geo/algorithm/line_measures/metric_spaces/rhumb.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
use num_traits::FromPrimitive;
use super::super::{Bearing, Destination, Distance, InterpolatePoint};
use crate::rhumb::RhumbCalculations;
use crate::{CoordFloat, Point, MEAN_EARTH_RADIUS};
/// Provides [rhumb line] (a.k.a. loxodrome) geometry operations. A rhumb line appears as a straight
/// line on a Mercator projection map.
///
/// Rhumb distance is measured in meters.
///
/// # References
///
/// The distance, destination, and bearing implementations are adapted in part
/// from their equivalents in [Turf.js](https://turfjs.org/), which in turn are
/// adapted from the Movable Type
/// [spherical geodesy tools](https://www.movable-type.co.uk/scripts/latlong.html).
///
/// Turf.js is copyright its authors and the geodesy tools are copyright Chris
/// Veness; both are available under an MIT license.
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
pub struct Rhumb;
impl<F: CoordFloat + FromPrimitive> Bearing<F> for Rhumb {
/// Returns the bearing from `origin` to `destination` in degrees along a [rhumb line].
///
/// # Units
///
/// - `origin`, `destination`: Points where x/y are lon/lat degree coordinates
/// - returns: degrees, where: North: 0°, East: 90°, South: 180°, West: 270°/
///
/// # Examples
///
/// ```
/// # use approx::assert_relative_eq;
/// use geo::{Rhumb, Bearing};
/// use geo::Point;
///
/// let origin = Point::new(9.177789688110352, 48.776781529534965);
/// let destination = Point::new(9.274348757829898, 48.84037308229984);
/// let bearing = Rhumb::bearing(origin, destination);
/// assert_relative_eq!(bearing, 45., epsilon = 1.0e-6);
/// ```
///
/// # References
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
///
/// Bullock, R.: Great Circle Distances and Bearings Between Two Locations, 2007.
/// (<https://dtcenter.org/met/users/docs/write_ups/gc_simple.pdf>)
fn bearing(origin: Point<F>, destination: Point<F>) -> F {
let three_sixty = F::from(360.0f64).unwrap();
let calculations = RhumbCalculations::new(&origin, &destination);
(calculations.theta().to_degrees() + three_sixty) % three_sixty
}
}
impl<F: CoordFloat + FromPrimitive> Destination<F> for Rhumb {
/// Returns a new point having travelled the `distance` along a [rhumb line]
/// from the `origin` point with the given `bearing`.
///
/// # Units
///
/// - `origin`: Point where x/y are lon/lat degree coordinates
/// - `bearing`: degrees, where: North: 0°, East: 90°, South: 180°, West: 270°
/// - `distance`: meters
/// - returns: Point where x/y are lon/lat degree coordinates
///
/// # Examples
///
/// ```
/// # use approx::assert_relative_eq;
/// use geo::{Rhumb, Destination};
/// use geo::Point;
///
/// let p_1 = Point::new(9.177789688110352, 48.776781529534965);
/// let p_2 = Rhumb::destination(p_1, 45., 10000.);
/// assert_relative_eq!(p_2, Point::new(9.274348757829898, 48.84037308229984))
/// ```
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
fn destination(origin: Point<F>, bearing: F, distance: F) -> Point<F> {
let delta = distance / F::from(MEAN_EARTH_RADIUS).unwrap(); // angular distance in radians
let lambda1 = origin.x().to_radians();
let phi1 = origin.y().to_radians();
let theta = bearing.to_radians();
crate::algorithm::rhumb::calculate_destination(delta, lambda1, phi1, theta)
}
}
impl<F: CoordFloat + FromPrimitive> Distance<F, Point<F>, Point<F>> for Rhumb {
/// Determine the distance along the [rhumb line] between two points.
///
/// # Units
///
/// - `origin`, `destination`: Points where x/y are lon/lat degree coordinates
/// - returns: meters
///
/// # Examples
///
/// ```
/// use geo::{Rhumb, Distance};
/// use geo::point;
///
/// // New York City
/// let p1 = point!(x: -74.006f64, y: 40.7128);
///
/// // London
/// let p2 = point!(x: -0.1278, y: 51.5074);
///
/// let distance = Rhumb::distance(p1, p2);
///
/// assert_eq!(
/// 5_794_129., // meters
/// distance.round()
/// );
/// ```
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
fn distance(origin: Point<F>, destination: Point<F>) -> F {
let calculations = RhumbCalculations::new(&origin, &destination);
calculations.delta() * F::from(MEAN_EARTH_RADIUS).unwrap()
}
}
/// Interpolate Point(s) along a [rhumb line].
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
impl<F: CoordFloat + FromPrimitive> InterpolatePoint<F> for Rhumb {
/// Returns a new Point along a [rhumb line] between two existing points.
///
/// # Examples
///
/// ```
/// # use approx::assert_relative_eq;
/// use geo::{Rhumb, InterpolatePoint};
/// use geo::Point;
///
/// let p1 = Point::new(10.0, 20.0);
/// let p2 = Point::new(125.0, 25.0);
///
/// let closer_to_p1 = Rhumb::point_at_distance_between(p1, p2, 100_000.0);
/// assert_relative_eq!(closer_to_p1, Point::new(10.96, 20.04), epsilon = 1.0e-2);
///
/// let closer_to_p2 = Rhumb::point_at_distance_between(p1, p2, 10_000_000.0);
/// assert_relative_eq!(closer_to_p2, Point::new(107.00, 24.23), epsilon = 1.0e-2);
/// ```
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
fn point_at_distance_between(start: Point<F>, end: Point<F>, meters_from_start: F) -> Point<F> {
let bearing = Self::bearing(start, end);
Self::destination(start, bearing, meters_from_start)
}
/// Returns a new Point along a [rhumb line] between two existing points.
///
/// # Examples
///
/// ```
/// # use approx::assert_relative_eq;
/// use geo::{Rhumb, InterpolatePoint};
/// use geo::Point;
///
/// let p1 = Point::new(10.0, 20.0);
/// let p2 = Point::new(125.0, 25.0);
///
/// let closer_to_p1 = Rhumb::point_at_ratio_between(p1, p2, 0.1);
/// assert_relative_eq!(closer_to_p1, Point::new(21.32, 20.50), epsilon = 1.0e-2);
///
/// let closer_to_p2 = Rhumb::point_at_ratio_between(p1, p2, 0.9);
/// assert_relative_eq!(closer_to_p2, Point::new(113.31, 24.50), epsilon = 1.0e-2);
///
/// let midpoint = Rhumb::point_at_ratio_between(p1, p2, 0.5);
/// assert_relative_eq!(midpoint, Point::new(66.98, 22.50), epsilon = 1.0e-2);
/// ```
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
fn point_at_ratio_between(start: Point<F>, end: Point<F>, ratio_from_start: F) -> Point<F> {
let calculations = RhumbCalculations::new(&start, &end);
calculations.intermediate(ratio_from_start)
}
/// Interpolates `Point`s along a [rhumb line] between `start` and `end`.
///
/// As many points as necessary will be added such that the distance between points
/// never exceeds `max_distance`. If the distance between start and end is less than
/// `max_distance`, no additional points will be included in the output.
///
/// `include_ends`: Should the start and end points be included in the output?
///
/// [rhumb line]: https://en.wikipedia.org/wiki/Rhumb_line
fn points_along_line(
start: Point<F>,
end: Point<F>,
max_distance: F,
include_ends: bool,
) -> impl Iterator<Item = Point<F>> {
let max_delta = max_distance / F::from(MEAN_EARTH_RADIUS).unwrap();
let calculations = RhumbCalculations::new(&start, &end);
calculations
.intermediate_fill(max_delta, include_ends)
.into_iter()
}
}
#[cfg(test)]
mod tests {
use super::*;
type MetricSpace = Rhumb;
mod bearing {
use super::*;
#[test]
fn north() {
let origin = Point::new(0.0, 0.0);
let destination = Point::new(0.0, 1.0);
assert_relative_eq!(0.0, MetricSpace::bearing(origin, destination));
}
#[test]
fn east() {
let origin = Point::new(0.0, 0.0);
let destination = Point::new(1.0, 0.0);
assert_relative_eq!(90.0, MetricSpace::bearing(origin, destination));
}
#[test]
fn south() {
let origin = Point::new(0.0, 0.0);
let destination = Point::new(0.0, -1.0);
assert_relative_eq!(180.0, MetricSpace::bearing(origin, destination));
}
#[test]
fn west() {
let origin = Point::new(0.0, 0.0);
let destination = Point::new(-1.0, 0.0);
assert_relative_eq!(270.0, MetricSpace::bearing(origin, destination));
}
}
mod destination {
use super::*;
#[test]
fn north() {
let origin = Point::new(0.0, 0.0);
let bearing = 0.0;
assert_relative_eq!(
Point::new(0.0, 0.899320363724538),
MetricSpace::destination(origin, bearing, 100_000.0)
);
}
#[test]
fn east() {
let origin = Point::new(0.0, 0.0);
let bearing = 90.0;
assert_relative_eq!(
Point::new(0.8993203637245415, 5.506522912913066e-17),
MetricSpace::destination(origin, bearing, 100_000.0)
);
}
#[test]
fn south() {
let origin = Point::new(0.0, 0.0);
let bearing = 180.0;
assert_relative_eq!(
Point::new(0.0, -0.899320363724538),
MetricSpace::destination(origin, bearing, 100_000.0)
);
}
#[test]
fn west() {
let origin = Point::new(0.0, 0.0);
let bearing = 270.0;
assert_relative_eq!(
Point::new(-0.8993203637245415, -1.6520247072649334e-16),
MetricSpace::destination(origin, bearing, 100_000.0)
);
}
}
mod distance {
use super::*;
#[test]
fn new_york_to_london() {
let new_york_city = Point::new(-74.006, 40.7128);
let london = Point::new(-0.1278, 51.5074);
let distance: f64 = MetricSpace::distance(new_york_city, london);
assert_relative_eq!(
5_794_129., // meters
distance.round()
);
}
}
mod interpolate_point {
use super::*;
#[test]
fn point_at_ratio_between_midpoint() {
let start = Point::new(10.0, 20.0);
let end = Point::new(125.0, 25.0);
let midpoint = MetricSpace::point_at_ratio_between(start, end, 0.5);
assert_relative_eq!(
midpoint,
Point::new(66.98011173721943, 22.500000000000007),
epsilon = 1.0e-10
);
}
#[test]
fn points_along_line_with_endpoints() {
let start = Point::new(10.0, 20.0);
let end = Point::new(125.0, 25.0);
let max_dist = 1000000.0; // meters
let route =
MetricSpace::points_along_line(start, end, max_dist, true).collect::<Vec<_>>();
assert_eq!(route.len(), 13);
assert_eq!(route[0], start);
assert_eq!(route.last().unwrap(), &end);
assert_relative_eq!(
route[1],
Point::new(19.43061818495096, 20.416666666666668),
epsilon = 1.0e-10
);
}
#[test]
fn points_along_line_without_endpoints() {
let start = Point::new(10.0, 20.0);
let end = Point::new(125.0, 25.0);
let max_dist = 1000000.0; // meters
let route =
MetricSpace::points_along_line(start, end, max_dist, false).collect::<Vec<_>>();
assert_eq!(route.len(), 11);
assert_relative_eq!(
route[0],
Point::new(19.43061818495096, 20.416666666666668),
epsilon = 1.0e-10
);
}
}
}