1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
use std::{convert::TryInto, ops::Range};

use gix_features::zlib;
use smallvec::SmallVec;

use crate::{
    cache, data,
    data::{delta, file::decode::Error, File},
};

/// A return value of a resolve function, which given an [`ObjectId`][gix_hash::ObjectId] determines where an object can be found.
#[derive(Debug, PartialEq, Eq, Hash, Ord, PartialOrd, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum ResolvedBase {
    /// Indicate an object is within this pack, at the given entry, and thus can be looked up locally.
    InPack(data::Entry),
    /// Indicates the object of `kind` was found outside of the pack, and its data was written into an output
    /// vector which now has a length of `end`.
    #[allow(missing_docs)]
    OutOfPack { kind: gix_object::Kind, end: usize },
}

#[derive(Debug)]
struct Delta {
    data: Range<usize>,
    base_size: usize,
    result_size: usize,

    decompressed_size: usize,
    data_offset: data::Offset,
}

/// Additional information and statistics about a successfully decoded object produced by [`File::decode_entry()`].
///
/// Useful to understand the effectiveness of the pack compression or the cost of decompression.
#[derive(Debug, PartialEq, Eq, Hash, Ord, PartialOrd, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Outcome {
    /// The kind of resolved object.
    pub kind: gix_object::Kind,
    /// The amount of deltas in the chain of objects that had to be resolved beforehand.
    ///
    /// This number is affected by the [`Cache`][cache::DecodeEntry] implementation, with cache hits shortening the
    /// delta chain accordingly
    pub num_deltas: u32,
    /// The total decompressed size of all pack entries in the delta chain
    pub decompressed_size: u64,
    /// The total compressed size of all pack entries in the delta chain
    pub compressed_size: usize,
    /// The total size of the decoded object.
    pub object_size: u64,
}

impl Outcome {
    pub(crate) fn default_from_kind(kind: gix_object::Kind) -> Self {
        Self {
            kind,
            num_deltas: 0,
            decompressed_size: 0,
            compressed_size: 0,
            object_size: 0,
        }
    }
    fn from_object_entry(kind: gix_object::Kind, entry: &data::Entry, compressed_size: usize) -> Self {
        Self {
            kind,
            num_deltas: 0,
            decompressed_size: entry.decompressed_size,
            compressed_size,
            object_size: entry.decompressed_size,
        }
    }
}

/// Decompression of objects
impl File {
    /// Decompress the given `entry` into `out` and return the amount of bytes read from the pack data.
    /// Note that `inflate` is not reset after usage, but will be reset before using it.
    ///
    /// _Note_ that this method does not resolve deltified objects, but merely decompresses their content
    /// `out` is expected to be large enough to hold `entry.size` bytes.
    ///
    /// # Panics
    ///
    /// If `out` isn't large enough to hold the decompressed `entry`
    pub fn decompress_entry(
        &self,
        entry: &data::Entry,
        inflate: &mut zlib::Inflate,
        out: &mut [u8],
    ) -> Result<usize, Error> {
        assert!(
            out.len() as u64 >= entry.decompressed_size,
            "output buffer isn't large enough to hold decompressed result, want {}, have {}",
            entry.decompressed_size,
            out.len()
        );

        self.decompress_entry_from_data_offset(entry.data_offset, inflate, out)
            .map_err(Into::into)
    }

    fn assure_v2(&self) {
        assert!(
            matches!(self.version, crate::data::Version::V2),
            "Only V2 is implemented"
        );
    }

    /// Obtain the [`Entry`][crate::data::Entry] at the given `offset` into the pack.
    ///
    /// The `offset` is typically obtained from the pack index file.
    pub fn entry(&self, offset: data::Offset) -> data::Entry {
        self.assure_v2();
        let pack_offset: usize = offset.try_into().expect("offset representable by machine");
        assert!(pack_offset <= self.data.len(), "offset out of bounds");

        let object_data = &self.data[pack_offset..];
        data::Entry::from_bytes(object_data, offset, self.hash_len)
    }

    /// Decompress the object expected at the given data offset, sans pack header. This information is only
    /// known after the pack header was parsed.
    /// Note that this method does not resolve deltified objects, but merely decompresses their content
    /// `out` is expected to be large enough to hold `entry.size` bytes.
    /// Returns the amount of packed bytes there read from the pack data file.
    pub(crate) fn decompress_entry_from_data_offset(
        &self,
        data_offset: data::Offset,
        inflate: &mut zlib::Inflate,
        out: &mut [u8],
    ) -> Result<usize, zlib::inflate::Error> {
        let offset: usize = data_offset.try_into().expect("offset representable by machine");
        assert!(offset < self.data.len(), "entry offset out of bounds");

        inflate.reset();
        inflate
            .once(&self.data[offset..], out)
            .map(|(_status, consumed_in, _consumed_out)| consumed_in)
    }

    /// Like `decompress_entry_from_data_offset`, but returns consumed input and output.
    pub(crate) fn decompress_entry_from_data_offset_2(
        &self,
        data_offset: data::Offset,
        inflate: &mut zlib::Inflate,
        out: &mut [u8],
    ) -> Result<(usize, usize), zlib::inflate::Error> {
        let offset: usize = data_offset.try_into().expect("offset representable by machine");
        assert!(offset < self.data.len(), "entry offset out of bounds");

        inflate.reset();
        inflate
            .once(&self.data[offset..], out)
            .map(|(_status, consumed_in, consumed_out)| (consumed_in, consumed_out))
    }

    /// Decode an entry, resolving delta's as needed, while growing the `out` vector if there is not enough
    /// space to hold the result object.
    ///
    /// The `entry` determines which object to decode, and is commonly obtained with the help of a pack index file or through pack iteration.
    /// `inflate` will be used for decompressing entries, and will not be reset after usage, but before first using it.
    ///
    /// `resolve` is a function to lookup objects with the given [`ObjectId`][gix_hash::ObjectId], in case the full object id is used to refer to
    /// a base object, instead of an in-pack offset.
    ///
    /// `delta_cache` is a mechanism to avoid looking up base objects multiple times when decompressing multiple objects in a row.
    /// Use a [Noop-Cache][cache::Never] to disable caching all together at the cost of repeating work.
    pub fn decode_entry(
        &self,
        entry: data::Entry,
        out: &mut Vec<u8>,
        inflate: &mut zlib::Inflate,
        resolve: &dyn Fn(&gix_hash::oid, &mut Vec<u8>) -> Option<ResolvedBase>,
        delta_cache: &mut dyn cache::DecodeEntry,
    ) -> Result<Outcome, Error> {
        use crate::data::entry::Header::*;
        match entry.header {
            Tree | Blob | Commit | Tag => {
                out.resize(
                    entry
                        .decompressed_size
                        .try_into()
                        .expect("size representable by machine"),
                    0,
                );
                self.decompress_entry(&entry, inflate, out.as_mut_slice())
                    .map(|consumed_input| {
                        Outcome::from_object_entry(
                            entry.header.as_kind().expect("a non-delta entry"),
                            &entry,
                            consumed_input,
                        )
                    })
            }
            OfsDelta { .. } | RefDelta { .. } => self.resolve_deltas(entry, resolve, inflate, out, delta_cache),
        }
    }

    /// resolve: technically, this shouldn't ever be required as stored local packs don't refer to objects by id
    /// that are outside of the pack. Unless, of course, the ref refers to an object within this pack, which means
    /// it's very, very large as 20bytes are smaller than the corresponding MSB encoded number
    fn resolve_deltas(
        &self,
        last: data::Entry,
        resolve: &dyn Fn(&gix_hash::oid, &mut Vec<u8>) -> Option<ResolvedBase>,
        inflate: &mut zlib::Inflate,
        out: &mut Vec<u8>,
        cache: &mut dyn cache::DecodeEntry,
    ) -> Result<Outcome, Error> {
        // all deltas, from the one that produces the desired object (first) to the oldest at the end of the chain
        let mut chain = SmallVec::<[Delta; 10]>::default();
        let first_entry = last.clone();
        let mut cursor = last;
        let mut base_buffer_size: Option<usize> = None;
        let mut object_kind: Option<gix_object::Kind> = None;
        let mut consumed_input: Option<usize> = None;

        // Find the first full base, either an undeltified object in the pack or a reference to another object.
        let mut total_delta_data_size: u64 = 0;
        while cursor.header.is_delta() {
            if let Some((kind, packed_size)) = cache.get(self.id, cursor.data_offset, out) {
                base_buffer_size = Some(out.len());
                object_kind = Some(kind);
                // If the input entry is a cache hit, keep the packed size as it must be returned.
                // Otherwise, the packed size will be determined later when decompressing the input delta
                if total_delta_data_size == 0 {
                    consumed_input = Some(packed_size);
                }
                break;
            }
            // This is a pessimistic guess, as worst possible compression should not be bigger than the data itself.
            // TODO: is this assumption actually true?
            total_delta_data_size += cursor.decompressed_size;
            let decompressed_size = cursor
                .decompressed_size
                .try_into()
                .expect("a single delta size small enough to fit a usize");
            chain.push(Delta {
                data: Range {
                    start: 0,
                    end: decompressed_size,
                },
                base_size: 0,
                result_size: 0,
                decompressed_size,
                data_offset: cursor.data_offset,
            });
            use crate::data::entry::Header;
            cursor = match cursor.header {
                Header::OfsDelta { base_distance } => self.entry(cursor.base_pack_offset(base_distance)),
                Header::RefDelta { base_id } => match resolve(base_id.as_ref(), out) {
                    Some(ResolvedBase::InPack(entry)) => entry,
                    Some(ResolvedBase::OutOfPack { end, kind }) => {
                        base_buffer_size = Some(end);
                        object_kind = Some(kind);
                        break;
                    }
                    None => return Err(Error::DeltaBaseUnresolved(base_id)),
                },
                _ => unreachable!("cursor.is_delta() only allows deltas here"),
            };
        }

        // This can happen if the cache held the first entry itself
        // We will just treat it as an object then, even though it's technically incorrect.
        if chain.is_empty() {
            return Ok(Outcome::from_object_entry(
                object_kind.expect("object kind as set by cache"),
                &first_entry,
                consumed_input.expect("consumed bytes as set by cache"),
            ));
        };

        // First pass will decompress all delta data and keep it in our output buffer
        // [<possibly resolved base object>]<delta-1..delta-n>...
        // so that we can find the biggest result size.
        let total_delta_data_size: usize = total_delta_data_size.try_into().expect("delta data to fit in memory");

        let chain_len = chain.len();
        let (first_buffer_end, second_buffer_end) = {
            let delta_start = base_buffer_size.unwrap_or(0);
            out.resize(delta_start + total_delta_data_size, 0);

            let delta_range = Range {
                start: delta_start,
                end: delta_start + total_delta_data_size,
            };
            let mut instructions = &mut out[delta_range.clone()];
            let mut relative_delta_start = 0;
            let mut biggest_result_size = 0;
            for (delta_idx, delta) in chain.iter_mut().rev().enumerate() {
                let consumed_from_data_offset = self.decompress_entry_from_data_offset(
                    delta.data_offset,
                    inflate,
                    &mut instructions[..delta.decompressed_size],
                )?;
                let is_last_delta_to_be_applied = delta_idx + 1 == chain_len;
                if is_last_delta_to_be_applied {
                    consumed_input = Some(consumed_from_data_offset);
                }

                let (base_size, offset) = delta::decode_header_size(instructions);
                let mut bytes_consumed_by_header = offset;
                biggest_result_size = biggest_result_size.max(base_size);
                delta.base_size = base_size.try_into().expect("base size fits into usize");

                let (result_size, offset) = delta::decode_header_size(&instructions[offset..]);
                bytes_consumed_by_header += offset;
                biggest_result_size = biggest_result_size.max(result_size);
                delta.result_size = result_size.try_into().expect("result size fits into usize");

                // the absolute location into the instructions buffer, so we keep track of the end point of the last
                delta.data.start = relative_delta_start + bytes_consumed_by_header;
                relative_delta_start += delta.decompressed_size;
                delta.data.end = relative_delta_start;

                instructions = &mut instructions[delta.decompressed_size..];
            }

            // Now we can produce a buffer like this
            // [<biggest-result-buffer, possibly filled with resolved base object data>]<biggest-result-buffer><delta-1..delta-n>
            // from [<possibly resolved base object>]<delta-1..delta-n>...
            let biggest_result_size: usize = biggest_result_size
                .try_into()
                .expect("biggest result size small enough to fit into usize");
            let first_buffer_size = biggest_result_size;
            let second_buffer_size = first_buffer_size;
            out.resize(first_buffer_size + second_buffer_size + total_delta_data_size, 0);

            // Now 'rescue' the deltas, because in the next step we possibly overwrite that portion
            // of memory with the base object (in the majority of cases)
            let second_buffer_end = {
                let end = first_buffer_size + second_buffer_size;
                if delta_range.start < end {
                    // …this means that the delta size is even larger than two uncompressed worst-case
                    // intermediate results combined. It would already be undesirable to have it bigger
                    // then the target size (as you could just store the object in whole).
                    // However, this just means that it reuses existing deltas smartly, which as we rightfully
                    // remember stand for an object each. However, this means a lot of data is read to restore
                    // a single object sometimes. Fair enough - package size is minimized that way.
                    out.copy_within(delta_range, end);
                } else {
                    let (buffers, instructions) = out.split_at_mut(end);
                    instructions.copy_from_slice(&buffers[delta_range]);
                }
                end
            };

            // If we don't have a out-of-pack object already, fill the base-buffer by decompressing the full object
            // at which the cursor is left after the iteration
            if base_buffer_size.is_none() {
                let base_entry = cursor;
                debug_assert!(!base_entry.header.is_delta());
                object_kind = base_entry.header.as_kind();
                self.decompress_entry_from_data_offset(base_entry.data_offset, inflate, out)?;
            }

            (first_buffer_size, second_buffer_end)
        };

        // From oldest to most recent, apply all deltas, swapping the buffer back and forth
        // TODO: once we have more tests, we could optimize this memory-intensive work to
        //       analyse the delta-chains to only copy data once - after all, with 'copy-from-base' deltas,
        //       all data originates from one base at some point.
        // `out` is: [source-buffer][target-buffer][max-delta-instructions-buffer]
        let (buffers, instructions) = out.split_at_mut(second_buffer_end);
        let (mut source_buf, mut target_buf) = buffers.split_at_mut(first_buffer_end);

        let mut last_result_size = None;
        for (
            delta_idx,
            Delta {
                data,
                base_size,
                result_size,
                ..
            },
        ) in chain.into_iter().rev().enumerate()
        {
            let data = &mut instructions[data];
            if delta_idx + 1 == chain_len {
                last_result_size = Some(result_size);
            }
            delta::apply(&source_buf[..base_size], &mut target_buf[..result_size], data);
            // use the target as source for the next delta
            std::mem::swap(&mut source_buf, &mut target_buf);
        }

        let last_result_size = last_result_size.expect("at least one delta chain item");
        // uneven chains leave the target buffer after the source buffer
        // FIXME(Performance) If delta-chains are uneven, we know we will have to copy bytes over here
        //      Instead we could use a different start buffer, to naturally end up with the result in the
        //      right one.
        //      However, this is a bit more complicated than just that - you have to deal with the base
        //      object, which should also be placed in the second buffer right away. You don't have that
        //      control/knowledge for out-of-pack bases, so this is a special case to deal with, too.
        //      Maybe these invariants can be represented in the type system though.
        if chain_len % 2 == 1 {
            // this seems inverted, but remember: we swapped the buffers on the last iteration
            target_buf[..last_result_size].copy_from_slice(&source_buf[..last_result_size]);
        }
        out.resize(last_result_size, 0);

        let object_kind = object_kind.expect("a base object as root of any delta chain that we are here to resolve");
        let consumed_input = consumed_input.expect("at least one decompressed delta object");
        cache.put(
            self.id,
            first_entry.data_offset,
            out.as_slice(),
            object_kind,
            consumed_input,
        );
        Ok(Outcome {
            kind: object_kind,
            // technically depending on the cache, the chain size is not correct as it might
            // have been cut short by a cache hit. The caller must deactivate the cache to get
            // actual results
            num_deltas: chain_len as u32,
            decompressed_size: first_entry.decompressed_size,
            compressed_size: consumed_input,
            object_size: last_result_size as u64,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn size_of_decode_entry_outcome() {
        assert_eq!(
            std::mem::size_of::<Outcome>(),
            32,
            "this shouldn't change without use noticing as it's returned a lot"
        );
    }
}