gix_features/parallel/mod.rs
1//! Run computations in parallel, or not based the `parallel` feature toggle.
2//!
3//! ### `in_parallel`(…)
4//!
5//! The [`in_parallel(…)`][in_parallel()] is the typical fan-out-fan-in mode of parallelism, with thread local storage
6//! made available to a `consume(…)` function to process input. The result is sent to the [`Reduce`] running in the calling
7//! thread to aggregate the results into a single output, which is returned by [`in_parallel()`].
8//!
9//! Interruptions can be achieved by letting the reducers [`feed(…)`][Reduce::feed()] method fail.
10//!
11//! It gets a boost in usability as it allows threads to borrow variables from the stack, most commonly the repository itself
12//! or the data to work on.
13//!
14//! This mode of operation doesn't lend itself perfectly to being wrapped for `async` as it appears like a single long-running
15//! operation which runs as fast as possible, which is cancellable only by merit of stopping the input or stopping the output
16//! aggregation.
17//!
18//! ### `reduce::Stepwise`
19//!
20//! The [`Stepwise`][reduce::Stepwise] iterator works exactly as [`in_parallel()`] except that the processing of the output produced by
21//! `consume(I, &mut State) -> O` is made accessible by the `Iterator` trait's `next()` method. As produced work is not
22//! buffered, the owner of the iterator controls the progress made.
23//!
24//! Getting the final output of the [`Reduce`] is achieved through the consuming [`Stepwise::finalize()`][reduce::Stepwise::finalize()] method, which
25//! is functionally equivalent to calling [`in_parallel()`].
26//!
27//! In an `async` context this means that progress is only made each time `next()` is called on the iterator, while merely dropping
28//! the iterator will wind down the computation without any result.
29//!
30//! #### Maintaining Safety
31//!
32//! In order to assure that threads don't outlive the data they borrow because their handles are leaked, we enforce
33//! the `'static` lifetime for its inputs, making it less intuitive to use. It is, however, possible to produce
34//! suitable input iterators as long as they can hold something on the heap.
35#[cfg(feature = "parallel")]
36mod in_parallel;
37#[cfg(feature = "parallel")]
38pub use in_parallel::{
39 build_thread, in_parallel, in_parallel_with_finalize, in_parallel_with_slice, join, threads, Scope,
40};
41
42mod serial;
43#[cfg(not(feature = "parallel"))]
44pub use serial::{build_thread, in_parallel, in_parallel_with_finalize, in_parallel_with_slice, join, threads, Scope};
45
46mod in_order;
47pub use in_order::{InOrderIter, SequenceId};
48
49mod eager_iter;
50pub use eager_iter::{EagerIter, EagerIterIf};
51
52/// A no-op returning the input _(`desired_chunk_size`, `Some(thread_limit)`, `thread_limit)_ used
53/// when the `parallel` feature toggle is not set.
54#[cfg(not(feature = "parallel"))]
55pub fn optimize_chunk_size_and_thread_limit(
56 desired_chunk_size: usize,
57 _num_items: Option<usize>,
58 thread_limit: Option<usize>,
59 _available_threads: Option<usize>,
60) -> (usize, Option<usize>, usize) {
61 (desired_chunk_size, thread_limit, num_threads(thread_limit))
62}
63
64/// Return the 'optimal' _(`size of chunks`, `amount of threads as Option`, `amount of threads`)_ to use in [`in_parallel()`] for the given
65/// `desired_chunk_size`, `num_items`, `thread_limit` and `available_threads`.
66///
67/// * `desired_chunk_size` is the amount of items per chunk you think should be used.
68/// * `num_items` is the total amount of items in the iteration, if `Some`.
69/// Otherwise this knowledge will not affect the output of this function.
70/// * `thread_limit` is the amount of threads to use at most, if `Some`.
71/// Otherwise this knowledge will not affect the output of this function.
72/// * `available_threads` is the total amount of threads available, if `Some`.
73/// Otherwise the actual amount of available threads is determined by querying the system.
74///
75/// `Note` that this implementation is available only if the `parallel` feature toggle is set.
76#[cfg(feature = "parallel")]
77pub fn optimize_chunk_size_and_thread_limit(
78 desired_chunk_size: usize,
79 num_items: Option<usize>,
80 thread_limit: Option<usize>,
81 available_threads: Option<usize>,
82) -> (usize, Option<usize>, usize) {
83 let available_threads =
84 available_threads.unwrap_or_else(|| std::thread::available_parallelism().map_or(1, Into::into));
85 let available_threads = thread_limit.map_or(available_threads, |l| if l == 0 { available_threads } else { l });
86
87 let (lower, upper) = (50, 1000);
88 let (chunk_size, thread_limit) = num_items.map_or(
89 {
90 let chunk_size = if available_threads == 1 {
91 desired_chunk_size
92 } else if desired_chunk_size < lower {
93 lower
94 } else {
95 desired_chunk_size.min(upper)
96 };
97 (chunk_size, available_threads)
98 },
99 |num_items| {
100 let desired_chunks_per_thread_at_least = 2;
101 let items = num_items;
102 let chunk_size = (items / (available_threads * desired_chunks_per_thread_at_least)).clamp(1, upper);
103 let num_chunks = items / chunk_size;
104 let thread_limit = if num_chunks <= available_threads {
105 (num_chunks / desired_chunks_per_thread_at_least).max(1)
106 } else {
107 available_threads
108 };
109 (chunk_size, thread_limit)
110 },
111 );
112 (chunk_size, Some(thread_limit), thread_limit)
113}
114
115/// Always returns 1, available when the `parallel` feature toggle is unset.
116#[cfg(not(feature = "parallel"))]
117pub fn num_threads(_thread_limit: Option<usize>) -> usize {
118 1
119}
120
121/// Returns the amount of threads the system can effectively use as the amount of its logical cores.
122///
123/// Only available with the `parallel` feature toggle set.
124#[cfg(feature = "parallel")]
125pub fn num_threads(thread_limit: Option<usize>) -> usize {
126 let logical_cores = std::thread::available_parallelism().map_or(1, Into::into);
127 thread_limit.map_or(logical_cores, |l| if l == 0 { logical_cores } else { l })
128}
129
130/// Run [`in_parallel()`] only if the given `condition()` returns true when eagerly evaluated.
131///
132/// For parameters, see the documentation of [`in_parallel()`]
133#[cfg(feature = "parallel")]
134pub fn in_parallel_if<I, S, O, R>(
135 condition: impl FnOnce() -> bool,
136 input: impl Iterator<Item = I> + Send,
137 thread_limit: Option<usize>,
138 new_thread_state: impl FnOnce(usize) -> S + Send + Clone,
139 consume: impl FnMut(I, &mut S) -> O + Send + Clone,
140 reducer: R,
141) -> Result<<R as Reduce>::Output, <R as Reduce>::Error>
142where
143 R: Reduce<Input = O>,
144 I: Send,
145 O: Send,
146{
147 if num_threads(thread_limit) > 1 && condition() {
148 in_parallel(input, thread_limit, new_thread_state, consume, reducer)
149 } else {
150 serial::in_parallel(input, thread_limit, new_thread_state, consume, reducer)
151 }
152}
153
154/// Run [`in_parallel()`] only if the given `condition()` returns true when eagerly evaluated.
155///
156/// For parameters, see the documentation of [`in_parallel()`]
157///
158/// Note that the non-parallel version is equivalent to [`in_parallel()`].
159#[cfg(not(feature = "parallel"))]
160pub fn in_parallel_if<I, S, O, R>(
161 _condition: impl FnOnce() -> bool,
162 input: impl Iterator<Item = I>,
163 thread_limit: Option<usize>,
164 new_thread_state: impl FnOnce(usize) -> S,
165 consume: impl FnMut(I, &mut S) -> O,
166 reducer: R,
167) -> Result<<R as Reduce>::Output, <R as Reduce>::Error>
168where
169 R: Reduce<Input = O>,
170 I: Send,
171 O: Send,
172{
173 serial::in_parallel(input, thread_limit, new_thread_state, consume, reducer)
174}
175
176///
177pub mod reduce;
178pub use reduce::Reduce;