1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
//! Run computations in parallel, or not based the `parallel` feature toggle.
//!
//! ### `in_parallel`(…)
//!
//! The [`in_parallel(…)`][in_parallel()] is the typical fan-out-fan-in mode of parallelism, with thread local storage
//! made available to a `consume(…)` function to process input. The result is sent to the [`Reduce`] running in the calling
//! thread to aggregate the results into a single output, which is returned by [`in_parallel()`].
//!
//! Interruptions can be achieved by letting the reducers [`feed(…)`][Reduce::feed()] method fail.
//!
//! It gets a boost in usability as it allows threads to borrow variables from the stack, most commonly the repository itself
//! or the data to work on.
//!
//! This mode of operation doesn't lend itself perfectly to being wrapped for `async` as it appears like a single long-running
//! operation which runs as fast as possible, which is cancellable only by merit of stopping the input or stopping the output
//! aggregation.
//!
//! ### `reduce::Stepwise`
//!
//! The [`Stepwise`][reduce::Stepwise] iterator works exactly as [`in_parallel()`] except that the processing of the output produced by
//! `consume(I, &mut State) -> O` is made accessible by the `Iterator` trait's `next()` method. As produced work is not
//! buffered, the owner of the iterator controls the progress made.
//!
//! Getting the final output of the [`Reduce`] is achieved through the consuming [`Stepwise::finalize()`][reduce::Stepwise::finalize()] method, which
//! is functionally equivalent to calling [`in_parallel()`].
//!
//! In an `async` context this means that progress is only made each time `next()` is called on the iterator, while merely dropping
//! the iterator will wind down the computation without any result.
//!
//! #### Maintaining Safety
//!
//! In order to assure that threads don't outlive the data they borrow because their handles are leaked, we enforce
//! the `'static` lifetime for its inputs, making it less intuitive to use. It is, however, possible to produce
//! suitable input iterators as long as they can hold something on the heap.
#[cfg(feature = "parallel")]
mod in_parallel;
#[cfg(feature = "parallel")]
pub use in_parallel::{
build_thread, in_parallel, in_parallel_with_finalize, in_parallel_with_slice, join, threads, Scope,
};
mod serial;
#[cfg(not(feature = "parallel"))]
pub use serial::{build_thread, in_parallel, in_parallel_with_finalize, in_parallel_with_slice, join, threads, Scope};
mod in_order;
pub use in_order::{InOrderIter, SequenceId};
mod eager_iter;
pub use eager_iter::{EagerIter, EagerIterIf};
/// A no-op returning the input _(`desired_chunk_size`, `Some(thread_limit)`, `thread_limit)_ used
/// when the `parallel` feature toggle is not set.
#[cfg(not(feature = "parallel"))]
pub fn optimize_chunk_size_and_thread_limit(
desired_chunk_size: usize,
_num_items: Option<usize>,
thread_limit: Option<usize>,
_available_threads: Option<usize>,
) -> (usize, Option<usize>, usize) {
(desired_chunk_size, thread_limit, num_threads(thread_limit))
}
/// Return the 'optimal' _(`size of chunks`, `amount of threads as Option`, `amount of threads`)_ to use in [`in_parallel()`] for the given
/// `desired_chunk_size`, `num_items`, `thread_limit` and `available_threads`.
///
/// * `desired_chunk_size` is the amount of items per chunk you think should be used.
/// * `num_items` is the total amount of items in the iteration, if `Some`.
/// Otherwise this knowledge will not affect the output of this function.
/// * `thread_limit` is the amount of threads to use at most, if `Some`.
/// Otherwise this knowledge will not affect the output of this function.
/// * `available_threads` is the total amount of threads available, if `Some`.
/// Otherwise the actual amount of available threads is determined by querying the system.
///
/// `Note` that this implementation is available only if the `parallel` feature toggle is set.
#[cfg(feature = "parallel")]
pub fn optimize_chunk_size_and_thread_limit(
desired_chunk_size: usize,
num_items: Option<usize>,
thread_limit: Option<usize>,
available_threads: Option<usize>,
) -> (usize, Option<usize>, usize) {
let available_threads =
available_threads.unwrap_or_else(|| std::thread::available_parallelism().map_or(1, Into::into));
let available_threads = thread_limit.map_or(available_threads, |l| if l == 0 { available_threads } else { l });
let (lower, upper) = (50, 1000);
let (chunk_size, thread_limit) = num_items.map_or(
{
let chunk_size = if available_threads == 1 {
desired_chunk_size
} else if desired_chunk_size < lower {
lower
} else {
desired_chunk_size.min(upper)
};
(chunk_size, available_threads)
},
|num_items| {
let desired_chunks_per_thread_at_least = 2;
let items = num_items;
let chunk_size = (items / (available_threads * desired_chunks_per_thread_at_least)).clamp(1, upper);
let num_chunks = items / chunk_size;
let thread_limit = if num_chunks <= available_threads {
(num_chunks / desired_chunks_per_thread_at_least).max(1)
} else {
available_threads
};
(chunk_size, thread_limit)
},
);
(chunk_size, Some(thread_limit), thread_limit)
}
/// Always returns 1, available when the `parallel` feature toggle is unset.
#[cfg(not(feature = "parallel"))]
pub fn num_threads(_thread_limit: Option<usize>) -> usize {
1
}
/// Returns the amount of threads the system can effectively use as the amount of its logical cores.
///
/// Only available with the `parallel` feature toggle set.
#[cfg(feature = "parallel")]
pub fn num_threads(thread_limit: Option<usize>) -> usize {
let logical_cores = std::thread::available_parallelism().map_or(1, Into::into);
thread_limit.map_or(logical_cores, |l| if l == 0 { logical_cores } else { l })
}
/// Run [`in_parallel()`] only if the given `condition()` returns true when eagerly evaluated.
///
/// For parameters, see the documentation of [`in_parallel()`]
#[cfg(feature = "parallel")]
pub fn in_parallel_if<I, S, O, R>(
condition: impl FnOnce() -> bool,
input: impl Iterator<Item = I> + Send,
thread_limit: Option<usize>,
new_thread_state: impl FnOnce(usize) -> S + Send + Clone,
consume: impl FnMut(I, &mut S) -> O + Send + Clone,
reducer: R,
) -> Result<<R as Reduce>::Output, <R as Reduce>::Error>
where
R: Reduce<Input = O>,
I: Send,
O: Send,
{
if num_threads(thread_limit) > 1 && condition() {
in_parallel(input, thread_limit, new_thread_state, consume, reducer)
} else {
serial::in_parallel(input, thread_limit, new_thread_state, consume, reducer)
}
}
/// Run [`in_parallel()`] only if the given `condition()` returns true when eagerly evaluated.
///
/// For parameters, see the documentation of [`in_parallel()`]
///
/// Note that the non-parallel version is equivalent to [`in_parallel()`].
#[cfg(not(feature = "parallel"))]
pub fn in_parallel_if<I, S, O, R>(
_condition: impl FnOnce() -> bool,
input: impl Iterator<Item = I>,
thread_limit: Option<usize>,
new_thread_state: impl FnOnce(usize) -> S,
consume: impl FnMut(I, &mut S) -> O,
reducer: R,
) -> Result<<R as Reduce>::Output, <R as Reduce>::Error>
where
R: Reduce<Input = O>,
I: Send,
O: Send,
{
serial::in_parallel(input, thread_limit, new_thread_state, consume, reducer)
}
///
#[allow(clippy::empty_docs)]
pub mod reduce;
pub use reduce::Reduce;