geo/algorithm/
extremes.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use crate::CoordsIter;
use crate::{Coord, CoordNum};

/// Find the extreme coordinates and indices of a geometry.
///
/// # Examples
///
/// ```
/// use geo::extremes::Extremes;
/// use geo::polygon;
///
/// // a diamond shape
/// let polygon = polygon![
///     (x: 1.0, y: 0.0),
///     (x: 2.0, y: 1.0),
///     (x: 1.0, y: 2.0),
///     (x: 0.0, y: 1.0),
///     (x: 1.0, y: 0.0),
/// ];
///
/// let extremes = polygon.extremes().unwrap();
///
/// assert_eq!(extremes.y_max.index, 2);
/// assert_eq!(extremes.y_max.coord.x, 1.);
/// assert_eq!(extremes.y_max.coord.y, 2.);
/// ```
pub trait Extremes<'a, T: CoordNum> {
    fn extremes(&'a self) -> Option<Outcome<T>>;
}

#[derive(Debug, PartialEq, Eq)]
pub struct Extreme<T: CoordNum> {
    pub index: usize,
    pub coord: Coord<T>,
}

#[derive(Debug, PartialEq, Eq)]
pub struct Outcome<T: CoordNum> {
    pub x_min: Extreme<T>,
    pub y_min: Extreme<T>,
    pub x_max: Extreme<T>,
    pub y_max: Extreme<T>,
}

impl<'a, T, G> Extremes<'a, T> for G
where
    G: CoordsIter<Scalar = T>,
    T: CoordNum,
{
    fn extremes(&'a self) -> Option<Outcome<T>> {
        let mut iter = self.exterior_coords_iter().enumerate();

        let mut outcome = iter.next().map(|(index, coord)| Outcome {
            x_min: Extreme { index, coord },
            y_min: Extreme { index, coord },
            x_max: Extreme { index, coord },
            y_max: Extreme { index, coord },
        })?;

        for (index, coord) in iter {
            if coord.x < outcome.x_min.coord.x {
                outcome.x_min = Extreme { coord, index };
            }

            if coord.y < outcome.y_min.coord.y {
                outcome.y_min = Extreme { coord, index };
            }

            if coord.x > outcome.x_max.coord.x {
                outcome.x_max = Extreme { coord, index };
            }

            if coord.y > outcome.y_max.coord.y {
                outcome.y_max = Extreme { coord, index };
            }
        }

        Some(outcome)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{coord, polygon, MultiPoint};

    #[test]
    fn polygon() {
        // a diamond shape
        let polygon = polygon![
            (x: 1.0, y: 0.0),
            (x: 2.0, y: 1.0),
            (x: 1.0, y: 2.0),
            (x: 0.0, y: 1.0),
            (x: 1.0, y: 0.0),
        ];

        let actual = polygon.extremes();

        assert_eq!(
            Some(Outcome {
                x_min: Extreme {
                    index: 3,
                    coord: coord! { x: 0.0, y: 1.0 }
                },
                y_min: Extreme {
                    index: 0,
                    coord: coord! { x: 1.0, y: 0.0 }
                },
                x_max: Extreme {
                    index: 1,
                    coord: coord! { x: 2.0, y: 1.0 }
                },
                y_max: Extreme {
                    index: 2,
                    coord: coord! { x: 1.0, y: 2.0 }
                }
            }),
            actual
        );
    }

    #[test]
    fn empty() {
        let multi_point: MultiPoint<f32> = MultiPoint::new(vec![]);

        let actual = multi_point.extremes();

        assert!(actual.is_none());
    }
}