geo/algorithm/simplify_vw.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
use crate::prelude::*;
use crate::{
Coord, CoordFloat, GeoFloat, Line, LineString, MultiLineString, MultiPolygon, Point, Polygon,
Triangle,
};
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use rstar::primitives::CachedEnvelope;
use rstar::{RTree, RTreeNum};
/// Store triangle information. Area is used for ranking in the priority queue and determining removal
#[derive(Debug)]
struct VScore<T>
where
T: CoordFloat,
{
left: usize,
/// The current [Point] index in the original [LineString]: The candidate for removal
current: usize,
right: usize,
area: T,
// `visvalingam_preserve` uses `intersector`, `visvalingam` does not, so it's always false
intersector: bool,
}
// These impls give us a min-heap
impl<T> Ord for VScore<T>
where
T: CoordFloat,
{
fn cmp(&self, other: &VScore<T>) -> Ordering {
other.area.partial_cmp(&self.area).unwrap()
}
}
impl<T> PartialOrd for VScore<T>
where
T: CoordFloat,
{
fn partial_cmp(&self, other: &VScore<T>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<T> Eq for VScore<T> where T: CoordFloat {}
impl<T> PartialEq for VScore<T>
where
T: CoordFloat,
{
fn eq(&self, other: &VScore<T>) -> bool
where
T: CoordFloat,
{
self.area == other.area
}
}
/// Simplify a line using the [Visvalingam-Whyatt](http://www.tandfonline.com/doi/abs/10.1179/000870493786962263) algorithm
//
// This method returns the **indices** of the simplified line
// epsilon is the minimum triangle area
// The paper states that:
// If [the new triangle's] calculated area is less than that of the last point to be
// eliminated, use the latter's area instead.
// (This ensures that the current point cannot be eliminated
// without eliminating previously eliminated points)
// (Visvalingam and Whyatt 2013, p47)
// However, this does *not* apply if you're using a user-defined epsilon;
// It's OK to remove triangles with areas below the epsilon,
// then recalculate the new triangle area and push it onto the heap
// based on Huon Wilson's original implementation:
// https://github.com/huonw/isrustfastyet/blob/25e7a68ff26673a8556b170d3c9af52e1c818288/mem/line_simplify.rs
fn visvalingam_indices<T>(orig: &LineString<T>, epsilon: &T) -> Vec<usize>
where
T: CoordFloat,
{
// No need to continue without at least three points
if orig.0.len() < 3 {
return orig.0.iter().enumerate().map(|(idx, _)| idx).collect();
}
let max = orig.0.len();
// Adjacent retained points. Simulating the points in a
// linked list with indices into `orig`. Big number (larger than or equal to
// `max`) means no next element, and (0, 0) means deleted element.
let mut adjacent: Vec<_> = (0..orig.0.len())
.map(|i| {
if i == 0 {
(-1_i32, 1_i32)
} else {
((i - 1) as i32, (i + 1) as i32)
}
})
.collect();
// Store all the triangles in a minimum priority queue, based on their area.
//
// Invalid triangles are *not* removed if / when points are removed; they're
// handled by skipping them as necessary in the main loop by checking the
// corresponding entry in adjacent for (0, 0) values
// Compute the initial triangles
let mut pq = orig
.triangles()
.enumerate()
.map(|(i, triangle)| VScore {
area: triangle.unsigned_area(),
current: i + 1,
left: i,
right: i + 2,
intersector: false,
})
.collect::<BinaryHeap<VScore<T>>>();
// While there are still points for which the associated triangle
// has an area below the epsilon
while let Some(smallest) = pq.pop() {
if smallest.area > *epsilon {
// no need to keep trying: the min-heap ensures that we process triangles in order
// so if we see one that exceeds the tolerance we're done: everything else is too big
break;
}
// This triangle's area is below epsilon: the associated point is a candidate for removal
let (left, right) = adjacent[smallest.current];
// A point in this triangle has been removed since this VScore
// was created, so skip it
if left != smallest.left as i32 || right != smallest.right as i32 {
continue;
}
// We've got a valid triangle, and its area is smaller than epsilon, so
// remove it from the simulated "linked list"
let (ll, _) = adjacent[left as usize];
let (_, rr) = adjacent[right as usize];
adjacent[left as usize] = (ll, right);
adjacent[right as usize] = (left, rr);
adjacent[smallest.current] = (0, 0);
// Recompute the adjacent triangle(s), using left and right adjacent points
// this may add new triangles to the heap
recompute_triangles(&smallest, orig, &mut pq, ll, left, right, rr, max, epsilon);
}
// Filter out the points that have been deleted, returning remaining point indices
orig.0
.iter()
.enumerate()
.zip(adjacent.iter())
.filter_map(|(tup, adj)| if *adj != (0, 0) { Some(tup.0) } else { None })
.collect::<Vec<usize>>()
}
/// Recompute adjacent triangle(s) using left and right adjacent points, and push onto heap
///
/// This is used for both standard and topology-preserving variants.
#[allow(clippy::too_many_arguments)]
fn recompute_triangles<T>(
smallest: &VScore<T>,
orig: &LineString<T>,
pq: &mut BinaryHeap<VScore<T>>,
ll: i32,
left: i32,
right: i32,
rr: i32,
max: usize,
epsilon: &T,
) where
T: CoordFloat,
{
let choices = [(ll, left, right), (left, right, rr)];
for &(ai, current_point, bi) in &choices {
if ai as usize >= max || bi as usize >= max {
// Out of bounds, i.e. we're on one edge
continue;
}
let area = Triangle::new(
orig.0[ai as usize],
orig.0[current_point as usize],
orig.0[bi as usize],
)
.unsigned_area();
// This logic only applies to VW-Preserve
// smallest.current's removal causes a self-intersection, and this point precedes it
// we ensure it gets removed next by demoting its area to negative epsilon
// we check that current_point is less than smallest.current because
// if it's larger the point in question comes AFTER smallest.current: we only want to remove
// the point that comes BEFORE smallest.current
let area = if smallest.intersector && (current_point as usize) < smallest.current {
-*epsilon
} else {
area
};
let v = VScore {
area,
current: current_point as usize,
left: ai as usize,
right: bi as usize,
intersector: false,
};
pq.push(v)
}
}
// Wrapper for visvalingam_indices, mapping indices back to points
fn visvalingam<T>(orig: &LineString<T>, epsilon: &T) -> Vec<Coord<T>>
where
T: CoordFloat,
{
// Epsilon must be greater than zero for any meaningful simplification to happen
if *epsilon <= T::zero() {
return orig.0.to_vec();
}
let subset = visvalingam_indices(orig, epsilon);
// filter orig using the indices
// using get would be more robust here, but the input subset is guaranteed to be valid in this case
orig.0
.iter()
.zip(subset.iter())
.map(|(_, s)| orig[*s])
.collect()
}
// Wrap the actual VW function so the R* Tree can be shared.
// this ensures that shell and rings have access to all segments, so
// intersections between outer and inner rings are detected
//
// Constants:
//
// * `INITIAL_MIN`
// * If we ever have fewer than these, stop immediately
// * `MIN_POINTS`
// * If we detect a self-intersection before point removal, and we only have `MIN_POINTS` left,
// stop: since a self-intersection causes removal of the spatially previous point, THAT could
// lead to a further self-intersection without the possibility of removing more points,
// potentially leaving the geometry in an invalid state.
fn vwp_wrapper<T, const INITIAL_MIN: usize, const MIN_POINTS: usize>(
exterior: &LineString<T>,
interiors: Option<&[LineString<T>]>,
epsilon: &T,
) -> Vec<Vec<Coord<T>>>
where
T: GeoFloat + RTreeNum,
{
let mut rings = vec![];
// Populate R* tree with exterior and interior samples, if any
let mut tree: RTree<CachedEnvelope<_>> = RTree::bulk_load(
exterior
.lines()
.chain(
interiors
.iter()
.flat_map(|ring| *ring)
.flat_map(|line_string| line_string.lines()),
)
.map(CachedEnvelope::new)
.collect::<Vec<_>>(),
);
// Simplify shell
rings.push(visvalingam_preserve::<T, INITIAL_MIN, MIN_POINTS>(
exterior, epsilon, &mut tree,
));
// Simplify interior rings, if any
if let Some(interior_rings) = interiors {
for ring in interior_rings {
rings.push(visvalingam_preserve::<T, INITIAL_MIN, MIN_POINTS>(
ring, epsilon, &mut tree,
))
}
}
rings
}
/// Visvalingam-Whyatt with self-intersection detection to preserve topologies
/// this is a port of the technique at https://www.jasondavies.com/simplify/
//
// Constants:
//
// * `INITIAL_MIN`
// * If we ever have fewer than these, stop immediately
// * `MIN_POINTS`
// * If we detect a self-intersection before point removal, and we only have `MIN_POINTS` left,
// stop: since a self-intersection causes removal of the spatially previous point, THAT could
// lead to a further self-intersection without the possibility of removing more points,
// potentially leaving the geometry in an invalid state.
fn visvalingam_preserve<T, const INITIAL_MIN: usize, const MIN_POINTS: usize>(
orig: &LineString<T>,
epsilon: &T,
tree: &mut RTree<CachedEnvelope<Line<T>>>,
) -> Vec<Coord<T>>
where
T: GeoFloat + RTreeNum,
{
if orig.0.len() < 3 || *epsilon <= T::zero() {
return orig.0.to_vec();
}
let max = orig.0.len();
let mut counter = orig.0.len();
// Adjacent retained points. Simulating the points in a
// linked list with indices into `orig`. Big number (larger than or equal to
// `max`) means no next element, and (0, 0) means deleted element.
let mut adjacent: Vec<_> = (0..orig.0.len())
.map(|i| {
if i == 0 {
(-1_i32, 1_i32)
} else {
((i - 1) as i32, (i + 1) as i32)
}
})
.collect();
// Store all the triangles in a minimum priority queue, based on their area.
//
// Invalid triangles are *not* removed if / when points are removed; they're
// handled by skipping them as necessary in the main loop by checking the
// corresponding entry in adjacent for (0, 0) values
// Compute the initial triangles
let mut pq = orig
.triangles()
.enumerate()
.map(|(i, triangle)| VScore {
area: triangle.unsigned_area(),
current: i + 1,
left: i,
right: i + 2,
intersector: false,
})
.collect::<BinaryHeap<VScore<T>>>();
// While there are still points for which the associated triangle
// has an area below the epsilon
while let Some(mut smallest) = pq.pop() {
if smallest.area > *epsilon {
// No need to continue: we've already seen all the candidate triangles;
// the min-heap guarantees it
break;
}
if counter <= INITIAL_MIN {
// we can't remove any more points no matter what
break;
}
let (left, right) = adjacent[smallest.current];
// A point in this triangle has been removed since this VScore
// was created, so skip it
if left != smallest.left as i32 || right != smallest.right as i32 {
continue;
}
// if removal of this point causes a self-intersection, we also remove the previous point
// that removal alters the geometry, removing the self-intersection
// HOWEVER if we're within 1 point of the absolute minimum, we can't remove this point or the next
// because we could then no longer form a valid geometry if removal of next also caused an intersection.
// The simplification process is thus over.
smallest.intersector = tree_intersect(tree, &smallest, &orig.0);
if smallest.intersector && counter <= MIN_POINTS {
break;
}
let (ll, _) = adjacent[left as usize];
let (_, rr) = adjacent[right as usize];
adjacent[left as usize] = (ll, right);
adjacent[right as usize] = (left, rr);
// We've got a valid triangle, and its area is smaller than the tolerance, so
// remove it from the simulated "linked list"
adjacent[smallest.current] = (0, 0);
counter -= 1;
// Remove stale segments from R* tree
let left_point = Point::from(orig.0[left as usize]);
let middle_point = Point::from(orig.0[smallest.current]);
let right_point = Point::from(orig.0[right as usize]);
let line_1 = CachedEnvelope::new(Line::new(left_point, middle_point));
let line_2 = CachedEnvelope::new(Line::new(middle_point, right_point));
assert!(tree.remove(&line_1).is_some());
assert!(tree.remove(&line_2).is_some());
// Restore continuous line segment
tree.insert(CachedEnvelope::new(Line::new(left_point, right_point)));
// Recompute the adjacent triangle(s), using left and right adjacent points
// this may add new triangles to the heap
recompute_triangles(&smallest, orig, &mut pq, ll, left, right, rr, max, epsilon);
}
// Filter out the points that have been deleted, returning remaining points
orig.0
.iter()
.zip(adjacent.iter())
.filter_map(|(tup, adj)| if *adj != (0, 0) { Some(*tup) } else { None })
.collect()
}
/// Check whether the new candidate line segment intersects with any existing geometry line segments
///
/// In order to do this efficiently, the rtree is queried for any existing segments which fall within
/// the bounding box of the new triangle created by the candidate segment
fn tree_intersect<T>(
tree: &RTree<CachedEnvelope<Line<T>>>,
triangle: &VScore<T>,
orig: &[Coord<T>],
) -> bool
where
T: GeoFloat + RTreeNum,
{
let new_segment_start = orig[triangle.left];
let new_segment_end = orig[triangle.right];
// created by candidate point removal
let new_segment = CachedEnvelope::new(Line::new(
Point::from(orig[triangle.left]),
Point::from(orig[triangle.right]),
));
let bounding_rect = Triangle::new(
orig[triangle.left],
orig[triangle.current],
orig[triangle.right],
)
.bounding_rect();
tree.locate_in_envelope_intersecting(&rstar::AABB::from_corners(
bounding_rect.min().into(),
bounding_rect.max().into(),
))
.any(|candidate| {
// line start point, end point
let (candidate_start, candidate_end) = candidate.points();
candidate_start.0 != new_segment_start
&& candidate_start.0 != new_segment_end
&& candidate_end.0 != new_segment_start
&& candidate_end.0 != new_segment_end
&& new_segment.intersects(&**candidate)
})
}
/// Simplifies a geometry.
///
/// Polygons are simplified by running the algorithm on all their constituent rings. This may
/// result in invalid Polygons, and has no guarantee of preserving topology. Multi* objects are
/// simplified by simplifying all their constituent geometries individually.
///
/// An epsilon less than or equal to zero will return an unaltered version of the geometry.
pub trait SimplifyVw<T, Epsilon = T> {
/// Returns the simplified representation of a geometry, using the [Visvalingam-Whyatt](http://www.tandfonline.com/doi/abs/10.1179/000870493786962263) algorithm
///
/// See [here](https://bost.ocks.org/mike/simplify/) for a graphical explanation
///
/// # Note
/// The tolerance used to remove a point is `epsilon`, in keeping with GEOS. JTS uses `epsilon ^ 2`.
///
/// # Examples
///
/// ```
/// use geo::SimplifyVw;
/// use geo::line_string;
///
/// let line_string = line_string![
/// (x: 5.0, y: 2.0),
/// (x: 3.0, y: 8.0),
/// (x: 6.0, y: 20.0),
/// (x: 7.0, y: 25.0),
/// (x: 10.0, y: 10.0),
/// ];
///
/// let simplified = line_string.simplify_vw(&30.0);
///
/// let expected = line_string![
/// (x: 5.0, y: 2.0),
/// (x: 7.0, y: 25.0),
/// (x: 10.0, y: 10.0),
/// ];
///
/// assert_eq!(expected, simplified);
/// ```
fn simplify_vw(&self, epsilon: &T) -> Self
where
T: CoordFloat;
}
/// Simplifies a geometry, returning the retained _indices_ of the output
///
/// This operation uses the Visvalingam-Whyatt algorithm,
/// and does **not** guarantee that the returned geometry is valid.
///
/// A larger `epsilon` means being more aggressive about removing points with less concern for
/// maintaining the existing shape. Specifically, when you consider whether to remove a point, you
/// can draw a triangle consisting of the candidate point and the points before and after it.
/// If the area of this triangle is less than `epsilon`, we will remove the point.
///
/// An `epsilon` less than or equal to zero will return an unaltered version of the geometry.
pub trait SimplifyVwIdx<T, Epsilon = T> {
/// Returns the simplified representation of a geometry, using the [Visvalingam-Whyatt](http://www.tandfonline.com/doi/abs/10.1179/000870493786962263) algorithm
///
/// See [here](https://bost.ocks.org/mike/simplify/) for a graphical explanation
///
/// # Examples
///
/// ```
/// use geo::SimplifyVwIdx;
/// use geo::line_string;
///
/// let line_string = line_string![
/// (x: 5.0, y: 2.0),
/// (x: 3.0, y: 8.0),
/// (x: 6.0, y: 20.0),
/// (x: 7.0, y: 25.0),
/// (x: 10.0, y: 10.0),
/// ];
///
/// let simplified = line_string.simplify_vw_idx(&30.0);
///
/// let expected = vec![
/// 0_usize,
/// 3_usize,
/// 4_usize,
/// ];
///
/// assert_eq!(expected, simplified);
/// ```
fn simplify_vw_idx(&self, epsilon: &T) -> Vec<usize>
where
T: CoordFloat;
}
/// Simplifies a geometry, attempting to preserve its topology by removing self-intersections
///
/// A larger `epsilon` means being more aggressive about removing points with less concern for
/// maintaining the existing shape. Specifically, when you consider whether to remove a point, you
/// can draw a triangle consisting of the candidate point and the points before and after it.
/// If the area of this triangle is less than `epsilon`, we will remove the point.
///
/// An `epsilon` less than or equal to zero will return an unaltered version of the geometry.
pub trait SimplifyVwPreserve<T, Epsilon = T> {
/// Returns the simplified representation of a geometry, using a topology-preserving variant of the
/// [Visvalingam-Whyatt](http://www.tandfonline.com/doi/abs/10.1179/000870493786962263) algorithm.
///
/// See [here](https://www.jasondavies.com/simplify/) for a graphical explanation.
///
/// The topology-preserving algorithm uses an [R* tree](../../../rstar/struct.RTree.html) to
/// efficiently find candidate line segments which are tested for intersection with a given triangle.
/// If intersections are found, the previous point (i.e. the left component of the current triangle)
/// is also removed, altering the geometry and removing the intersection.
///
/// In the example below, `(135.0, 68.0)` would be retained by the standard algorithm,
/// forming triangle `(0, 1, 3),` which intersects with the segments `(280.0, 19.0),
/// (117.0, 48.0)` and `(117.0, 48.0), (300,0, 40.0)`. By removing it,
/// a new triangle with indices `(0, 3, 4)` is formed, which does not cause a self-intersection.
///
/// # Notes
///
/// - It is possible for the simplification algorithm to displace a Polygon's interior ring outside its shell.
/// - The algorithm does **not** guarantee a valid output geometry, especially on smaller geometries.
/// - If removal of a point causes a self-intersection, but the geometry only has `n + 1`
/// points remaining (3 for a `LineString`, 5 for a `Polygon`), the point is retained and the
/// simplification process ends. This is because there is no guarantee that removal of two points will remove
/// the intersection, but removal of further points would leave too few points to form a valid geometry.
/// - The tolerance used to remove a point is `epsilon`, in keeping with GEOS. JTS uses `epsilon ^ 2`
///
/// # Examples
///
/// ```
/// use approx::assert_relative_eq;
/// use geo::SimplifyVwPreserve;
/// use geo::line_string;
///
/// let line_string = line_string![
/// (x: 10., y: 60.),
/// (x: 135., y: 68.),
/// (x: 94., y: 48.),
/// (x: 126., y: 31.),
/// (x: 280., y: 19.),
/// (x: 117., y: 48.),
/// (x: 300., y: 40.),
/// (x: 301., y: 10.),
/// ];
///
/// let simplified = line_string.simplify_vw_preserve(&668.6);
///
/// let expected = line_string![
/// (x: 10., y: 60.),
/// (x: 126., y: 31.),
/// (x: 280., y: 19.),
/// (x: 117., y: 48.),
/// (x: 300., y: 40.),
/// (x: 301., y: 10.),
/// ];
///
/// assert_relative_eq!(expected, simplified, epsilon = 1e-6);
/// ```
fn simplify_vw_preserve(&self, epsilon: &T) -> Self
where
T: CoordFloat + RTreeNum;
}
impl<T> SimplifyVwPreserve<T> for LineString<T>
where
T: GeoFloat + RTreeNum,
{
fn simplify_vw_preserve(&self, epsilon: &T) -> LineString<T> {
let mut simplified = vwp_wrapper::<_, 2, 4>(self, None, epsilon);
LineString::from(simplified.pop().unwrap())
}
}
impl<T> SimplifyVwPreserve<T> for MultiLineString<T>
where
T: GeoFloat + RTreeNum,
{
fn simplify_vw_preserve(&self, epsilon: &T) -> MultiLineString<T> {
MultiLineString::new(
self.0
.iter()
.map(|l| l.simplify_vw_preserve(epsilon))
.collect(),
)
}
}
impl<T> SimplifyVwPreserve<T> for Polygon<T>
where
T: GeoFloat + RTreeNum,
{
fn simplify_vw_preserve(&self, epsilon: &T) -> Polygon<T> {
let mut simplified =
// min_points was formerly 6, but that's too conservative for small polygons
vwp_wrapper::<_, 4, 5>(self.exterior(), Some(self.interiors()), epsilon);
let exterior = LineString::from(simplified.remove(0));
let interiors = simplified.into_iter().map(LineString::from).collect();
Polygon::new(exterior, interiors)
}
}
impl<T> SimplifyVwPreserve<T> for MultiPolygon<T>
where
T: GeoFloat + RTreeNum,
{
fn simplify_vw_preserve(&self, epsilon: &T) -> MultiPolygon<T> {
MultiPolygon::new(
self.0
.iter()
.map(|p| p.simplify_vw_preserve(epsilon))
.collect(),
)
}
}
impl<T> SimplifyVw<T> for LineString<T>
where
T: CoordFloat,
{
fn simplify_vw(&self, epsilon: &T) -> LineString<T> {
LineString::from(visvalingam(self, epsilon))
}
}
impl<T> SimplifyVwIdx<T> for LineString<T>
where
T: CoordFloat,
{
fn simplify_vw_idx(&self, epsilon: &T) -> Vec<usize> {
visvalingam_indices(self, epsilon)
}
}
impl<T> SimplifyVw<T> for MultiLineString<T>
where
T: CoordFloat,
{
fn simplify_vw(&self, epsilon: &T) -> MultiLineString<T> {
MultiLineString::new(self.iter().map(|l| l.simplify_vw(epsilon)).collect())
}
}
impl<T> SimplifyVw<T> for Polygon<T>
where
T: CoordFloat,
{
fn simplify_vw(&self, epsilon: &T) -> Polygon<T> {
Polygon::new(
self.exterior().simplify_vw(epsilon),
self.interiors()
.iter()
.map(|l| l.simplify_vw(epsilon))
.collect(),
)
}
}
impl<T> SimplifyVw<T> for MultiPolygon<T>
where
T: CoordFloat,
{
fn simplify_vw(&self, epsilon: &T) -> MultiPolygon<T> {
MultiPolygon::new(self.iter().map(|p| p.simplify_vw(epsilon)).collect())
}
}
#[cfg(test)]
mod test {
use super::{visvalingam, vwp_wrapper, SimplifyVw, SimplifyVwPreserve};
use crate::{
line_string, polygon, Coord, LineString, MultiLineString, MultiPolygon, Point, Polygon,
};
// See https://github.com/georust/geo/issues/1049
#[test]
#[should_panic]
fn vwp_bug() {
let pol = polygon![
(x: 1., y: 4.),
(x: 3., y: 4.),
(x: 1., y: 1.),
(x: 7., y: 0.),
(x: 1., y: 0.),
(x: 0., y: 1.),
(x: 1., y: 4.),
];
let simplified = pol.simplify_vw_preserve(&2.25);
assert_eq!(
simplified,
polygon![
(x: 1., y: 4.),
(x: 3., y: 4.),
(x: 1., y: 1.),
(x: 7., y: 0.),
(x: 1., y: 0.),
(x: 1., y: 4.),
]
);
}
#[test]
fn visvalingam_test() {
// this is the PostGIS example
let ls = line_string![
(x: 5.0, y: 2.0),
(x: 3.0, y: 8.0),
(x: 6.0, y: 20.0),
(x: 7.0, y: 25.0),
(x: 10.0, y: 10.0)
];
let correct = [(5.0, 2.0), (7.0, 25.0), (10.0, 10.0)];
let correct_ls: Vec<_> = correct.iter().map(|e| Coord::from((e.0, e.1))).collect();
let simplified = visvalingam(&ls, &30.);
assert_eq!(simplified, correct_ls);
}
#[test]
fn simple_vwp_test() {
// this LineString will have a self-intersection if the point with the
// smallest associated area is removed
// the associated triangle is (1, 2, 3), and has an area of 668.5
// the new triangle (0, 1, 3) self-intersects with triangle (3, 4, 5)
// Point 1 must also be removed giving a final, valid
// LineString of (0, 3, 4, 5, 6, 7)
let ls = line_string![
(x: 10., y:60.),
(x: 135., y: 68.),
(x: 94., y: 48.),
(x: 126., y: 31.),
(x: 280., y: 19.),
(x: 117., y: 48.),
(x: 300., y: 40.),
(x: 301., y: 10.)
];
let simplified = vwp_wrapper::<_, 2, 4>(&ls, None, &668.6);
// this is the correct, non-intersecting LineString
let correct = [
(10., 60.),
(126., 31.),
(280., 19.),
(117., 48.),
(300., 40.),
(301., 10.),
];
let correct_ls: Vec<_> = correct.iter().map(|e| Coord::from((e.0, e.1))).collect();
assert_eq!(simplified[0], correct_ls);
}
#[test]
fn retained_vwp_test() {
// we would expect outer[2] to be removed, as its associated area
// is below epsilon. However, this causes a self-intersection
// with the inner ring, which would also trigger removal of outer[1],
// leaving the geometry below min_points. It is thus retained.
// Inner should also be reduced, but has points == initial_min for the Polygon type
let outer = line_string![
(x: -54.4921875, y: 21.289374355860424),
(x: -33.5, y: 56.9449741808516),
(x: -22.5, y: 44.08758502824516),
(x: -19.5, y: 23.241346102386135),
(x: -54.4921875, y: 21.289374355860424)
];
let inner = line_string![
(x: -24.451171875, y: 35.266685523707665),
(x: -29.513671875, y: 47.32027765985069),
(x: -22.869140625, y: 43.80817468459856),
(x: -24.451171875, y: 35.266685523707665)
];
let poly = Polygon::new(outer.clone(), vec![inner]);
let simplified = poly.simplify_vw_preserve(&95.4);
assert_relative_eq!(simplified.exterior(), &outer, epsilon = 1e-6);
}
#[test]
fn remove_inner_point_vwp_test() {
// we would expect outer[2] to be removed, as its associated area
// is below epsilon. However, this causes a self-intersection
// with the inner ring, which would also trigger removal of outer[1],
// leaving the geometry below min_points. It is thus retained.
// Inner should be reduced to four points by removing inner[2]
let outer = line_string![
(x: -54.4921875, y: 21.289374355860424),
(x: -33.5, y: 56.9449741808516),
(x: -22.5, y: 44.08758502824516),
(x: -19.5, y: 23.241346102386135),
(x: -54.4921875, y: 21.289374355860424)
];
let inner = line_string![
(x: -24.451171875, y: 35.266685523707665),
(x: -40.0, y: 45.),
(x: -29.513671875, y: 47.32027765985069),
(x: -22.869140625, y: 43.80817468459856),
(x: -24.451171875, y: 35.266685523707665)
];
let correct_inner = line_string![
(x: -24.451171875, y: 35.266685523707665),
(x: -40.0, y: 45.0),
(x: -22.869140625, y: 43.80817468459856),
(x: -24.451171875, y: 35.266685523707665)
];
let poly = Polygon::new(outer.clone(), vec![inner]);
let simplified = poly.simplify_vw_preserve(&95.4);
assert_eq!(simplified.exterior(), &outer);
assert_eq!(simplified.interiors()[0], correct_inner);
}
#[test]
fn very_long_vwp_test() {
// simplify an 8k-point LineString, eliminating self-intersections
let points_ls = geo_test_fixtures::norway_main::<f64>();
let simplified = vwp_wrapper::<_, 2, 4>(&points_ls, None, &0.0005);
assert_eq!(simplified[0].len(), 3278);
}
#[test]
fn visvalingam_test_long() {
// simplify a longer LineString
let points_ls = geo_test_fixtures::vw_orig::<f64>();
let correct_ls = geo_test_fixtures::vw_simplified::<f64>();
let simplified = visvalingam(&points_ls, &0.0005);
assert_eq!(simplified, correct_ls.0);
}
#[test]
fn visvalingam_preserve_test_long() {
// simplify a longer LineString using the preserve variant
let points_ls = geo_test_fixtures::vw_orig::<f64>();
let correct_ls = geo_test_fixtures::vw_simplified::<f64>();
let simplified = points_ls.simplify_vw_preserve(&0.0005);
assert_relative_eq!(simplified, correct_ls, epsilon = 1e-6);
}
#[test]
fn visvalingam_test_empty_linestring() {
let vec: Vec<[f32; 2]> = Vec::new();
let compare = Vec::new();
let simplified = visvalingam(&LineString::from(vec), &1.0);
assert_eq!(simplified, compare);
}
#[test]
fn visvalingam_test_two_point_linestring() {
let vec = vec![Point::new(0.0, 0.0), Point::new(27.8, 0.1)];
let compare = vec![Coord::from((0.0, 0.0)), Coord::from((27.8, 0.1))];
let simplified = visvalingam(&LineString::from(vec), &1.0);
assert_eq!(simplified, compare);
}
#[test]
fn multilinestring() {
// this is the PostGIS example
let points = [
(5.0, 2.0),
(3.0, 8.0),
(6.0, 20.0),
(7.0, 25.0),
(10.0, 10.0),
];
let points_ls: Vec<_> = points.iter().map(|e| Point::new(e.0, e.1)).collect();
let correct = [(5.0, 2.0), (7.0, 25.0), (10.0, 10.0)];
let correct_ls: Vec<_> = correct.iter().map(|e| Point::new(e.0, e.1)).collect();
let mline = MultiLineString::new(vec![LineString::from(points_ls)]);
assert_relative_eq!(
mline.simplify_vw(&30.),
MultiLineString::new(vec![LineString::from(correct_ls)]),
epsilon = 1e-6
);
}
#[test]
fn polygon() {
let poly = polygon![
(x: 0., y: 0.),
(x: 0., y: 10.),
(x: 5., y: 11.),
(x: 10., y: 10.),
(x: 10., y: 0.),
(x: 0., y: 0.),
];
let poly2 = poly.simplify_vw(&10.);
assert_relative_eq!(
poly2,
polygon![
(x: 0., y: 0.),
(x: 0., y: 10.),
(x: 10., y: 10.),
(x: 10., y: 0.),
(x: 0., y: 0.),
],
epsilon = 1e-6
);
}
#[test]
fn multipolygon() {
let mpoly = MultiPolygon::new(vec![Polygon::new(
LineString::from(vec![
(0., 0.),
(0., 10.),
(5., 11.),
(10., 10.),
(10., 0.),
(0., 0.),
]),
vec![],
)]);
let mpoly2 = mpoly.simplify_vw(&10.);
assert_relative_eq!(
mpoly2,
MultiPolygon::new(vec![Polygon::new(
LineString::from(vec![(0., 0.), (0., 10.), (10., 10.), (10., 0.), (0., 0.)]),
vec![],
)]),
epsilon = 1e-6
);
}
}