geo/algorithm/line_measures/metric_spaces/
rhumb.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
use num_traits::FromPrimitive;

use super::super::{Bearing, Destination, Distance, InterpolatePoint};
use crate::rhumb::RhumbCalculations;
use crate::{CoordFloat, Point, MEAN_EARTH_RADIUS};

/// Provides [rhumb line] (a.k.a. loxodrome) geometry operations. A rhumb line appears as a straight
/// line on a Mercator projection map.
///
/// Rhumb distance is measured in meters.
///
/// # References
///
/// The distance, destination, and bearing implementations are adapted in part
/// from their equivalents in [Turf.js](https://turfjs.org/), which in turn are
/// adapted from the Movable Type
/// [spherical geodesy tools](https://www.movable-type.co.uk/scripts/latlong.html).
///
/// Turf.js is copyright its authors and the geodesy tools are copyright Chris
/// Veness; both are available under an MIT license.
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
pub struct Rhumb;

impl<F: CoordFloat + FromPrimitive> Bearing<F> for Rhumb {
    /// Returns the bearing from `origin` to `destination` in degrees along a [rhumb line].
    ///
    /// # Units
    ///
    /// - `origin`, `destination`: Points where x/y are lon/lat degree coordinates
    /// - returns: degrees, where: North: 0°, East: 90°, South: 180°, West: 270°/
    ///
    /// # Examples
    ///
    /// ```
    /// # use approx::assert_relative_eq;
    /// use geo::{Rhumb, Bearing};
    /// use geo::Point;
    ///
    /// let origin = Point::new(9.177789688110352, 48.776781529534965);
    /// let destination = Point::new(9.274348757829898, 48.84037308229984);
    /// let bearing = Rhumb::bearing(origin, destination);
    /// assert_relative_eq!(bearing, 45., epsilon = 1.0e-6);
    /// ```
    ///
    /// # References
    ///
    /// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
    ///
    /// Bullock, R.: Great Circle Distances and Bearings Between Two Locations, 2007.
    /// (<https://dtcenter.org/met/users/docs/write_ups/gc_simple.pdf>)
    fn bearing(origin: Point<F>, destination: Point<F>) -> F {
        let three_sixty = F::from(360.0f64).unwrap();

        let calculations = RhumbCalculations::new(&origin, &destination);
        (calculations.theta().to_degrees() + three_sixty) % three_sixty
    }
}

impl<F: CoordFloat + FromPrimitive> Destination<F> for Rhumb {
    /// Returns a new point having travelled the `distance` along a [rhumb line]
    /// from the `origin` point with the given `bearing`.
    ///
    /// # Units
    ///
    /// - `origin`: Point where x/y are lon/lat degree coordinates
    /// - `bearing`: degrees, where: North: 0°, East: 90°, South: 180°, West: 270°
    /// - `distance`: meters
    /// - returns: Point where x/y are lon/lat degree coordinates
    ///
    /// # Examples
    ///
    /// ```
    /// # use approx::assert_relative_eq;
    /// use geo::{Rhumb, Destination};
    /// use geo::Point;
    ///
    /// let p_1 = Point::new(9.177789688110352, 48.776781529534965);
    /// let p_2 = Rhumb::destination(p_1, 45., 10000.);
    /// assert_relative_eq!(p_2, Point::new(9.274348757829898, 48.84037308229984))
    /// ```
    ///
    /// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
    fn destination(origin: Point<F>, bearing: F, distance: F) -> Point<F> {
        let delta = distance / F::from(MEAN_EARTH_RADIUS).unwrap(); // angular distance in radians
        let lambda1 = origin.x().to_radians();
        let phi1 = origin.y().to_radians();
        let theta = bearing.to_radians();

        crate::algorithm::rhumb::calculate_destination(delta, lambda1, phi1, theta)
    }
}

impl<F: CoordFloat + FromPrimitive> Distance<F, Point<F>, Point<F>> for Rhumb {
    /// Determine the distance along the [rhumb line] between two points.
    ///
    /// # Units
    ///
    /// - `origin`, `destination`: Points where x/y are lon/lat degree coordinates
    /// - returns: meters
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::{Rhumb, Distance};
    /// use geo::point;
    ///
    /// // New York City
    /// let p1 = point!(x: -74.006f64, y: 40.7128);
    ///
    /// // London
    /// let p2 = point!(x: -0.1278, y: 51.5074);
    ///
    /// let distance = Rhumb::distance(p1, p2);
    ///
    /// assert_eq!(
    ///     5_794_129., // meters
    ///     distance.round()
    /// );
    /// ```
    ///
    /// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
    fn distance(origin: Point<F>, destination: Point<F>) -> F {
        let calculations = RhumbCalculations::new(&origin, &destination);
        calculations.delta() * F::from(MEAN_EARTH_RADIUS).unwrap()
    }
}

/// Interpolate Point(s) along a [rhumb line].
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
impl<F: CoordFloat + FromPrimitive> InterpolatePoint<F> for Rhumb {
    /// Returns a new Point along a [rhumb line] between two existing points.
    ///
    /// # Examples
    ///
    /// ```
    /// # use approx::assert_relative_eq;
    /// use geo::{Rhumb, InterpolatePoint};
    /// use geo::Point;
    ///
    /// let p1 = Point::new(10.0, 20.0);
    /// let p2 = Point::new(125.0, 25.0);
    ///
    /// let closer_to_p1 = Rhumb::point_at_distance_between(p1, p2, 100_000.0);
    /// assert_relative_eq!(closer_to_p1, Point::new(10.96, 20.04), epsilon = 1.0e-2);
    ///
    /// let closer_to_p2 = Rhumb::point_at_distance_between(p1, p2, 10_000_000.0);
    /// assert_relative_eq!(closer_to_p2, Point::new(107.00, 24.23), epsilon = 1.0e-2);
    /// ```
    ///
    /// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
    fn point_at_distance_between(start: Point<F>, end: Point<F>, meters_from_start: F) -> Point<F> {
        let bearing = Self::bearing(start, end);
        Self::destination(start, bearing, meters_from_start)
    }

    /// Returns a new Point along a [rhumb line] between two existing points.
    ///
    /// # Examples
    ///
    /// ```
    /// # use approx::assert_relative_eq;
    /// use geo::{Rhumb, InterpolatePoint};
    /// use geo::Point;
    ///
    /// let p1 = Point::new(10.0, 20.0);
    /// let p2 = Point::new(125.0, 25.0);
    ///
    /// let closer_to_p1 = Rhumb::point_at_ratio_between(p1, p2, 0.1);
    /// assert_relative_eq!(closer_to_p1, Point::new(21.32, 20.50), epsilon = 1.0e-2);
    ///
    /// let closer_to_p2 = Rhumb::point_at_ratio_between(p1, p2, 0.9);
    /// assert_relative_eq!(closer_to_p2, Point::new(113.31, 24.50), epsilon = 1.0e-2);
    ///
    /// let midpoint = Rhumb::point_at_ratio_between(p1, p2, 0.5);
    /// assert_relative_eq!(midpoint, Point::new(66.98, 22.50), epsilon = 1.0e-2);
    /// ```
    ///
    /// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
    fn point_at_ratio_between(start: Point<F>, end: Point<F>, ratio_from_start: F) -> Point<F> {
        let calculations = RhumbCalculations::new(&start, &end);
        calculations.intermediate(ratio_from_start)
    }

    /// Interpolates `Point`s along a [rhumb line] between `start` and `end`.
    ///
    /// As many points as necessary will be added such that the distance between points
    /// never exceeds `max_distance`. If the distance between start and end is less than
    /// `max_distance`, no additional points will be included in the output.
    ///
    /// `include_ends`: Should the start and end points be included in the output?
    ///
    /// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
    fn points_along_line(
        start: Point<F>,
        end: Point<F>,
        max_distance: F,
        include_ends: bool,
    ) -> impl Iterator<Item = Point<F>> {
        let max_delta = max_distance / F::from(MEAN_EARTH_RADIUS).unwrap();
        let calculations = RhumbCalculations::new(&start, &end);
        calculations
            .intermediate_fill(max_delta, include_ends)
            .into_iter()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    type MetricSpace = Rhumb;

    mod bearing {
        use super::*;

        #[test]
        fn north() {
            let origin = Point::new(0.0, 0.0);
            let destination = Point::new(0.0, 1.0);
            assert_relative_eq!(0.0, MetricSpace::bearing(origin, destination));
        }

        #[test]
        fn east() {
            let origin = Point::new(0.0, 0.0);
            let destination = Point::new(1.0, 0.0);
            assert_relative_eq!(90.0, MetricSpace::bearing(origin, destination));
        }

        #[test]
        fn south() {
            let origin = Point::new(0.0, 0.0);
            let destination = Point::new(0.0, -1.0);
            assert_relative_eq!(180.0, MetricSpace::bearing(origin, destination));
        }

        #[test]
        fn west() {
            let origin = Point::new(0.0, 0.0);
            let destination = Point::new(-1.0, 0.0);
            assert_relative_eq!(270.0, MetricSpace::bearing(origin, destination));
        }
    }

    mod destination {
        use super::*;

        #[test]
        fn north() {
            let origin = Point::new(0.0, 0.0);
            let bearing = 0.0;
            assert_relative_eq!(
                Point::new(0.0, 0.899320363724538),
                MetricSpace::destination(origin, bearing, 100_000.0)
            );
        }

        #[test]
        fn east() {
            let origin = Point::new(0.0, 0.0);
            let bearing = 90.0;
            assert_relative_eq!(
                Point::new(0.8993203637245415, 5.506522912913066e-17),
                MetricSpace::destination(origin, bearing, 100_000.0)
            );
        }

        #[test]
        fn south() {
            let origin = Point::new(0.0, 0.0);
            let bearing = 180.0;
            assert_relative_eq!(
                Point::new(0.0, -0.899320363724538),
                MetricSpace::destination(origin, bearing, 100_000.0)
            );
        }

        #[test]
        fn west() {
            let origin = Point::new(0.0, 0.0);
            let bearing = 270.0;
            assert_relative_eq!(
                Point::new(-0.8993203637245415, -1.6520247072649334e-16),
                MetricSpace::destination(origin, bearing, 100_000.0)
            );
        }
    }

    mod distance {
        use super::*;

        #[test]
        fn new_york_to_london() {
            let new_york_city = Point::new(-74.006, 40.7128);
            let london = Point::new(-0.1278, 51.5074);

            let distance: f64 = MetricSpace::distance(new_york_city, london);

            assert_relative_eq!(
                5_794_129., // meters
                distance.round()
            );
        }
    }

    mod interpolate_point {
        use super::*;

        #[test]
        fn point_at_ratio_between_midpoint() {
            let start = Point::new(10.0, 20.0);
            let end = Point::new(125.0, 25.0);
            let midpoint = MetricSpace::point_at_ratio_between(start, end, 0.5);
            assert_relative_eq!(
                midpoint,
                Point::new(66.98011173721943, 22.500000000000007),
                epsilon = 1.0e-10
            );
        }
        #[test]
        fn points_along_line_with_endpoints() {
            let start = Point::new(10.0, 20.0);
            let end = Point::new(125.0, 25.0);
            let max_dist = 1000000.0; // meters
            let route =
                MetricSpace::points_along_line(start, end, max_dist, true).collect::<Vec<_>>();
            assert_eq!(route.len(), 13);
            assert_eq!(route[0], start);
            assert_eq!(route.last().unwrap(), &end);
            assert_relative_eq!(
                route[1],
                Point::new(19.43061818495096, 20.416666666666668),
                epsilon = 1.0e-10
            );
        }
        #[test]
        fn points_along_line_without_endpoints() {
            let start = Point::new(10.0, 20.0);
            let end = Point::new(125.0, 25.0);
            let max_dist = 1000000.0; // meters
            let route =
                MetricSpace::points_along_line(start, end, max_dist, false).collect::<Vec<_>>();
            assert_eq!(route.len(), 11);
            assert_relative_eq!(
                route[0],
                Point::new(19.43061818495096, 20.416666666666668),
                epsilon = 1.0e-10
            );
        }
    }
}