gix_object/tree/editor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
use crate::tree::{Editor, EntryKind};
use crate::{tree, Tree};
use bstr::{BStr, BString, ByteSlice, ByteVec};
use gix_hash::ObjectId;
use std::cmp::Ordering;
use std::collections::{hash_map, HashMap};
use std::fmt::Formatter;
/// A way to constrain all [tree-edits](Editor) to a given subtree.
pub struct Cursor<'a, 'find> {
/// The underlying editor
parent: &'a mut Editor<'find>,
/// Our own location, used as prefix for all operations.
/// Note that it's assumed to always contain a tree.
prefix: BString,
}
impl std::fmt::Debug for Editor<'_> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Editor")
.field("object_hash", &self.object_hash)
.field("path_buf", &self.path_buf)
.field("trees", &self.trees)
.finish()
}
}
/// The error returned by [Editor] or [Cursor] edit operation.
#[derive(Debug, thiserror::Error)]
#[allow(missing_docs)]
pub enum Error {
#[error("Empty path components are not allowed")]
EmptyPathComponent,
#[error(transparent)]
FindExistingObject(#[from] crate::find::existing_object::Error),
}
/// Lifecycle
impl<'a> Editor<'a> {
/// Create a new editor that uses `root` as base for all edits. Use `find` to lookup existing
/// trees when edits are made. Each tree will only be looked-up once and then edited in place from
/// that point on.
/// `object_hash` denotes the kind of hash to create.
pub fn new(root: Tree, find: &'a dyn crate::FindExt, object_hash: gix_hash::Kind) -> Self {
Editor {
find,
object_hash,
trees: HashMap::from_iter(Some((empty_path(), root))),
path_buf: BString::from(Vec::with_capacity(256)).into(),
tree_buf: Vec::with_capacity(512),
}
}
}
/// Operations
impl Editor<'_> {
/// Write the entire in-memory state of all changed trees (and only changed trees) to `out`, and remove
/// written portions from our state except for the root tree, which affects [`get()`](Editor::get()).
/// Note that the returned object id *can* be the empty tree if everything was removed or if nothing
/// was added to the tree.
///
/// The last call to `out` will be the changed root tree, whose object-id will also be returned.
/// `out` is free to do any kind of additional validation, like to assure that all entries in the tree exist.
/// We don't assure that as there is no validation that inserted entries are valid object ids.
///
/// Future calls to [`upsert`](Self::upsert) or similar will keep working on the last seen state of the
/// just-written root-tree.
/// If this is not desired, use [set_root()](Self::set_root()).
///
/// ### Validation
///
/// Note that no additional validation is performed to assure correctness of entry-names.
/// It is absolutely and intentionally possible to write out invalid trees with this method.
/// Higher layers are expected to perform detailed validation.
pub fn write<E>(&mut self, out: impl FnMut(&Tree) -> Result<ObjectId, E>) -> Result<ObjectId, E> {
self.path_buf.borrow_mut().clear();
self.write_at_pathbuf(out, WriteMode::Normal)
}
/// Remove the entry at `rela_path`, loading all trees on the path accordingly.
/// It's no error if the entry doesn't exist, or if `rela_path` doesn't lead to an existing entry at all.
///
/// Note that trying to remove a path with an empty component is also forbidden.
pub fn remove<I, C>(&mut self, rela_path: I) -> Result<&mut Self, Error>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
self.path_buf.borrow_mut().clear();
self.upsert_or_remove_at_pathbuf(rela_path, None)
}
/// Obtain the entry at `rela_path` or return `None` if none was found, or the tree wasn't yet written
/// to that point.
/// Note that after [writing](Self::write) only the root path remains, all other intermediate trees are removed.
/// The entry can be anything that can be stored in a tree, but may have a null-id if it's a newly
/// inserted tree. Also, ids of trees might not be accurate as they may have been changed in memory.
pub fn get<I, C>(&self, rela_path: I) -> Option<&tree::Entry>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
self.path_buf.borrow_mut().clear();
self.get_inner(rela_path)
}
/// Insert a new entry of `kind` with `id` at `rela_path`, an iterator over each path component in the tree,
/// like `a/b/c`. Names are matched case-sensitively.
///
/// Existing leaf-entries will be overwritten unconditionally, and it is assumed that `id` is available in the object database
/// or will be made available at a later point to assure the integrity of the produced tree.
///
/// Intermediate trees will be created if they don't exist in the object database, otherwise they will be loaded and entries
/// will be inserted into them instead.
///
/// Note that `id` can be [null](ObjectId::null()) to create a placeholder. These will not be written, and paths leading
/// through them will not be considered a problem.
///
/// `id` can also be an empty tree, along with [the respective `kind`](EntryKind::Tree), even though that's normally not allowed
/// in Git trees.
pub fn upsert<I, C>(&mut self, rela_path: I, kind: EntryKind, id: ObjectId) -> Result<&mut Self, Error>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
self.path_buf.borrow_mut().clear();
self.upsert_or_remove_at_pathbuf(rela_path, Some((kind, id, UpsertMode::Normal)))
}
fn get_inner<I, C>(&self, rela_path: I) -> Option<&tree::Entry>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
let mut path_buf = self.path_buf.borrow_mut();
let mut cursor = self.trees.get(path_buf.as_bstr()).expect("root is always present");
let mut rela_path = rela_path.into_iter().peekable();
while let Some(name) = rela_path.next() {
let name = name.as_ref();
let is_last = rela_path.peek().is_none();
match cursor
.entries
.binary_search_by(|e| cmp_entry_with_name(e, name, true))
.or_else(|_| cursor.entries.binary_search_by(|e| cmp_entry_with_name(e, name, false)))
{
Ok(idx) if is_last => return Some(&cursor.entries[idx]),
Ok(idx) => {
if cursor.entries[idx].mode.is_tree() {
push_path_component(&mut path_buf, name);
cursor = self.trees.get(path_buf.as_bstr())?;
} else {
break;
}
}
Err(_) => break,
};
}
None
}
fn write_at_pathbuf<E>(
&mut self,
mut out: impl FnMut(&Tree) -> Result<ObjectId, E>,
mode: WriteMode,
) -> Result<ObjectId, E> {
assert_ne!(self.trees.len(), 0, "there is at least the root tree");
// back is for children, front is for parents.
let path_buf = self.path_buf.borrow_mut();
let mut parents = vec![(
None::<usize>,
path_buf.clone(),
self.trees
.remove(path_buf.as_bstr())
.expect("root tree is always present"),
)];
let mut children = Vec::new();
while let Some((parent_idx, mut rela_path, mut tree)) = children.pop().or_else(|| parents.pop()) {
let mut all_entries_unchanged_or_written = true;
for entry in &tree.entries {
if entry.mode.is_tree() {
let prev_len = push_path_component(&mut rela_path, &entry.filename);
if let Some(sub_tree) = self.trees.remove(&rela_path) {
all_entries_unchanged_or_written = false;
let next_parent_idx = parents.len();
children.push((Some(next_parent_idx), rela_path.clone(), sub_tree));
}
rela_path.truncate(prev_len);
}
}
if all_entries_unchanged_or_written {
tree.entries.retain(|e| !e.oid.is_null());
if let Some((_, _, parent_to_adjust)) =
parent_idx.map(|idx| parents.get_mut(idx).expect("always present, pointing towards zero"))
{
let name = filename(rela_path.as_bstr());
let entry_idx = parent_to_adjust
.entries
.binary_search_by(|e| cmp_entry_with_name(e, name, true))
.expect("the parent always knows us by name");
if tree.entries.is_empty() {
parent_to_adjust.entries.remove(entry_idx);
} else {
match out(&tree) {
Ok(id) => {
parent_to_adjust.entries[entry_idx].oid = id;
}
Err(err) => {
let root_tree = parents.into_iter().next().expect("root wasn't consumed yet");
self.trees.insert(root_tree.1, root_tree.2);
return Err(err);
}
}
}
} else if parents.is_empty() {
debug_assert!(children.is_empty(), "we consume children before parents");
debug_assert_eq!(rela_path, **path_buf, "this should always be the root tree");
// There may be left-over trees if they are replaced with blobs for example.
match out(&tree) {
Ok(id) => {
let root_tree_id = id;
match mode {
WriteMode::Normal => {
self.trees.clear();
}
WriteMode::FromCursor => {}
}
self.trees.insert(rela_path, tree);
return Ok(root_tree_id);
}
Err(err) => {
self.trees.insert(rela_path, tree);
return Err(err);
}
}
} else if !tree.entries.is_empty() {
out(&tree)?;
}
} else {
parents.push((parent_idx, rela_path, tree));
}
}
unreachable!("we exit as soon as everything is consumed")
}
fn upsert_or_remove_at_pathbuf<I, C>(
&mut self,
rela_path: I,
kind_and_id: Option<(EntryKind, ObjectId, UpsertMode)>,
) -> Result<&mut Self, Error>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
let mut path_buf = self.path_buf.borrow_mut();
let mut cursor = self.trees.get_mut(path_buf.as_bstr()).expect("root is always present");
let mut rela_path = rela_path.into_iter().peekable();
let new_kind_is_tree = kind_and_id.map_or(false, |(kind, _, _)| kind == EntryKind::Tree);
while let Some(name) = rela_path.next() {
let name = name.as_ref();
if name.is_empty() {
return Err(Error::EmptyPathComponent);
}
let is_last = rela_path.peek().is_none();
let mut needs_sorting = false;
let current_level_must_be_tree = !is_last || new_kind_is_tree;
let check_type_change = |entry: &tree::Entry| entry.mode.is_tree() != current_level_must_be_tree;
let tree_to_lookup = match cursor
.entries
.binary_search_by(|e| cmp_entry_with_name(e, name, false))
.or_else(|file_insertion_idx| {
cursor
.entries
.binary_search_by(|e| cmp_entry_with_name(e, name, true))
.map_err(|dir_insertion_index| {
if current_level_must_be_tree {
dir_insertion_index
} else {
file_insertion_idx
}
})
}) {
Ok(idx) => {
match kind_and_id {
None => {
if is_last {
cursor.entries.remove(idx);
break;
} else {
let entry = &cursor.entries[idx];
if entry.mode.is_tree() {
Some(entry.oid)
} else {
break;
}
}
}
Some((kind, id, _mode)) => {
let entry = &mut cursor.entries[idx];
if is_last {
// unconditionally overwrite what's there.
entry.oid = id;
needs_sorting = check_type_change(entry);
entry.mode = kind.into();
None
} else if entry.mode.is_tree() {
// Possibly lookup the existing tree on our way down the path.
Some(entry.oid)
} else {
// it is no tree, but we are traversing a path, so turn it into one.
entry.oid = id.kind().null();
needs_sorting = check_type_change(entry);
entry.mode = EntryKind::Tree.into();
None
}
}
}
}
Err(insertion_idx) => match kind_and_id {
None => break,
Some((kind, id, _mode)) => {
cursor.entries.insert(
insertion_idx,
tree::Entry {
filename: name.into(),
mode: if is_last { kind.into() } else { EntryKind::Tree.into() },
oid: if is_last { id } else { id.kind().null() },
},
);
None
}
},
};
if needs_sorting {
cursor.entries.sort();
}
if is_last && kind_and_id.map_or(false, |(_, _, mode)| mode == UpsertMode::Normal) {
break;
}
push_path_component(&mut path_buf, name);
cursor = match self.trees.entry(path_buf.clone()) {
hash_map::Entry::Occupied(e) => e.into_mut(),
hash_map::Entry::Vacant(e) => e.insert(
if let Some(tree_id) = tree_to_lookup.filter(|tree_id| !tree_id.is_empty_tree()) {
self.find.find_tree(&tree_id, &mut self.tree_buf)?.into()
} else {
Tree::default()
},
),
};
}
drop(path_buf);
Ok(self)
}
/// Set the root tree of the modification to `root`, assuring it has a well-known state.
///
/// Note that this erases all previous edits.
///
/// This is useful if the same editor is re-used for various trees.
pub fn set_root(&mut self, root: Tree) -> &mut Self {
self.trees.clear();
self.trees.insert(empty_path(), root);
self
}
}
mod cursor {
use crate::tree::editor::{Cursor, UpsertMode, WriteMode};
use crate::tree::{Editor, EntryKind};
use crate::{tree, Tree};
use bstr::{BStr, BString};
use gix_hash::ObjectId;
/// Cursor handling
impl<'a> Editor<'a> {
/// Turn ourselves as a cursor, which points to the same tree as the editor.
///
/// This is useful if a method takes a [`Cursor`], not an [`Editor`].
pub fn to_cursor(&mut self) -> Cursor<'_, 'a> {
Cursor {
parent: self,
prefix: BString::default(),
}
}
/// Create a cursor at the given `rela_path`, which must be a tree or is turned into a tree as its own edit.
///
/// The returned cursor will then allow applying edits to the tree at `rela_path` as root.
/// If `rela_path` is a single empty string, it is equivalent to using the current instance itself.
pub fn cursor_at<I, C>(&mut self, rela_path: I) -> Result<Cursor<'_, 'a>, super::Error>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
self.path_buf.borrow_mut().clear();
self.upsert_or_remove_at_pathbuf(
rela_path,
Some((EntryKind::Tree, self.object_hash.null(), UpsertMode::AssureTreeOnly)),
)?;
let prefix = self.path_buf.borrow_mut().clone();
Ok(Cursor {
prefix, /* set during the upsert call */
parent: self,
})
}
}
impl Cursor<'_, '_> {
/// Obtain the entry at `rela_path` or return `None` if none was found, or the tree wasn't yet written
/// to that point.
/// Note that after [writing](Self::write) only the root path remains, all other intermediate trees are removed.
/// The entry can be anything that can be stored in a tree, but may have a null-id if it's a newly
/// inserted tree. Also, ids of trees might not be accurate as they may have been changed in memory.
pub fn get<I, C>(&self, rela_path: I) -> Option<&tree::Entry>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
self.parent.path_buf.borrow_mut().clone_from(&self.prefix);
self.parent.get_inner(rela_path)
}
/// Like [`Editor::upsert()`], but with the constraint of only editing in this cursor's tree.
pub fn upsert<I, C>(&mut self, rela_path: I, kind: EntryKind, id: ObjectId) -> Result<&mut Self, super::Error>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
self.parent.path_buf.borrow_mut().clone_from(&self.prefix);
self.parent
.upsert_or_remove_at_pathbuf(rela_path, Some((kind, id, UpsertMode::Normal)))?;
Ok(self)
}
/// Like [`Editor::remove()`], but with the constraint of only editing in this cursor's tree.
pub fn remove<I, C>(&mut self, rela_path: I) -> Result<&mut Self, super::Error>
where
I: IntoIterator<Item = C>,
C: AsRef<BStr>,
{
self.parent.path_buf.borrow_mut().clone_from(&self.prefix);
self.parent.upsert_or_remove_at_pathbuf(rela_path, None)?;
Ok(self)
}
/// Like [`Editor::write()`], but will write only the subtree of the cursor.
pub fn write<E>(&mut self, out: impl FnMut(&Tree) -> Result<ObjectId, E>) -> Result<ObjectId, E> {
self.parent.path_buf.borrow_mut().clone_from(&self.prefix);
self.parent.write_at_pathbuf(out, WriteMode::FromCursor)
}
}
}
#[derive(Copy, Clone, Eq, PartialEq)]
enum UpsertMode {
Normal,
/// Only make sure there is a tree at the given location (requires kind tree and null-id)
AssureTreeOnly,
}
enum WriteMode {
Normal,
/// Perform less cleanup to assure parent-editor still stays intact
FromCursor,
}
fn cmp_entry_with_name(a: &tree::Entry, filename: &BStr, is_tree: bool) -> Ordering {
let common = a.filename.len().min(filename.len());
a.filename[..common].cmp(&filename[..common]).then_with(|| {
let a = a.filename.get(common).or_else(|| a.mode.is_tree().then_some(&b'/'));
let b = filename.get(common).or_else(|| is_tree.then_some(&b'/'));
a.cmp(&b)
})
}
fn filename(path: &BStr) -> &BStr {
path.rfind_byte(b'/').map_or(path, |pos| &path[pos + 1..])
}
fn empty_path() -> BString {
BString::default()
}
fn push_path_component(base: &mut BString, component: &[u8]) -> usize {
let prev_len = base.len();
debug_assert!(base.last() != Some(&b'/'));
if !base.is_empty() {
base.push_byte(b'/');
}
base.push_str(component);
prev_len
}