geo/algorithm/
coordinate_position.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
use std::cmp::Ordering;

use crate::geometry::*;
use crate::intersects::{point_in_rect, value_in_between};
use crate::kernels::*;
use crate::{BoundingRect, HasDimensions, Intersects};
use crate::{GeoNum, GeometryCow};

/// The position of a `Coord` relative to a `Geometry`
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum CoordPos {
    OnBoundary,
    Inside,
    Outside,
}

/// Determine whether a `Coord` lies inside, outside, or on the boundary of a geometry.
///
/// # Examples
///
/// ```rust
/// use geo::{polygon, coord};
/// use geo::coordinate_position::{CoordinatePosition, CoordPos};
///
/// let square_poly = polygon![(x: 0.0, y: 0.0), (x: 2.0, y: 0.0), (x: 2.0, y: 2.0), (x: 0.0, y: 2.0), (x: 0.0, y: 0.0)];
///
/// let inside_coord = coord! { x: 1.0, y: 1.0 };
/// assert_eq!(square_poly.coordinate_position(&inside_coord), CoordPos::Inside);
///
/// let boundary_coord = coord! { x: 0.0, y: 1.0 };
/// assert_eq!(square_poly.coordinate_position(&boundary_coord), CoordPos::OnBoundary);
///
/// let outside_coord = coord! { x: 5.0, y: 5.0 };
/// assert_eq!(square_poly.coordinate_position(&outside_coord), CoordPos::Outside);
/// ```
pub trait CoordinatePosition {
    type Scalar: GeoNum;
    fn coordinate_position(&self, coord: &Coord<Self::Scalar>) -> CoordPos {
        let mut is_inside = false;
        let mut boundary_count = 0;

        self.calculate_coordinate_position(coord, &mut is_inside, &mut boundary_count);

        // “The boundary of an arbitrary collection of geometries whose interiors are disjoint
        // consists of geometries drawn from the boundaries of the element geometries by
        // application of the ‘mod 2’ union rule”
        //
        // ― OpenGIS Simple Feature Access § 6.1.15.1
        if boundary_count % 2 == 1 {
            CoordPos::OnBoundary
        } else if is_inside {
            CoordPos::Inside
        } else {
            CoordPos::Outside
        }
    }

    // impls of this trait must:
    //  1. set `is_inside = true` if `coord` is contained within the Interior of any component.
    //  2. increment `boundary_count` for each component whose Boundary contains `coord`.
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<Self::Scalar>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    );
}

impl<T> CoordinatePosition for Coord<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        _boundary_count: &mut usize,
    ) {
        if self == coord {
            *is_inside = true;
        }
    }
}

impl<T> CoordinatePosition for Point<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        _boundary_count: &mut usize,
    ) {
        if &self.0 == coord {
            *is_inside = true;
        }
    }
}

impl<T> CoordinatePosition for Line<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    ) {
        // degenerate line is a point
        if self.start == self.end {
            self.start
                .calculate_coordinate_position(coord, is_inside, boundary_count);
            return;
        }

        if coord == &self.start || coord == &self.end {
            *boundary_count += 1;
        } else if self.intersects(coord) {
            *is_inside = true;
        }
    }
}

impl<T> CoordinatePosition for LineString<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    ) {
        if self.0.len() < 2 {
            debug_assert!(false, "invalid line string with less than 2 coords");
            return;
        }

        if self.0.len() == 2 {
            // line string with two coords is just a line
            Line::new(self.0[0], self.0[1]).calculate_coordinate_position(
                coord,
                is_inside,
                boundary_count,
            );
            return;
        }

        // optimization: return early if there's no chance of an intersection
        // since self.0 is non-empty, safe to `unwrap`
        if !self.bounding_rect().unwrap().intersects(coord) {
            return;
        }

        // A closed linestring has no boundary, per SFS
        if !self.is_closed() {
            // since self.0 is non-empty, safe to `unwrap`
            if coord == self.0.first().unwrap() || coord == self.0.last().unwrap() {
                *boundary_count += 1;
                return;
            }
        }

        if self.intersects(coord) {
            // We've already checked for "Boundary" condition, so if there's an intersection at
            // this point, coord must be on the interior
            *is_inside = true
        }
    }
}

impl<T> CoordinatePosition for Triangle<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    ) {
        *is_inside = self
            .to_lines()
            .map(|l| {
                let orientation = T::Ker::orient2d(l.start, l.end, *coord);
                if orientation == Orientation::Collinear
                    && point_in_rect(*coord, l.start, l.end)
                    && coord.x != l.end.x
                {
                    *boundary_count += 1;
                }
                orientation
            })
            .windows(2)
            .all(|win| win[0] == win[1] && win[0] != Orientation::Collinear);
    }
}

impl<T> CoordinatePosition for Rect<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    ) {
        let mut boundary = false;

        let min = self.min();

        match coord.x.partial_cmp(&min.x).unwrap() {
            Ordering::Less => return,
            Ordering::Equal => boundary = true,
            Ordering::Greater => {}
        }
        match coord.y.partial_cmp(&min.y).unwrap() {
            Ordering::Less => return,
            Ordering::Equal => boundary = true,
            Ordering::Greater => {}
        }

        let max = self.max();

        match max.x.partial_cmp(&coord.x).unwrap() {
            Ordering::Less => return,
            Ordering::Equal => boundary = true,
            Ordering::Greater => {}
        }
        match max.y.partial_cmp(&coord.y).unwrap() {
            Ordering::Less => return,
            Ordering::Equal => boundary = true,
            Ordering::Greater => {}
        }

        if boundary {
            *boundary_count += 1;
        } else {
            *is_inside = true;
        }
    }
}

impl<T> CoordinatePosition for MultiPoint<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        _boundary_count: &mut usize,
    ) {
        if self.0.iter().any(|p| &p.0 == coord) {
            *is_inside = true;
        }
    }
}

impl<T> CoordinatePosition for Polygon<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    ) {
        if self.is_empty() {
            return;
        }

        match coord_pos_relative_to_ring(*coord, self.exterior()) {
            CoordPos::Outside => {}
            CoordPos::OnBoundary => {
                *boundary_count += 1;
            }
            CoordPos::Inside => {
                for hole in self.interiors() {
                    match coord_pos_relative_to_ring(*coord, hole) {
                        CoordPos::Outside => {}
                        CoordPos::OnBoundary => {
                            *boundary_count += 1;
                            return;
                        }
                        CoordPos::Inside => {
                            return;
                        }
                    }
                }
                // the coord is *outside* the interior holes, so it's *inside* the polygon
                *is_inside = true;
            }
        }
    }
}

impl<T> CoordinatePosition for MultiLineString<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    ) {
        for line_string in &self.0 {
            line_string.calculate_coordinate_position(coord, is_inside, boundary_count);
        }
    }
}

impl<T> CoordinatePosition for MultiPolygon<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    ) {
        for polygon in &self.0 {
            polygon.calculate_coordinate_position(coord, is_inside, boundary_count);
        }
    }
}

impl<T> CoordinatePosition for GeometryCollection<T>
where
    T: GeoNum,
{
    type Scalar = T;
    fn calculate_coordinate_position(
        &self,
        coord: &Coord<T>,
        is_inside: &mut bool,
        boundary_count: &mut usize,
    ) {
        for geometry in self {
            geometry.calculate_coordinate_position(coord, is_inside, boundary_count);
        }
    }
}

impl<T> CoordinatePosition for Geometry<T>
where
    T: GeoNum,
{
    type Scalar = T;
    crate::geometry_delegate_impl! {
        fn calculate_coordinate_position(
            &self,
            coord: &Coord<T>,
            is_inside: &mut bool,
            boundary_count: &mut usize) -> ();
    }
}

impl<'a, T: GeoNum> CoordinatePosition for GeometryCow<'a, T> {
    type Scalar = T;
    crate::geometry_cow_delegate_impl! {
        fn calculate_coordinate_position(
            &self,
            coord: &Coord<T>,
            is_inside: &mut bool,
            boundary_count: &mut usize) -> ();
    }
}

/// Calculate the position of a `Coord` relative to a
/// closed `LineString`.
pub fn coord_pos_relative_to_ring<T>(coord: Coord<T>, linestring: &LineString<T>) -> CoordPos
where
    T: GeoNum,
{
    debug_assert!(linestring.is_closed());

    // LineString without points
    if linestring.0.is_empty() {
        return CoordPos::Outside;
    }
    if linestring.0.len() == 1 {
        // If LineString has one point, it will not generate
        // any lines.  So, we handle this edge case separately.
        return if coord == linestring.0[0] {
            CoordPos::OnBoundary
        } else {
            CoordPos::Outside
        };
    }

    // Use winding number algorithm with on boundary short-cicuit
    // See: https://en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm
    let mut winding_number = 0;
    for line in linestring.lines() {
        // Edge Crossing Rules:
        //   1. an upward edge includes its starting endpoint, and excludes its final endpoint;
        //   2. a downward edge excludes its starting endpoint, and includes its final endpoint;
        //   3. horizontal edges are excluded
        //   4. the edge-ray intersection point must be strictly right of the coord.
        if line.start.y <= coord.y {
            if line.end.y >= coord.y {
                let o = T::Ker::orient2d(line.start, line.end, coord);
                if o == Orientation::CounterClockwise && line.end.y != coord.y {
                    winding_number += 1
                } else if o == Orientation::Collinear
                    && value_in_between(coord.x, line.start.x, line.end.x)
                {
                    return CoordPos::OnBoundary;
                }
            };
        } else if line.end.y <= coord.y {
            let o = T::Ker::orient2d(line.start, line.end, coord);
            if o == Orientation::Clockwise {
                winding_number -= 1
            } else if o == Orientation::Collinear
                && value_in_between(coord.x, line.start.x, line.end.x)
            {
                return CoordPos::OnBoundary;
            }
        }
    }
    if winding_number == 0 {
        CoordPos::Outside
    } else {
        CoordPos::Inside
    }
}

#[cfg(test)]
mod test {
    use geo_types::coord;

    use super::*;
    use crate::{line_string, point, polygon};

    #[test]
    fn test_empty_poly() {
        let square_poly: Polygon<f64> = Polygon::new(LineString::new(vec![]), vec![]);
        assert_eq!(
            square_poly.coordinate_position(&Coord::zero()),
            CoordPos::Outside
        );
    }

    #[test]
    fn test_simple_poly() {
        let square_poly = polygon![(x: 0.0, y: 0.0), (x: 2.0, y: 0.0), (x: 2.0, y: 2.0), (x: 0.0, y: 2.0), (x: 0.0, y: 0.0)];

        let inside_coord = coord! { x: 1.0, y: 1.0 };
        assert_eq!(
            square_poly.coordinate_position(&inside_coord),
            CoordPos::Inside
        );

        let vertex_coord = coord! { x: 0.0, y: 0.0 };
        assert_eq!(
            square_poly.coordinate_position(&vertex_coord),
            CoordPos::OnBoundary
        );

        let boundary_coord = coord! { x: 0.0, y: 1.0 };
        assert_eq!(
            square_poly.coordinate_position(&boundary_coord),
            CoordPos::OnBoundary
        );

        let outside_coord = coord! { x: 5.0, y: 5.0 };
        assert_eq!(
            square_poly.coordinate_position(&outside_coord),
            CoordPos::Outside
        );
    }

    #[test]
    fn test_poly_interior() {
        let poly = polygon![
            exterior: [
                (x: 11., y: 11.),
                (x: 20., y: 11.),
                (x: 20., y: 20.),
                (x: 11., y: 20.),
                (x: 11., y: 11.),
            ],
            interiors: [
                [
                    (x: 13., y: 13.),
                    (x: 13., y: 17.),
                    (x: 17., y: 17.),
                    (x: 17., y: 13.),
                    (x: 13., y: 13.),
                ]
            ],
        ];

        let inside_hole = coord! { x: 14.0, y: 14.0 };
        assert_eq!(poly.coordinate_position(&inside_hole), CoordPos::Outside);

        let outside_poly = coord! { x: 30.0, y: 30.0 };
        assert_eq!(poly.coordinate_position(&outside_poly), CoordPos::Outside);

        let on_outside_border = coord! { x: 20.0, y: 15.0 };
        assert_eq!(
            poly.coordinate_position(&on_outside_border),
            CoordPos::OnBoundary
        );

        let on_inside_border = coord! { x: 13.0, y: 15.0 };
        assert_eq!(
            poly.coordinate_position(&on_inside_border),
            CoordPos::OnBoundary
        );

        let inside_coord = coord! { x: 12.0, y: 12.0 };
        assert_eq!(poly.coordinate_position(&inside_coord), CoordPos::Inside);
    }

    #[test]
    fn test_simple_line() {
        use crate::point;
        let line = Line::new(point![x: 0.0, y: 0.0], point![x: 10.0, y: 10.0]);

        let start = coord! { x: 0.0, y: 0.0 };
        assert_eq!(line.coordinate_position(&start), CoordPos::OnBoundary);

        let end = coord! { x: 10.0, y: 10.0 };
        assert_eq!(line.coordinate_position(&end), CoordPos::OnBoundary);

        let interior = coord! { x: 5.0, y: 5.0 };
        assert_eq!(line.coordinate_position(&interior), CoordPos::Inside);

        let outside = coord! { x: 6.0, y: 5.0 };
        assert_eq!(line.coordinate_position(&outside), CoordPos::Outside);
    }

    #[test]
    fn test_degenerate_line() {
        let line = Line::new(point![x: 0.0, y: 0.0], point![x: 0.0, y: 0.0]);

        let start = coord! { x: 0.0, y: 0.0 };
        assert_eq!(line.coordinate_position(&start), CoordPos::Inside);

        let outside = coord! { x: 10.0, y: 10.0 };
        assert_eq!(line.coordinate_position(&outside), CoordPos::Outside);
    }

    #[test]
    fn test_point() {
        let p1 = point![x: 2.0, y: 0.0];

        let c1 = coord! { x: 2.0, y: 0.0 };
        let c2 = coord! { x: 3.0, y: 3.0 };

        assert_eq!(p1.coordinate_position(&c1), CoordPos::Inside);
        assert_eq!(p1.coordinate_position(&c2), CoordPos::Outside);

        assert_eq!(c1.coordinate_position(&c1), CoordPos::Inside);
        assert_eq!(c1.coordinate_position(&c2), CoordPos::Outside);
    }

    #[test]
    fn test_simple_line_string() {
        let line_string =
            line_string![(x: 0.0, y: 0.0), (x: 1.0, y: 1.0), (x: 2.0, y: 0.0), (x: 3.0, y: 0.0)];

        let start = Coord::zero();
        assert_eq!(
            line_string.coordinate_position(&start),
            CoordPos::OnBoundary
        );

        let midpoint = coord! { x: 0.5, y: 0.5 };
        assert_eq!(line_string.coordinate_position(&midpoint), CoordPos::Inside);

        let vertex = coord! { x: 2.0, y: 0.0 };
        assert_eq!(line_string.coordinate_position(&vertex), CoordPos::Inside);

        let end = coord! { x: 3.0, y: 0.0 };
        assert_eq!(line_string.coordinate_position(&end), CoordPos::OnBoundary);

        let outside = coord! { x: 3.0, y: 1.0 };
        assert_eq!(line_string.coordinate_position(&outside), CoordPos::Outside);
    }

    #[test]
    fn test_degenerate_line_strings() {
        let line_string = line_string![(x: 0.0, y: 0.0), (x: 0.0, y: 0.0)];

        let start = Coord::zero();
        assert_eq!(line_string.coordinate_position(&start), CoordPos::Inside);

        let line_string = line_string![(x: 0.0, y: 0.0), (x: 2.0, y: 0.0)];

        let start = Coord::zero();
        assert_eq!(
            line_string.coordinate_position(&start),
            CoordPos::OnBoundary
        );
    }

    #[test]
    fn test_closed_line_string() {
        let line_string = line_string![(x: 0.0, y: 0.0), (x: 1.0, y: 1.0), (x: 2.0, y: 0.0), (x: 3.0, y: 2.0), (x: 0.0, y: 2.0), (x: 0.0, y: 0.0)];

        // sanity check
        assert!(line_string.is_closed());

        // closed line strings have no boundary
        let start = Coord::zero();
        assert_eq!(line_string.coordinate_position(&start), CoordPos::Inside);

        let midpoint = coord! { x: 0.5, y: 0.5 };
        assert_eq!(line_string.coordinate_position(&midpoint), CoordPos::Inside);

        let outside = coord! { x: 3.0, y: 1.0 };
        assert_eq!(line_string.coordinate_position(&outside), CoordPos::Outside);
    }

    #[test]
    fn test_boundary_rule() {
        let multi_line_string = MultiLineString::new(vec![
            // first two lines have same start point but different end point
            line_string![(x: 0.0, y: 0.0), (x: 1.0, y: 1.0)],
            line_string![(x: 0.0, y: 0.0), (x: -1.0, y: -1.0)],
            // third line has its own start point, but it's end touches the middle of first line
            line_string![(x: 0.0, y: 1.0), (x: 0.5, y: 0.5)],
            // fourth and fifth have independent start points, but both end at the middle of the
            // second line
            line_string![(x: 0.0, y: -1.0), (x: -0.5, y: -0.5)],
            line_string![(x: 0.0, y: -2.0), (x: -0.5, y: -0.5)],
        ]);

        let outside_of_all = coord! { x: 123.0, y: 123.0 };
        assert_eq!(
            multi_line_string.coordinate_position(&outside_of_all),
            CoordPos::Outside
        );

        let end_of_one_line = coord! { x: -1.0, y: -1.0 };
        assert_eq!(
            multi_line_string.coordinate_position(&end_of_one_line),
            CoordPos::OnBoundary
        );

        // in boundary of first and second, so considered *not* in the boundary by mod 2 rule
        let shared_start = Coord::zero();
        assert_eq!(
            multi_line_string.coordinate_position(&shared_start),
            CoordPos::Outside
        );

        // *in* the first line, on the boundary of the third line
        let one_end_plus_midpoint = coord! { x: 0.5, y: 0.5 };
        assert_eq!(
            multi_line_string.coordinate_position(&one_end_plus_midpoint),
            CoordPos::OnBoundary
        );

        // *in* the first line, on the *boundary* of the fourth and fifth line
        let two_ends_plus_midpoint = coord! { x: -0.5, y: -0.5 };
        assert_eq!(
            multi_line_string.coordinate_position(&two_ends_plus_midpoint),
            CoordPos::Inside
        );
    }

    #[test]
    fn test_rect() {
        let rect = Rect::new((0.0, 0.0), (10.0, 10.0));
        assert_eq!(
            rect.coordinate_position(&coord! { x: 5.0, y: 5.0 }),
            CoordPos::Inside
        );
        assert_eq!(
            rect.coordinate_position(&coord! { x: 0.0, y: 5.0 }),
            CoordPos::OnBoundary
        );
        assert_eq!(
            rect.coordinate_position(&coord! { x: 15.0, y: 15.0 }),
            CoordPos::Outside
        );
    }

    #[test]
    fn test_triangle() {
        let triangle = Triangle::new((0.0, 0.0).into(), (5.0, 10.0).into(), (10.0, 0.0).into());
        assert_eq!(
            triangle.coordinate_position(&coord! { x: 5.0, y: 5.0 }),
            CoordPos::Inside
        );
        assert_eq!(
            triangle.coordinate_position(&coord! { x: 2.5, y: 5.0 }),
            CoordPos::OnBoundary
        );
        assert_eq!(
            triangle.coordinate_position(&coord! { x: 2.49, y: 5.0 }),
            CoordPos::Outside
        );
    }

    #[test]
    fn test_collection() {
        let triangle = Triangle::new((0.0, 0.0).into(), (5.0, 10.0).into(), (10.0, 0.0).into());
        let rect = Rect::new((0.0, 0.0), (10.0, 10.0));
        let collection = GeometryCollection::new_from(vec![triangle.into(), rect.into()]);

        //  outside of both
        assert_eq!(
            collection.coordinate_position(&coord! { x: 15.0, y: 15.0 }),
            CoordPos::Outside
        );

        // inside both
        assert_eq!(
            collection.coordinate_position(&coord! { x: 5.0, y: 5.0 }),
            CoordPos::Inside
        );

        // inside one, boundary of other
        assert_eq!(
            collection.coordinate_position(&coord! { x: 2.5, y: 5.0 }),
            CoordPos::OnBoundary
        );

        //  boundary of both
        assert_eq!(
            collection.coordinate_position(&coord! { x: 5.0, y: 10.0 }),
            CoordPos::Outside
        );
    }
}