi_polygon.0 {
            self.add_polygon(element);
        }
    }

    fn add_geometry_collection(&mut self, geometry_collection: &GeometryCollection<T>) {
        for element in &geometry_collection.0 {
            self.add_geometry(element);
        }
    }

    fn add_rect(&mut self, rect: &Rect<T>) {
        match rect.dimensions() {
            ZeroDimensional => self.add_coord(rect.min()),
            OneDimensional => {
                // Degenerate rect is a line, treat it the same way we treat flat polygons
                self.add_line(&Line::new(rect.min(), rect.min()));
                self.add_line(&Line::new(rect.min(), rect.max()));
                self.add_line(&Line::new(rect.max(), rect.max()));
                self.add_line(&Line::new(rect.max(), rect.min()));
            }
            TwoDimensional => {
                self.add_centroid(TwoDimensional, rect.centroid().0, rect.unsigned_area())
            }
            Empty => unreachable!("Rect dimensions cannot be empty"),
        }
    }

    fn add_triangle(&mut self, triangle: &Triangle<T>) {
        match triangle.dimensions() {
            ZeroDimensional => self.add_coord(triangle.0),
            OneDimensional => {
                // Degenerate triangle is a line, treat it the same way we treat flat
                // polygons
                let l0_1 = Line::new(triangle.0, triangle.1);
                let l1_2 = Line::new(triangle.1, triangle.2);
                let l2_0 = Line::new(triangle.2, triangle.0);
                self.add_line(&l0_1);
                self.add_line(&l1_2);
                self.add_line(&l2_0);
            }
            TwoDimensional => {
                let centroid = (triangle.0 + triangle.1 + triangle.2) / T::from(3).unwrap();
                self.add_centroid(TwoDimensional, centroid, triangle.unsigned_area());
            }
            Empty => unreachable!("Rect dimensions cannot be empty"),
        }
    }

    fn add_geometry(&mut self, geometry: &Geometry<T>) {
        match geometry {
            Geometry::Point(g) => self.add_coord(g.0),
            Geometry::Line(g) => self.add_line(g),
            Geometry::LineString(g) => self.add_line_string(g),
            Geometry::Polygon(g) => self.add_polygon(g),
            Geometry::MultiPoint(g) => self.add_multi_point(g),
            Geometry::MultiLineString(g) => self.add_multi_line_string(g),
            Geometry::MultiPolygon(g) => self.add_multi_polygon(g),
            Geometry::GeometryCollection(g) => self.add_geometry_collection(g),
            Geometry::Rect(g) => self.add_rect(g),
            Geometry::Triangle(g) => self.add_triangle(g),
        }
    }

    fn add_ring(&mut self, ring: &LineString<T>) {
        debug_assert!(ring.is_closed());

        let area = get_linestring_area(ring);
        if area == T::zero() {
            match ring.dimensions() {
                // empty ring doesn't contribute to centroid
                Empty => {}
                // degenerate ring is a point
                ZeroDimensional => self.add_coord(ring[0]),
                // zero-area ring is a line string
                _ => self.add_line_string(ring),
            }
            return;
        }

        // Since area is non-zero, we know the ring has at least one point
        let shift = ring.0[0];

        let accumulated_coord = ring.lines().fold(Coord::zero(), |accum, line| {
            use crate::MapCoords;
            let line = line.map_coords(|c| c - shift);
            let tmp = line.determinant();
            accum + (line.end + line.start) * tmp
        });
        let six = T::from(6).unwrap();
        let centroid = accumulated_coord / (six * area) + shift;
        let weight = area.abs();
        self.add_centroid(TwoDimensional, centroid, weight);
    }

    fn add_centroid(&mut self, dimensions: Dimensions, centroid: Coord<T>, weight: T) {
        let weighted_centroid = WeightedCentroid {
            dimensions,
            weight,
            accumulated: centroid * weight,
        };
        self.add_weighted_centroid(weighted_centroid);
    }

    fn add_weighted_centroid(&mut self, other: WeightedCentroid<T>) {
        match self.0.as_mut() {
            Some(centroid) => centroid.add_assign(other),
            None => self.0 = Some(other),
        }
    }
}

// Aggregated state for accumulating the centroid of a geometry or collection of geometries.
struct WeightedCentroid<T: GeoFloat> {
    weight: T,
    accumulated: Coord<T>,
    /// Collections of Geometries can have different dimensionality. Centroids must be considered
    /// separately by dimensionality.
    ///
    /// e.g. If I have several Points, adding a new `Point` will affect their centroid.
    ///
    /// However, because a Point is zero dimensional, it is infinitely small when compared to
    /// any 2-D Polygon. Thus a Point will not affect the centroid of any GeometryCollection
    /// containing a 2-D Polygon.
    ///
    /// So, when accumulating a centroid, we must track the dimensionality of the centroid
    dimensions: Dimensions,
}

impl<T: GeoFloat> WeightedCentroid<T> {
    fn add_assign(&mut self, b: WeightedCentroid<T>) {
        match self.dimensions.cmp(&b.dimensions) {
            Ordering::Less => *self = b,
            Ordering::Greater => {}
            Ordering::Equal => {
                self.accumulated = self.accumulated + b.accumulated;
                self.weight = self.weight + b.weight;
            }
        }
    }

    fn sub_assign(&mut self, b: WeightedCentroid<T>) {
        match self.dimensions.cmp(&b.dimensions) {
            Ordering::Less => *self = b,
            Ordering::Greater => {}
            Ordering::Equal => {
                self.accumulated = self.accumulated - b.accumulated;
                self.weight = self.weight - b.weight;
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{coord, line_string, point, polygon, wkt};

    /// small helper to create a coordinate
    fn c<T: GeoFloat>(x: T, y: T) -> Coord<T> {
        coord! { x: x, y: y }
    }

    /// small helper to create a point
    fn p<T: GeoFloat>(x: T, y: T) -> Point<T> {
        point! { x: x, y: y }
    }

    // Tests: Centroid of LineString
    #[test]
    fn empty_linestring_test() {
        let linestring: LineString<f32> = line_string![];
        let centroid = linestring.centroid();
        assert!(centroid.is_none());
    }
    #[test]
    fn linestring_one_point_test() {
        let coord = coord! {
            x: 40.02f64,
            y: 116.34,
        };
        let linestring = line_string![coord];
        let centroid = linestring.centroid();
        assert_eq!(centroid, Some(Point::from(coord)));
    }
    #[test]
    fn linestring_test() {
        let linestring = line_string![
            (x: 1., y: 1.),
            (x: 7., y: 1.),
            (x: 8., y: 1.),
            (x: 9., y: 1.),
            (x: 10., y: 1.),
            (x: 11., y: 1.)
        ];
        assert_eq!(linestring.centroid(), Some(point!(x: 6., y: 1. )));
    }
    #[test]
    fn linestring_with_repeated_point_test() {
        let l1 = LineString::from(vec![p(1., 1.), p(1., 1.), p(1., 1.)]);
        assert_eq!(l1.centroid(), Some(p(1., 1.)));

        let l2 = LineString::from(vec![p(2., 2.), p(2., 2.), p(2., 2.)]);
        let mls = MultiLineString::new(vec![l1, l2]);
        assert_eq!(mls.centroid(), Some(p(1.5, 1.5)));
    }
    // Tests: Centroid of MultiLineString
    #[test]
    fn empty_multilinestring_test() {
        let mls: MultiLineString = MultiLineString::new(vec![]);
        let centroid = mls.centroid();
        assert!(centroid.is_none());
    }
    #[test]
    fn multilinestring_with_empty_line_test() {
        let mls: MultiLineString = MultiLineString::new(vec![line_string![]]);
        let centroid = mls.centroid();
        assert!(centroid.is_none());
    }
    #[test]
    fn multilinestring_length_0_test() {
        let coord = coord! {
            x: 40.02f64,
            y: 116.34,
        };
        let mls: MultiLineString = MultiLineString::new(vec![
            line_string![coord],
            line_string![coord],
            line_string![coord],
        ]);
        assert_relative_eq!(mls.centroid().unwrap(), Point::from(coord));
    }
    #[test]
    fn multilinestring_one_line_test() {
        let linestring = line_string![
            (x: 1., y: 1.),
            (x: 7., y: 1.),
            (x: 8., y: 1.),
            (x: 9., y: 1.),
            (x: 10., y: 1.),
            (x: 11., y: 1.)
        ];
        let mls: MultiLineString = MultiLineString::new(vec![linestring]);
        assert_relative_eq!(mls.centroid().unwrap(), point! { x: 6., y: 1. });
    }
    #[test]
    fn multilinestring_test() {
        let mls = wkt! {
            MULTILINESTRING(
                (0.0 0.0,1.0 10.0),
                (1.0 10.0,2.0 0.0,3.0 1.0),
                (-12.0 -100.0,7.0 8.0)
            )
        };
        assert_relative_eq!(
            mls.centroid().unwrap(),
            point![x: -1.9097834383655845, y: -37.683866439745714]
        );
    }
    // Tests: Centroid of Polygon
    #[test]
    fn empty_polygon_test() {
        let poly: Polygon<f32> = polygon![];
        assert!(poly.centroid().is_none());
    }
    #[test]
    fn polygon_one_point_test() {
        let p = point![ x: 2., y: 1. ];
        let poly = polygon![p.0];
        assert_relative_eq!(poly.centroid().unwrap(), p);
    }

    #[test]
    fn centroid_polygon_numerical_stability() {
        let polygon = {
            use std::f64::consts::PI;
            const NUM_VERTICES: usize = 10;
            const ANGLE_INC: f64 = 2. * PI / NUM_VERTICES as f64;

            Polygon::new(
                (0..NUM_VERTICES)
                    .map(|i| {
                        let angle = i as f64 * ANGLE_INC;
                        coord! {
                            x: angle.cos(),
                            y: angle.sin(),
                        }
                    })
                    .collect::<Vec<_>>()
                    .into(),
                vec![],
            )
        };

        let centroid = polygon.centroid().unwrap();

        let shift = coord! { x: 1.5e8, y: 1.5e8 };

        use crate::map_coords::MapCoords;
        let polygon = polygon.map_coords(|c| c + shift);

        let new_centroid = polygon.centroid().unwrap().map_coords(|c| c - shift);
        debug!("centroid {:?}", centroid.0);
        debug!("new_centroid {:?}", new_centroid.0);
        assert_relative_eq!(centroid.0.x, new_centroid.0.x, max_relative = 0.0001);
        assert_relative_eq!(centroid.0.y, new_centroid.0.y, max_relative = 0.0001);
    }

    #[test]
    fn polygon_test() {
        let poly = polygon![
            (x: 0., y: 0.),
            (x: 2., y: 0.),
            (x: 2., y: 2.),
            (x: 0., y: 2.),
            (x: 0., y: 0.)
        ];
        assert_relative_eq!(poly.centroid().unwrap(), point![x:1., y:1.]);
    }
    #[test]
    fn polygon_hole_test() {
        // hexagon
        let p1 = wkt! { POLYGON(
            (5.0 1.0,4.0 2.0,4.0 3.0,5.0 4.0,6.0 4.0,7.0 3.0,7.0 2.0,6.0 1.0,5.0 1.0),
            (5.0 1.3,5.5 2.0,6.0 1.3,5.0 1.3),
            (5.0 2.3,5.5 3.0,6.0 2.3,5.0 2.3)
        ) };
        let centroid = p1.centroid().unwrap();
        assert_relative_eq!(centroid, point!(x: 5.5, y: 2.5518518518518523));
    }
    #[test]
    fn flat_polygon_test() {
        let poly = wkt! { POLYGON((0. 1.,1. 1.,0. 1.)) };
        assert_eq!(poly.centroid(), Some(p(0.5, 1.)));
    }
    #[test]
    fn multi_poly_with_flat_polygon_test() {
        let multipoly = wkt! { MULTIPOLYGON(((0. 0.,1. 0.,0. 0.))) };
        assert_eq!(multipoly.centroid(), Some(p(0.5, 0.)));
    }
    #[test]
    fn multi_poly_with_multiple_flat_polygon_test() {
        let multipoly = wkt! { MULTIPOLYGON(
            ((1. 1.,1. 3.,1. 1.)),
            ((2. 2.,6. 2.,2. 2.))
        )};

        assert_eq!(multipoly.centroid(), Some(p(3., 2.)));
    }
    #[test]
    fn multi_poly_with_only_points_test() {
        let p1 = wkt! { POLYGON((1. 1.,1. 1.,1. 1.)) };
        assert_eq!(p1.centroid(), Some(p(1., 1.)));

        let multipoly = wkt! { MULTIPOLYGON(
            ((1. 1.,1. 1.,1. 1.)),
            ((2. 2., 2. 2.,2. 2.))
        ) };
        assert_eq!(multipoly.centroid(), Some(p(1.5, 1.5)));
    }
    #[test]
    fn multi_poly_with_one_ring_and_one_real_poly() {
        // if the multipolygon is composed of a 'normal' polygon (with an area not null)
        // and a ring (a polygon with a null area)
        // the centroid of the multipolygon is the centroid of the 'normal' polygon
        let normal = Polygon::new(
            LineString::from(vec![p(1., 1.), p(1., 3.), p(3., 1.), p(1., 1.)]),
            vec![],
        );
        let flat = Polygon::new(
            LineString::from(vec![p(2., 2.), p(6., 2.), p(2., 2.)]),
            vec![],
        );
        let multipoly = MultiPolygon::new(vec![normal.clone(), flat]);
        assert_eq!(multipoly.centroid(), normal.centroid());
    }
    #[test]
    fn polygon_flat_interior_test() {
        let poly = Polygon::new(
            LineString::from(vec![p(0., 0.), p(0., 1.), p(1., 1.), p(1., 0.), p(0., 0.)]),
            vec![LineString::from(vec![p(0., 0.), p(0., 1.), p(0., 0.)])],
        );
        assert_eq!(poly.centroid(), Some(p(0.5, 0.5)));
    }
    #[test]
    fn empty_interior_polygon_test() {
        let poly = Polygon::new(
            LineString::from(vec![p(0., 0.), p(0., 1.), p(1., 1.), p(1., 0.), p(0., 0.)]),
            vec![LineString::new(vec![])],
        );
        assert_eq!(poly.centroid(), Some(p(0.5, 0.5)));
    }
    #[test]
    fn polygon_ring_test() {
        let square = LineString::from(vec![p(0., 0.), p(0., 1.), p(1., 1.), p(1., 0.), p(0., 0.)]);
        let poly = Polygon::new(square.clone(), vec![square]);
        assert_eq!(poly.centroid(), Some(p(0.5, 0.5)));
    }
    #[test]
    fn polygon_cell_test() {
        // test the centroid of polygon with a null area
        // this one a polygon with 2 interior polygon that makes a partition of the exterior
        let square = LineString::from(vec![p(0., 0.), p(0., 2.), p(2., 2.), p(2., 0.), p(0., 0.)]);
        let bottom = LineString::from(vec![p(0., 0.), p(2., 0.), p(2., 1.), p(0., 1.), p(0., 0.)]);
        let top = LineString::from(vec![p(0., 1.), p(2., 1.), p(2., 2.), p(0., 2.), p(0., 1.)]);
        let poly = Polygon::new(square, vec![top, bottom]);
        assert_eq!(poly.centroid(), Some(p(1., 1.)));
    }
    // Tests: Centroid of MultiPolygon
    #[test]
    fn empty_multipolygon_polygon_test() {
        assert!(MultiPolygon::<f64>::new(Vec::new()).centroid().is_none());
    }

    #[test]
    fn multipolygon_one_polygon_test() {
        let linestring =
            LineString::from(vec![p(0., 0.), p(2., 0.), p(2., 2.), p(0., 2.), p(0., 0.)]);
        let poly = Polygon::new(linestring, Vec::new());
        assert_eq!(MultiPolygon::new(vec![poly]).centroid(), Some(p(1., 1.)));
    }
    #[test]
    fn multipolygon_two_polygons_test() {
        let linestring =
            LineString::from(vec![p(2., 1.), p(5., 1.), p(5., 3.), p(2., 3.), p(2., 1.)]);
        let poly1 = Polygon::new(linestring, Vec::new());
        let linestring =
            LineString::from(vec![p(7., 1.), p(8., 1.), p(8., 2.), p(7., 2.), p(7., 1.)]);
        let poly2 = Polygon::new(linestring, Vec::new());
        let centroid = MultiPolygon::new(vec![poly1, poly2]).centroid().unwrap();
        assert_relative_eq!(
            centroid,
            point![x: 4.071428571428571, y: 1.9285714285714286]
        );
    }
    #[test]
    fn multipolygon_two_polygons_of_opposite_clockwise_test() {
        let linestring = LineString::from(vec![(0., 0.), (2., 0.), (2., 2.), (0., 2.), (0., 0.)]);
        let poly1 = Polygon::new(linestring, Vec::new());
        let linestring = LineString::from(vec![(0., 0.), (-2., 0.), (-2., 2.), (0., 2.), (0., 0.)]);
        let poly2 = Polygon::new(linestring, Vec::new());
        assert_relative_eq!(
            MultiPolygon::new(vec![poly1, poly2]).centroid().unwrap(),
            point![x: 0., y: 1.]
        );
    }
    #[test]
    fn bounding_rect_test() {
        let bounding_rect = Rect::new(coord! { x: 0., y: 50. }, coord! { x: 4., y: 100. });
        let point = point![x: 2., y: 75.];
        assert_eq!(point, bounding_rect.centroid());
    }
    #[test]
    fn line_test() {
        let line1 = Line::new(c(0., 1.), c(1., 3.));
        assert_eq!(line1.centroid(), point![x: 0.5, y: 2.]);
    }
    #[test]
    fn collection_weighting() {
        let p0 = point!(x: 0.0, y: 0.0);
        let p1 = point!(x: 2.0, y: 0.0);
        let p2 = point!(x: 2.0, y: 2.0);
        let p3 = point!(x: 0.0, y: 2.0);

        let multi_point = MultiPoint::new(vec![p0, p1, p2, p3]);
        assert_eq!(multi_point.centroid().unwrap(), point!(x: 1.0, y: 1.0));

        let collection =
            GeometryCollection::new_from(vec![MultiPoint::new(vec![p1, p2, p3]).into(), p0.into()]);

        assert_eq!(collection.centroid().unwrap(), point!(x: 1.0, y: 1.0));
    }
    #[test]
    fn triangles() {
        // boring triangle
        assert_eq!(
            Triangle::new(c(0., 0.), c(3., 0.), c(1.5, 3.)).centroid(),
            point!(x: 1.5, y: 1.0)
        );

        // flat triangle
        assert_eq!(
            Triangle::new(c(0., 0.), c(3., 0.), c(1., 0.)).centroid(),
            point!(x: 1.5, y: 0.0)
        );

        // flat triangle that's not axis-aligned
        assert_eq!(
            Triangle::new(c(0., 0.), c(3., 3.), c(1., 1.)).centroid(),
            point!(x: 1.5, y: 1.5)
        );

        // triangle with some repeated points
        assert_eq!(
            Triangle::new(c(0., 0.), c(0., 0.), c(1., 0.)).centroid(),
            point!(x: 0.5, y: 0.0)
        );

        // triangle with all repeated points
        assert_eq!(
            Triangle::new(c(0., 0.5), c(0., 0.5), c(0., 0.5)).centroid(),
            point!(x: 0., y: 0.5)
        )
    }

    #[test]
    fn degenerate_triangle_like_ring() {
        let triangle = Triangle::new(c(0., 0.), c(1., 1.), c(2., 2.));
        let poly: Polygon<_> = triangle.into();

        let line = Line::new(c(0., 1.), c(1., 3.));

        let g1 = GeometryCollection::new_from(vec![triangle.into(), line.into()]);
        let g2 = GeometryCollection::new_from(vec![poly.into(), line.into()]);
        assert_eq!(g1.centroid(), g2.centroid());
    }

    #[test]
    fn degenerate_rect_like_ring() {
        let rect = Rect::new(c(0., 0.), c(0., 4.));
        let poly: Polygon<_> = rect.into();

        let line = Line::new(c(0., 1.), c(1., 3.));

        let g1 = GeometryCollection::new_from(vec![rect.into(), line.into()]);
        let g2 = GeometryCollection::new_from(vec![poly.into(), line.into()]);
        assert_eq!(g1.centroid(), g2.centroid());
    }

    #[test]
    fn rectangles() {
        // boring rect
        assert_eq!(
            Rect::new(c(0., 0.), c(4., 4.)).centroid(),
            point!(x: 2.0, y: 2.0)
        );

        // flat rect
        assert_eq!(
            Rect::new(c(0., 0.), c(4., 0.)).centroid(),
            point!(x: 2.0, y: 0.0)
        );

        // rect with all repeated points
        assert_eq!(
            Rect::new(c(4., 4.), c(4., 4.)).centroid(),
            point!(x: 4., y: 4.)
        );

        // collection with rect
        let mut collection = GeometryCollection::new_from(vec![
            p(0., 0.).into(),
            p(6., 0.).into(),
            p(6., 6.).into(),
        ]);
        // sanity check
        assert_eq!(collection.centroid().unwrap(), point!(x: 4., y: 2.));

        // 0-d rect treated like point
        collection.0.push(Rect::new(c(0., 6.), c(0., 6.)).into());
        assert_eq!(collection.centroid().unwrap(), point!(x: 3., y: 3.));

        // 1-d rect treated like line. Since a line has higher dimensions than the rest of the
        // collection, its centroid clobbers everything else in the collection.
        collection.0.push(Rect::new(c(0., 0.), c(0., 2.)).into());
        assert_eq!(collection.centroid().unwrap(), point!(x: 0., y: 1.));

        // 2-d has higher dimensions than the rest of the collection, so its centroid clobbers
        // everything else in the collection.
        collection
            .0
            .push(Rect::new(c(10., 10.), c(11., 11.)).into());
        assert_eq!(collection.centroid().unwrap(), point!(x: 10.5, y: 10.5));
    }
}