1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
//! Graphics pipeline descriptor. use super::input_assembler::{AttributeDesc, InputAssemblerDesc, VertexBufferDesc}; use super::output_merger::{ColorBlendDesc, DepthStencilDesc, Face}; use super::{BasePipeline, EntryPoint, PipelineCreationFlags, State}; use crate::{image, pass, Backend, Primitive}; use std::ops::Range; /// A simple struct describing a rect with integer coordinates. #[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct Rect { /// X position. pub x: i16, /// Y position. pub y: i16, /// Width. pub w: i16, /// Height. pub h: i16, } /// A simple struct describing a rect with integer coordinates. #[derive(Clone, Debug, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct ClearRect { /// 2D region. pub rect: Rect, /// Layer range. pub layers: Range<image::Layer>, } /// A viewport, generally equating to a window on a display. #[derive(Clone, Debug, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct Viewport { /// The viewport boundaries. pub rect: Rect, /// The viewport depth limits. pub depth: Range<f32>, } /// A single RGBA float color. pub type ColorValue = [f32; 4]; /// A single depth value from a depth buffer. pub type DepthValue = f32; /// A single value from a stencil buffer. pub type StencilValue = u32; /// A complete set of shaders to build a graphics pipeline. /// /// All except the vertex shader are optional; omitting them /// passes through the inputs without change. /// /// If a fragment shader is omitted, the results of fragment /// processing are undefined. Specifically, any fragment color /// outputs are considered to have undefined values, and the /// fragment depth is considered to be unmodified. This can /// be useful for depth-only rendering. #[derive(Clone, Debug)] pub struct GraphicsShaderSet<'a, B: Backend> { /// A shader that outputs a vertex in a model. pub vertex: EntryPoint<'a, B>, /// A hull shader takes in an input patch (values representing /// a small portion of a shape, which may be actual geometry or may /// be parameters for creating geometry) and produces one or more /// output patches. pub hull: Option<EntryPoint<'a, B>>, /// A shader that takes in domains produced from a hull shader's output /// patches and computes actual vertex positions. pub domain: Option<EntryPoint<'a, B>>, /// A shader that takes given input vertexes and outputs zero /// or more output vertexes. pub geometry: Option<EntryPoint<'a, B>>, /// A shader that outputs a value for a fragment. /// Usually this value is a color that is then displayed as a /// pixel on a screen. pub fragment: Option<EntryPoint<'a, B>>, } /// Baked-in pipeline states. #[derive(Clone, Debug, Default, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct BakedStates { /// Static viewport. TODO: multiple viewports pub viewport: Option<Viewport>, /// Static scissor. TODO: multiple scissors pub scissor: Option<Rect>, /// Static blend constant color. pub blend_color: Option<ColorValue>, /// Static depth bounds. pub depth_bounds: Option<Range<f32>>, } /// A description of all the settings that can be altered /// when creating a graphics pipeline. #[derive(Debug)] pub struct GraphicsPipelineDesc<'a, B: Backend> { /// A set of graphics shaders to use for the pipeline. pub shaders: GraphicsShaderSet<'a, B>, /// Rasterizer setup pub rasterizer: Rasterizer, /// Vertex buffers (IA) pub vertex_buffers: Vec<VertexBufferDesc>, /// Vertex attributes (IA) pub attributes: Vec<AttributeDesc>, /// Input assembler attributes, describes how /// vertices are assembled into primitives (such as triangles). pub input_assembler: InputAssemblerDesc, /// Description of how blend operations should be performed. pub blender: BlendDesc, /// Depth stencil (DSV) pub depth_stencil: DepthStencilDesc, /// Multisampling. pub multisampling: Option<Multisampling>, /// Static pipeline states. pub baked_states: BakedStates, /// Pipeline layout. pub layout: &'a B::PipelineLayout, /// Subpass in which the pipeline can be executed. pub subpass: pass::Subpass<'a, B>, /// Options that may be set to alter pipeline properties. pub flags: PipelineCreationFlags, /// The parent pipeline, which may be /// `BasePipeline::None`. pub parent: BasePipeline<'a, B::GraphicsPipeline>, } impl<'a, B: Backend> GraphicsPipelineDesc<'a, B> { /// Create a new empty PSO descriptor. pub fn new( shaders: GraphicsShaderSet<'a, B>, primitive: Primitive, rasterizer: Rasterizer, layout: &'a B::PipelineLayout, subpass: pass::Subpass<'a, B>, ) -> Self { GraphicsPipelineDesc { shaders, rasterizer, vertex_buffers: Vec::new(), attributes: Vec::new(), input_assembler: InputAssemblerDesc::new(primitive), blender: BlendDesc::default(), depth_stencil: DepthStencilDesc::default(), multisampling: None, baked_states: BakedStates::default(), layout, subpass, flags: PipelineCreationFlags::empty(), parent: BasePipeline::None, } } } /// Methods for rasterizing polygons, ie, turning the mesh /// into a raster image. #[derive(Clone, Copy, Debug, PartialEq, PartialOrd)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub enum PolygonMode { /// Rasterize as a point. Point, /// Rasterize as a line with the given width. Line(State<f32>), /// Rasterize as a face. Fill, } /// The front face winding order of a set of vertices. This is /// the order of vertexes that define which side of a face is /// the "front". #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub enum FrontFace { /// Clockwise winding order. Clockwise, /// Counter-clockwise winding order. CounterClockwise, } /// A depth bias allows changing the produced depth values /// for fragments slightly but consistently. This permits /// drawing of multiple polygons in the same plane without /// Z-fighting, such as when trying to draw shadows on a wall. /// /// For details of the algorithm and equations, see /// [the Vulkan spec](https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html#primsrast-depthbias). #[derive(Copy, Clone, Debug, Default, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct DepthBias { /// A constant depth value added to each fragment. pub const_factor: f32, /// The minimum or maximum depth bias of a fragment. pub clamp: f32, /// A constant bias applied to the fragment's slope. pub slope_factor: f32, } /// Rasterization state. #[derive(Copy, Clone, Debug, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct Rasterizer { /// How to rasterize this primitive. pub polygon_mode: PolygonMode, /// Which face should be culled. pub cull_face: Face, /// Which vertex winding is considered to be the front face for culling. pub front_face: FrontFace, /// Whether or not to enable depth clamping; when enabled, instead of /// fragments being omitted when they are outside the bounds of the z-plane, /// they will be clamped to the min or max z value. pub depth_clamping: bool, /// What depth bias, if any, to use for the drawn primitives. pub depth_bias: Option<State<DepthBias>>, /// Controls how triangles will be rasterized depending on their overlap with pixels. pub conservative: bool, } impl Rasterizer { /// Simple polygon-filling rasterizer state pub const FILL: Self = Rasterizer { polygon_mode: PolygonMode::Fill, cull_face: Face::NONE, front_face: FrontFace::CounterClockwise, depth_clamping: false, depth_bias: None, conservative: false, }; } /// A description of an equation for how to blend transparent, overlapping fragments. #[derive(Clone, Debug, Default, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct BlendDesc { /// The logic operation to apply to the blending equation, if any. pub logic_op: Option<LogicOp>, /// Which color targets to apply the blending operation to. pub targets: Vec<ColorBlendDesc>, } /// Logic operations used for specifying blend equations. #[derive(Clone, Debug, Eq, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[allow(missing_docs)] pub enum LogicOp { Clear = 0, And = 1, AndReverse = 2, Copy = 3, AndInverted = 4, NoOp = 5, Xor = 6, Or = 7, Nor = 8, Equivalent = 9, Invert = 10, OrReverse = 11, CopyInverted = 12, OrInverted = 13, Nand = 14, Set = 15, } /// pub type SampleMask = u64; /// #[derive(Clone, Debug, PartialEq)] pub struct Multisampling { /// pub rasterization_samples: image::NumSamples, /// pub sample_shading: Option<f32>, /// pub sample_mask: SampleMask, /// Toggles alpha-to-coverage multisampling, which can produce nicer edges /// when many partially-transparent polygons are overlapping. /// See [here]( https://msdn.microsoft.com/en-us/library/windows/desktop/bb205072(v=vs.85).aspx#Alpha_To_Coverage) for a full description. pub alpha_coverage: bool, /// pub alpha_to_one: bool, }