1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
use std::{ops::Deref, option::Option::None, sync::Arc, vec::IntoIter};
use gix_hash::ObjectId;
use crate::{
loose,
store::{handle, handle::SingleOrMultiIndex, types::PackId},
store_impls::dynamic,
};
struct EntryForOrdering {
pack_offset: u64,
entry_index: u32,
pack_index: u16,
}
enum State {
Pack {
index_iter: IntoIter<handle::IndexLookup>,
index: handle::IndexLookup,
ordered_entries: Option<Vec<EntryForOrdering>>,
entry_index: u32,
num_objects: u32,
},
Loose {
iter: loose::Iter,
index: usize,
},
Depleted,
}
/// Define the order in which objects are returned.
#[derive(Default, Debug, Copy, Clone)]
pub enum Ordering {
/// Traverse packs first as sorted by their index files in lexicographical order (sorted by object id), then traverse loose objects
/// as sorted by their names as well.
///
/// This mode uses no memory as it's the natural ordering of objects, and is best to obtain all object ids as quickly as possible,
/// while noting that these may contain duplicates. However, it's very costly to obtain object information or decode them with this
/// scheme as cache-hits are unlikely with it and memory maps are less efficient when loading them in random order.
#[default]
PackLexicographicalThenLooseLexicographical,
/// Traverse packs first yielding object ids sorted by their position in the pack, with those at the beginning of the pack file coming first.
/// Then follow loose objects sorted by their names.
///
/// This mode allocates and as to pre-sort objects by their offsets, delaying the start of the iteration once per pack while keeping
/// memory allocated once per pack. This price is usually worth paying once querying object information is planned as pack caches
/// are more efficiently used that way.
PackAscendingOffsetThenLooseLexicographical,
}
/// An iterator over all, _possibly duplicate_, objects of an object store, which by default uses no extra memory but yields an
/// order that is costly to traverse when querying object information or decoding them.
///
/// Use [`with_ordering()`][AllObjects::with_ordering()] to choose a performance trade-off.
pub struct AllObjects {
state: State,
num_objects: usize,
loose_dbs: Arc<Vec<loose::Store>>,
order: Ordering,
}
/// Builder
impl AllObjects {
/// Set the ordering of the objects returned, trading off memory and latency for object query performance.
pub fn with_ordering(mut self, order: Ordering) -> Self {
self.order = order;
self
}
}
impl AllObjects {
/// Create a new iterator from a dynamic store, which will be forced to load all indices eagerly and in the current thread.
pub fn new(db: &dynamic::Store) -> Result<Self, crate::store::load_index::Error> {
let snapshot = db.load_all_indices()?;
let packed_objects = snapshot
.indices
.iter()
.fold(0usize, |dbc, index| dbc.saturating_add(index.num_objects() as usize));
let mut index_iter = snapshot.indices.into_iter();
let loose_dbs = snapshot.loose_dbs;
let order = Default::default();
let state = match index_iter.next() {
Some(index) => {
let num_objects = index.num_objects();
State::Pack {
index_iter,
ordered_entries: maybe_sort_entries(&index, order),
index,
entry_index: 0,
num_objects,
}
}
None => {
let index = 0;
State::Loose {
iter: loose_dbs.get(index).expect("at least one loose db").iter(),
index,
}
}
};
Ok(AllObjects {
state,
loose_dbs,
num_objects: packed_objects,
order,
})
}
}
fn maybe_sort_entries(index: &handle::IndexLookup, order: Ordering) -> Option<Vec<EntryForOrdering>> {
let mut order: Vec<_> = match order {
Ordering::PackLexicographicalThenLooseLexicographical => return None,
Ordering::PackAscendingOffsetThenLooseLexicographical => match &index.file {
// We know that we cannot have more than u32 entry indices per pack.
SingleOrMultiIndex::Single { index, .. } => index
.iter()
.enumerate()
.map(|(idx, e)| EntryForOrdering {
pack_offset: e.pack_offset,
entry_index: idx as u32,
pack_index: 0,
})
.collect(),
SingleOrMultiIndex::Multi { index, .. } => index
.iter()
.enumerate()
.map(|(idx, e)| EntryForOrdering {
pack_offset: e.pack_offset,
entry_index: idx as u32,
pack_index: {
debug_assert!(
e.pack_index < PackId::max_packs_in_multi_index(),
"this shows the relation between u16 and pack_index (u32) and why this is OK"
);
e.pack_index as u16
},
})
.collect(),
},
};
order.sort_by(|a, b| {
a.pack_index
.cmp(&b.pack_index)
.then_with(|| a.pack_offset.cmp(&b.pack_offset))
});
Some(order)
}
impl Iterator for AllObjects {
type Item = Result<ObjectId, loose::iter::Error>;
fn next(&mut self) -> Option<Self::Item> {
match &mut self.state {
State::Depleted => None,
State::Pack {
index_iter,
ordered_entries,
index,
entry_index,
num_objects,
} => {
if *entry_index < *num_objects {
let oid = match ordered_entries {
Some(entries) => index.oid_at_index(entries[*entry_index as usize].entry_index),
None => index.oid_at_index(*entry_index),
}
.to_owned();
*entry_index += 1;
Some(Ok(oid))
} else {
match index_iter.next() {
Some(new_index) => {
*ordered_entries = maybe_sort_entries(&new_index, self.order);
*index = new_index;
*entry_index = 0;
*num_objects = index.num_objects();
}
None => {
let index = 0;
self.state = State::Loose {
iter: self.loose_dbs.get(index).expect("at least one loose odb").iter(),
index,
}
}
}
self.next()
}
}
State::Loose { iter, index } => match iter.next() {
Some(id) => Some(id),
None => {
*index += 1;
match self.loose_dbs.get(*index).map(loose::Store::iter) {
Some(new_iter) => {
*iter = new_iter;
self.next()
}
None => {
self.state = State::Depleted;
None
}
}
}
},
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.num_objects, None)
}
}
impl<S> super::Handle<S>
where
S: Deref<Target = super::Store> + Clone,
{
/// Return an iterator over all, _possibly duplicate_, objects, first the ones in all packs of all linked databases (via alternates),
/// followed by all loose objects.
pub fn iter(&self) -> Result<AllObjects, dynamic::load_index::Error> {
AllObjects::new(self.store_ref())
}
}
impl dynamic::Store {
/// Like [`Handle::iter()`][super::Handle::iter()], but accessible directly on the store.
pub fn iter(&self) -> Result<AllObjects, dynamic::load_index::Error> {
AllObjects::new(self)
}
}