1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
use std::sync::atomic::{AtomicBool, AtomicIsize, AtomicUsize, Ordering};
use crate::parallel::{num_threads, Reduce};
/// A scope to start threads within.
pub type Scope<'scope, 'env> = std::thread::Scope<'scope, 'env>;
/// Runs `left` and `right` in parallel, returning their output when both are done.
pub fn join<O1: Send, O2: Send>(left: impl FnOnce() -> O1 + Send, right: impl FnOnce() -> O2 + Send) -> (O1, O2) {
std::thread::scope(|s| {
let left = std::thread::Builder::new()
.name("gitoxide.join.left".into())
.spawn_scoped(s, left)
.expect("valid name");
let right = std::thread::Builder::new()
.name("gitoxide.join.right".into())
.spawn_scoped(s, right)
.expect("valid name");
(left.join().unwrap(), right.join().unwrap())
})
}
/// Runs `f` with a scope to be used for spawning threads that will not outlive the function call.
/// That way it's possible to handle threads without needing the 'static lifetime for data they interact with.
///
/// Note that the threads should not rely on actual parallelism as threading might be turned off entirely, hence should not
/// connect each other with channels as deadlock would occur in single-threaded mode.
pub fn threads<'env, F, R>(f: F) -> R
where
F: for<'scope> FnOnce(&'scope std::thread::Scope<'scope, 'env>) -> R,
{
std::thread::scope(f)
}
/// Create a builder for threads which allows them to be spawned into a scope and configured prior to spawning.
pub fn build_thread() -> std::thread::Builder {
std::thread::Builder::new()
}
/// Read items from `input` and `consume` them in multiple threads,
/// whose output output is collected by a `reducer`. Its task is to
/// aggregate these outputs into the final result returned by this function with the benefit of not having to be thread-safe.
///
/// * if `thread_limit` is `Some`, the given amount of threads will be used. If `None`, all logical cores will be used.
/// * `new_thread_state(thread_number) -> State` produces thread-local state once per thread to be based to `consume`
/// * `consume(Item, &mut State) -> Output` produces an output given an input obtained by `input` along with mutable state initially
/// created by `new_thread_state(…)`.
/// * For `reducer`, see the [`Reduce`] trait
pub fn in_parallel<I, S, O, R>(
input: impl Iterator<Item = I> + Send,
thread_limit: Option<usize>,
new_thread_state: impl FnOnce(usize) -> S + Send + Clone,
consume: impl FnMut(I, &mut S) -> O + Send + Clone,
mut reducer: R,
) -> Result<<R as Reduce>::Output, <R as Reduce>::Error>
where
R: Reduce<Input = O>,
I: Send,
O: Send,
{
let num_threads = num_threads(thread_limit);
std::thread::scope(move |s| {
let receive_result = {
let (send_input, receive_input) = crossbeam_channel::bounded::<I>(num_threads);
let (send_result, receive_result) = crossbeam_channel::bounded::<O>(num_threads);
for thread_id in 0..num_threads {
std::thread::Builder::new()
.name(format!("gitoxide.in_parallel.produce.{thread_id}"))
.spawn_scoped(s, {
let send_result = send_result.clone();
let receive_input = receive_input.clone();
let new_thread_state = new_thread_state.clone();
let mut consume = consume.clone();
move || {
let mut state = new_thread_state(thread_id);
for item in receive_input {
if send_result.send(consume(item, &mut state)).is_err() {
break;
}
}
}
})
.expect("valid name");
}
std::thread::Builder::new()
.name("gitoxide.in_parallel.feed".into())
.spawn_scoped(s, move || {
for item in input {
if send_input.send(item).is_err() {
break;
}
}
})
.expect("valid name");
receive_result
};
for item in receive_result {
drop(reducer.feed(item)?);
}
reducer.finalize()
})
}
/// Read items from `input` and `consume` them in multiple threads,
/// whose output output is collected by a `reducer`. Its task is to
/// aggregate these outputs into the final result returned by this function with the benefit of not having to be thread-safe.
/// Caall `finalize` to finish the computation, once per thread, if there was no error sending results earlier.
///
/// * if `thread_limit` is `Some`, the given amount of threads will be used. If `None`, all logical cores will be used.
/// * `new_thread_state(thread_number) -> State` produces thread-local state once per thread to be based to `consume`
/// * `consume(Item, &mut State) -> Output` produces an output given an input obtained by `input` along with mutable state initially
/// created by `new_thread_state(…)`.
/// * `finalize(State) -> Output` is called to potentially process remaining work that was placed in `State`.
/// * For `reducer`, see the [`Reduce`] trait
pub fn in_parallel_with_finalize<I, S, O, R>(
input: impl Iterator<Item = I> + Send,
thread_limit: Option<usize>,
new_thread_state: impl FnOnce(usize) -> S + Send + Clone,
consume: impl FnMut(I, &mut S) -> O + Send + Clone,
finalize: impl FnOnce(S) -> O + Send + Clone,
mut reducer: R,
) -> Result<<R as Reduce>::Output, <R as Reduce>::Error>
where
R: Reduce<Input = O>,
I: Send,
O: Send,
{
let num_threads = num_threads(thread_limit);
std::thread::scope(move |s| {
let receive_result = {
let (send_input, receive_input) = crossbeam_channel::bounded::<I>(num_threads);
let (send_result, receive_result) = crossbeam_channel::bounded::<O>(num_threads);
for thread_id in 0..num_threads {
std::thread::Builder::new()
.name(format!("gitoxide.in_parallel.produce.{thread_id}"))
.spawn_scoped(s, {
let send_result = send_result.clone();
let receive_input = receive_input.clone();
let new_thread_state = new_thread_state.clone();
let mut consume = consume.clone();
let finalize = finalize.clone();
move || {
let mut state = new_thread_state(thread_id);
let mut can_send = true;
for item in receive_input {
if send_result.send(consume(item, &mut state)).is_err() {
can_send = false;
break;
}
}
if can_send {
send_result.send(finalize(state)).ok();
}
}
})
.expect("valid name");
}
std::thread::Builder::new()
.name("gitoxide.in_parallel.feed".into())
.spawn_scoped(s, move || {
for item in input {
if send_input.send(item).is_err() {
break;
}
}
})
.expect("valid name");
receive_result
};
for item in receive_result {
drop(reducer.feed(item)?);
}
reducer.finalize()
})
}
/// An experiment to have fine-grained per-item parallelization with built-in aggregation via thread state.
/// This is only good for operations where near-random access isn't detrimental, so it's not usually great
/// for file-io as it won't make use of sorted inputs well.
/// Note that `periodic` is not guaranteed to be called in case other threads come up first and finish too fast.
/// `consume(&mut item, &mut stat, &Scope, &threads_available, &should_interrupt)` is called for performing the actual computation.
/// Note that `threads_available` should be decremented to start a thread that can steal your own work (as stored in `item`),
/// which allows callees to implement their own work-stealing in case the work is distributed unevenly.
/// Work stealing should only start after having processed at least one item to give all threads naturally operating on the slice
/// some time to start. Starting threads while slice-workers are still starting up would lead to over-allocation of threads,
/// which is why the number of threads left may turn negative. Once threads are started and stopped, be sure to adjust
/// the thread-count accordingly.
// TODO: better docs
pub fn in_parallel_with_slice<I, S, R, E>(
input: &mut [I],
thread_limit: Option<usize>,
new_thread_state: impl FnOnce(usize) -> S + Send + Clone,
consume: impl FnMut(&mut I, &mut S, &AtomicIsize, &AtomicBool) -> Result<(), E> + Send + Clone,
mut periodic: impl FnMut() -> Option<std::time::Duration> + Send,
state_to_rval: impl FnOnce(S) -> R + Send + Clone,
) -> Result<Vec<R>, E>
where
I: Send,
E: Send,
R: Send,
{
let num_threads = num_threads(thread_limit);
let mut results = Vec::with_capacity(num_threads);
let stop_everything = &AtomicBool::default();
let index = &AtomicUsize::default();
let threads_left = &AtomicIsize::new(num_threads as isize);
std::thread::scope({
move |s| {
std::thread::Builder::new()
.name("gitoxide.in_parallel_with_slice.watch-interrupts".into())
.spawn_scoped(s, {
move || loop {
if stop_everything.load(Ordering::Relaxed) {
break;
}
match periodic() {
Some(duration) => std::thread::sleep(duration),
None => {
stop_everything.store(true, Ordering::Relaxed);
break;
}
}
}
})
.expect("valid name");
let input_len = input.len();
struct Input<I>(*mut I)
where
I: Send;
// SAFETY: I is Send, and we only use the pointer for creating new
// pointers (within the input slice) from the threads.
#[allow(unsafe_code)]
unsafe impl<I> Send for Input<I> where I: Send {}
let threads: Vec<_> = (0..num_threads)
.map(|thread_id| {
std::thread::Builder::new()
.name(format!("gitoxide.in_parallel_with_slice.produce.{thread_id}"))
.spawn_scoped(s, {
let new_thread_state = new_thread_state.clone();
let state_to_rval = state_to_rval.clone();
let mut consume = consume.clone();
let input = Input(input.as_mut_ptr());
move || {
let _ = &input;
threads_left.fetch_sub(1, Ordering::SeqCst);
let mut state = new_thread_state(thread_id);
let res = (|| {
while let Ok(input_index) =
index.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
(x < input_len).then_some(x + 1)
})
{
if stop_everything.load(Ordering::Relaxed) {
break;
}
// SAFETY: our atomic counter for `input_index` is only ever incremented, yielding
// each item exactly once.
let item = {
#[allow(unsafe_code)]
unsafe {
&mut *input.0.add(input_index)
}
};
if let Err(err) = consume(item, &mut state, threads_left, stop_everything) {
stop_everything.store(true, Ordering::Relaxed);
return Err(err);
}
}
Ok(state_to_rval(state))
})();
threads_left.fetch_add(1, Ordering::SeqCst);
res
}
})
.expect("valid name")
})
.collect();
for thread in threads {
match thread.join() {
Ok(res) => {
results.push(res?);
}
Err(err) => {
// a panic happened, stop the world gracefully (even though we panic later)
stop_everything.store(true, Ordering::Relaxed);
std::panic::resume_unwind(err);
}
}
}
stop_everything.store(true, Ordering::Relaxed);
Ok(results)
}
})
}