1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
use crate::core::traits::{
    quaternion::Quaternion,
    vector::{FloatVector4, MaskVector4, Vector, Vector4, Vector4Const},
};
use crate::euler::{EulerFromQuaternion, EulerRot, EulerToQuaternion};
use crate::{DMat3, DMat4, DVec3, DVec4};
use crate::{Mat3, Mat4, Vec3, Vec3A, Vec4};

#[cfg(not(feature = "std"))]
use num_traits::Float;

#[cfg(all(
    target_arch = "x86",
    target_feature = "sse2",
    not(feature = "scalar-math")
))]
use core::arch::x86::*;
#[cfg(all(
    target_arch = "x86_64",
    target_feature = "sse2",
    not(feature = "scalar-math")
))]
use core::arch::x86_64::*;

#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::ops::{Add, Deref, Div, Mul, MulAssign, Neg, Sub};

#[cfg(feature = "std")]
use std::iter::{Product, Sum};

macro_rules! impl_quat_methods {
    ($t:ident, $quat:ident, $vec3:ident, $vec4:ident, $mat3:ident, $mat4:ident, $inner:ident) => {
        /// The identity quaternion. Corresponds to no rotation.
        pub const IDENTITY: Self = Self($inner::W);

        /// Creates a new rotation quaternion.
        ///
        /// This should generally not be called manually unless you know what you are doing.
        /// Use one of the other constructors instead such as `identity` or `from_axis_angle`.
        ///
        /// `from_xyzw` is mostly used by unit tests and `serde` deserialization.
        ///
        /// # Preconditions
        ///
        /// This function does not check if the input is normalized, it is up to the user to
        /// provide normalized input or to normalized the resulting quaternion.
        #[inline(always)]
        pub fn from_xyzw(x: $t, y: $t, z: $t, w: $t) -> Self {
            Self(Vector4::new(x, y, z, w))
        }

        /// Creates a rotation quaternion from an array.
        ///
        /// # Preconditions
        ///
        /// This function does not check if the input is normalized, it is up to the user to
        /// provide normalized input or to normalized the resulting quaternion.
        #[inline(always)]
        pub fn from_array(a: [$t; 4]) -> Self {
            let q = Vector4::from_array(a);
            Self(q)
        }

        /// Creates a new rotation quaternion from a 4D vector.
        ///
        /// # Preconditions
        ///
        /// This function does not check if the input is normalized, it is up to the user to
        /// provide normalized input or to normalized the resulting quaternion.
        #[inline(always)]
        pub fn from_vec4(v: $vec4) -> Self {
            Self(v.0)
        }

        /// Creates a rotation quaternion from a slice.
        ///
        /// # Preconditions
        ///
        /// This function does not check if the input is normalized, it is up to the user to
        /// provide normalized input or to normalized the resulting quaternion.
        ///
        /// # Panics
        ///
        /// Panics if `slice` length is less than 4.
        #[inline(always)]
        pub fn from_slice(slice: &[$t]) -> Self {
            #[allow(clippy::let_and_return)]
            let q = Vector4::from_slice_unaligned(slice);
            Self(q)
        }

        /// Writes the quaternion to an unaligned slice.
        ///
        /// # Panics
        ///
        /// Panics if `slice` length is less than 4.
        #[inline(always)]
        pub fn write_to_slice(self, slice: &mut [$t]) {
            Vector4::write_to_slice_unaligned(self.0, slice)
        }

        /// Create a quaternion for a normalized rotation `axis` and `angle` (in radians).
        /// The axis must be normalized (unit-length).
        ///
        /// # Panics
        ///
        /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
        #[inline(always)]
        pub fn from_axis_angle(axis: $vec3, angle: $t) -> Self {
            Self($inner::from_axis_angle(axis.0, angle))
        }

        /// Create a quaternion that rotates `v.length()` radians around `v.normalize()`.
        ///
        /// `from_scaled_axis(Vec3::ZERO)` results in the identity quaternion.
        #[inline(always)]
        pub fn from_scaled_axis(v: $vec3) -> Self {
            // Self($inner::from_scaled_axis(v.0))
            let length = v.length();
            if length == 0.0 {
                Self::IDENTITY
            } else {
                Self::from_axis_angle(v / length, length)
            }
        }

        /// Creates a quaternion from the `angle` (in radians) around the x axis.
        #[inline(always)]
        pub fn from_rotation_x(angle: $t) -> Self {
            Self($inner::from_rotation_x(angle))
        }

        /// Creates a quaternion from the `angle` (in radians) around the y axis.
        #[inline(always)]
        pub fn from_rotation_y(angle: $t) -> Self {
            Self($inner::from_rotation_y(angle))
        }

        /// Creates a quaternion from the `angle` (in radians) around the z axis.
        #[inline(always)]
        pub fn from_rotation_z(angle: $t) -> Self {
            Self($inner::from_rotation_z(angle))
        }

        #[inline(always)]
        /// Creates a quaternion from the given euler rotation sequence and the angles (in radians).
        pub fn from_euler(euler: EulerRot, a: $t, b: $t, c: $t) -> Self {
            euler.new_quat(a, b, c)
        }

        /// Creates a quaternion from a 3x3 rotation matrix.
        #[inline]
        pub fn from_mat3(mat: &$mat3) -> Self {
            Self(Quaternion::from_rotation_axes(
                mat.x_axis.0,
                mat.y_axis.0,
                mat.z_axis.0,
            ))
        }

        /// Creates a quaternion from a 3x3 rotation matrix inside a homogeneous 4x4 matrix.
        #[inline]
        pub fn from_mat4(mat: &$mat4) -> Self {
            Self(Quaternion::from_rotation_axes(
                mat.x_axis.0.into(),
                mat.y_axis.0.into(),
                mat.z_axis.0.into(),
            ))
        }

        /// Gets the minimal rotation for transforming `from` to `to`.  The rotation is in the
        /// plane spanned by the two vectors.  Will rotate at most 180 degrees.
        ///
        /// The input vectors must be normalized (unit-length).
        ///
        /// `from_rotation_arc(from, to) * from ≈ to`.
        ///
        /// For near-singular cases (from≈to and from≈-to) the current implementation
        /// is only accurate to about 0.001 (for `f32`).
        ///
        /// # Panics
        ///
        /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
        #[cfg(feature = "std")]
        pub fn from_rotation_arc(from: $vec3, to: $vec3) -> Self {
            glam_assert!(from.is_normalized());
            glam_assert!(to.is_normalized());

            let one_minus_eps = 1.0 - 2.0 * core::$t::EPSILON;
            let dot = from.dot(to);
            if dot > one_minus_eps {
                // 0° singulary: from ≈ to
                Self::IDENTITY
            } else if dot < -one_minus_eps {
                // 180° singulary: from ≈ -to
                let pi = core::$t::consts::PI; // half a turn = 𝛕/2 = 180°
                Self::from_axis_angle(from.any_orthonormal_vector(), pi)
            } else {
                let c = from.cross(to);
                Self::from_xyzw(c.x, c.y, c.z, 1.0 + dot).normalize()
            }
        }

        /// Gets the minimal rotation for transforming `from` to either `to` or `-to`.  This means
        /// that the resulting quaternion will rotate `from` so that it is colinear with `to`.
        ///
        /// The rotation is in the plane spanned by the two vectors.  Will rotate at most 90
        /// degrees.
        ///
        /// The input vectors must be normalized (unit-length).
        ///
        /// `to.dot(from_rotation_arc_colinear(from, to) * from).abs() ≈ 1`.
        ///
        /// # Panics
        ///
        /// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
        #[cfg(feature = "std")]
        pub fn from_rotation_arc_colinear(from: $vec3, to: $vec3) -> Self {
            if from.dot(to) < 0.0 {
                Self::from_rotation_arc(from, -to)
            } else {
                Self::from_rotation_arc(from, to)
            }
        }

        /// Returns the rotation axis and angle (in radians) of `self`.
        #[inline(always)]
        pub fn to_axis_angle(self) -> ($vec3, $t) {
            let (axis, angle) = self.0.to_axis_angle();
            ($vec3(axis), angle)
        }

        /// Returns the rotation axis scaled by the rotation in radians.
        #[inline(always)]
        pub fn to_scaled_axis(self) -> $vec3 {
            let (axis, angle) = self.0.to_axis_angle();
            $vec3(axis) * angle
        }

        /// Returns the rotation angles for the given euler rotation sequence.
        #[inline(always)]
        pub fn to_euler(self, euler: EulerRot) -> ($t, $t, $t) {
            euler.convert_quat(self)
        }

        /// Returns the quaternion conjugate of `self`. For a unit quaternion the
        /// conjugate is also the inverse.
        #[must_use]
        #[inline(always)]
        pub fn conjugate(self) -> Self {
            Self(self.0.conjugate())
        }

        /// Returns the inverse of a normalized quaternion.
        ///
        /// Typically quaternion inverse returns the conjugate of a normalized quaternion.
        /// Because `self` is assumed to already be unit length this method *does not* normalize
        /// before returning the conjugate.
        ///
        /// # Panics
        ///
        /// Will panic if `self` is not normalized when `glam_assert` is enabled.
        #[must_use]
        #[inline(always)]
        pub fn inverse(self) -> Self {
            glam_assert!(self.is_normalized());
            self.conjugate()
        }

        /// Computes the dot product of `self` and `other`. The dot product is
        /// equal to the the cosine of the angle between two quaternion rotations.
        #[inline(always)]
        pub fn dot(self, other: Self) -> $t {
            Vector4::dot(self.0, other.0)
        }

        /// Computes the length of `self`.
        #[cfg_attr(docsrs, doc(alias = "magnitude"))]
        #[inline(always)]
        pub fn length(self) -> $t {
            FloatVector4::length(self.0)
        }

        /// Computes the squared length of `self`.
        ///
        /// This is generally faster than `length()` as it avoids a square
        /// root operation.
        #[cfg_attr(docsrs, doc(alias = "magnitude2"))]
        #[inline(always)]
        pub fn length_squared(self) -> $t {
            FloatVector4::length_squared(self.0)
        }

        /// Computes `1.0 / length()`.
        ///
        /// For valid results, `self` must _not_ be of length zero.
        #[inline(always)]
        pub fn length_recip(self) -> $t {
            FloatVector4::length_recip(self.0)
        }

        /// Returns `self` normalized to length 1.0.
        ///
        /// For valid results, `self` must _not_ be of length zero.
        ///
        /// Panics
        ///
        /// Will panic if `self` is zero length when `glam_assert` is enabled.
        #[must_use]
        #[inline(always)]
        pub fn normalize(self) -> Self {
            Self(FloatVector4::normalize(self.0))
        }

        /// Returns `true` if, and only if, all elements are finite.
        /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
        #[inline(always)]
        pub fn is_finite(self) -> bool {
            FloatVector4::is_finite(self.0)
        }

        #[inline(always)]
        pub fn is_nan(self) -> bool {
            FloatVector4::is_nan(self.0)
        }

        /// Returns whether `self` of length `1.0` or not.
        ///
        /// Uses a precision threshold of `1e-6`.
        #[inline(always)]
        pub fn is_normalized(self) -> bool {
            FloatVector4::is_normalized(self.0)
        }

        #[inline(always)]
        pub fn is_near_identity(self) -> bool {
            self.0.is_near_identity()
        }

        /// Returns the angle (in radians) for the minimal rotation
        /// for transforming this quaternion into another.
        ///
        /// Both quaternions must be normalized.
        ///
        /// # Panics
        ///
        /// Will panic if `self` or `other` are not normalized when `glam_assert` is enabled.
        pub fn angle_between(self, other: Self) -> $t {
            glam_assert!(self.is_normalized() && other.is_normalized());
            use crate::core::traits::scalar::FloatEx;
            self.dot(other).abs().acos_approx() * 2.0
        }

        /// Returns true if the absolute difference of all elements between `self` and `other`
        /// is less than or equal to `max_abs_diff`.
        ///
        /// This can be used to compare if two quaternions contain similar elements. It works
        /// best when comparing with a known value. The `max_abs_diff` that should be used used
        /// depends on the values being compared against.
        ///
        /// For more see
        /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
        #[inline(always)]
        pub fn abs_diff_eq(self, other: Self, max_abs_diff: $t) -> bool {
            FloatVector4::abs_diff_eq(self.0, other.0, max_abs_diff)
        }

        /// Performs a linear interpolation between `self` and `other` based on
        /// the value `s`.
        ///
        /// When `s` is `0.0`, the result will be equal to `self`.  When `s`
        /// is `1.0`, the result will be equal to `other`.
        ///
        /// # Panics
        ///
        /// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled.
        #[inline(always)]
        #[cfg_attr(docsrs, doc(alias = "mix"))]
        pub fn lerp(self, end: Self, s: $t) -> Self {
            Self(self.0.lerp(end.0, s))
        }

        /// Performs a spherical linear interpolation between `self` and `end`
        /// based on the value `s`.
        ///
        /// When `s` is `0.0`, the result will be equal to `self`.  When `s`
        /// is `1.0`, the result will be equal to `end`.
        ///
        /// Note that a rotation can be represented by two quaternions: `q` and
        /// `-q`. The slerp path between `q` and `end` will be different from the
        /// path between `-q` and `end`. One path will take the long way around and
        /// one will take the short way. In order to correct for this, the `dot`
        /// product between `self` and `end` should be positive. If the `dot`
        /// product is negative, slerp between `-self` and `end`.
        ///
        /// # Panics
        ///
        /// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled.
        #[inline(always)]
        pub fn slerp(self, end: Self, s: $t) -> Self {
            Self(self.0.slerp(end.0, s))
        }

        /// Multiplies a quaternion and a 3D vector, returning the rotated vector.
        ///
        /// # Panics
        ///
        /// Will panic if `self` is not normalized when `glam_assert` is enabled.
        #[inline(always)]
        pub fn mul_vec3(self, other: $vec3) -> $vec3 {
            $vec3(self.0.mul_vector3(other.0))
        }

        /// Multiplies two quaternions. If they each represent a rotation, the result will
        /// represent the combined rotation.
        ///
        /// Note that due to floating point rounding the result may not be perfectly normalized.
        ///
        /// # Panics
        ///
        /// Will panic if `self` or `other` are not normalized when `glam_assert` is enabled.
        #[inline(always)]
        pub fn mul_quat(self, other: Self) -> Self {
            Self(self.0.mul_quaternion(other.0))
        }
    };
}

macro_rules! impl_quat_traits {
    ($t:ty, $new:ident, $quat:ident, $vec3:ident, $vec4:ident, $inner:ident) => {
        /// Creates a quaternion from `x`, `y`, `z` and `w` values.
        ///
        /// This should generally not be called manually unless you know what you are doing. Use
        /// one of the other constructors instead such as `identity` or `from_axis_angle`.
        #[inline]
        pub fn $new(x: $t, y: $t, z: $t, w: $t) -> $quat {
            $quat::from_xyzw(x, y, z, w)
        }

        #[cfg(not(target_arch = "spirv"))]
        impl fmt::Debug for $quat {
            fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
                fmt.debug_tuple(stringify!($quat))
                    .field(&self.x)
                    .field(&self.y)
                    .field(&self.z)
                    .field(&self.w)
                    .finish()
            }
        }

        #[cfg(not(target_arch = "spirv"))]
        impl fmt::Display for $quat {
            fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
                write!(fmt, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w)
            }
        }

        impl Add<$quat> for $quat {
            type Output = Self;
            /// Adds two quaternions.
            ///
            /// The sum is not guaranteed to be normalized.
            ///
            /// Note that addition is not the same as combining the rotations represented by the
            /// two quaternions! That corresponds to multiplication.
            #[inline]
            fn add(self, other: Self) -> Self {
                Self(self.0.add(other.0))
            }
        }

        impl Sub<$quat> for $quat {
            type Output = Self;
            /// Subtracts the other quaternion from self.
            ///
            /// The difference is not guaranteed to be normalized.
            #[inline]
            fn sub(self, other: Self) -> Self {
                Self(self.0.sub(other.0))
            }
        }

        impl Mul<$t> for $quat {
            type Output = Self;
            /// Multiplies a quaternion by a scalar value.
            ///
            /// The product is not guaranteed to be normalized.
            #[inline]
            fn mul(self, other: $t) -> Self {
                Self(self.0.scale(other))
            }
        }

        impl Div<$t> for $quat {
            type Output = Self;
            /// Divides a quaternion by a scalar value.
            /// The quotient is not guaranteed to be normalized.
            #[inline]
            fn div(self, other: $t) -> Self {
                Self(self.0.scale(other.recip()))
            }
        }

        impl Mul<$quat> for $quat {
            type Output = Self;
            /// Multiplies two quaternions. If they each represent a rotation, the result will
            /// represent the combined rotation.
            ///
            /// Note that due to floating point rounding the result may not be perfectly
            /// normalized.
            ///
            /// # Panics
            ///
            /// Will panic if `self` or `other` are not normalized when `glam_assert` is enabled.
            #[inline]
            fn mul(self, other: Self) -> Self {
                Self(self.0.mul_quaternion(other.0))
            }
        }

        impl MulAssign<$quat> for $quat {
            /// Multiplies two quaternions. If they each represent a rotation, the result will
            /// represent the combined rotation.
            ///
            /// Note that due to floating point rounding the result may not be perfectly
            /// normalized.
            ///
            /// # Panics
            ///
            /// Will panic if `self` or `other` are not normalized when `glam_assert` is enabled.
            #[inline]
            fn mul_assign(&mut self, other: Self) {
                self.0 = self.0.mul_quaternion(other.0);
            }
        }

        impl Mul<$vec3> for $quat {
            type Output = $vec3;
            /// Multiplies a quaternion and a 3D vector, returning the rotated vector.
            ///
            /// # Panics
            ///
            /// Will panic if `self` is not normalized when `glam_assert` is enabled.
            #[inline]
            fn mul(self, other: $vec3) -> Self::Output {
                $vec3(self.0.mul_vector3(other.0))
            }
        }

        impl Neg for $quat {
            type Output = Self;
            #[inline]
            fn neg(self) -> Self {
                Self(self.0.scale(-1.0))
            }
        }

        impl Default for $quat {
            #[inline]
            fn default() -> Self {
                Self::IDENTITY
            }
        }

        impl PartialEq for $quat {
            #[inline]
            fn eq(&self, other: &Self) -> bool {
                MaskVector4::all(self.0.cmpeq(other.0))
            }
        }

        #[cfg(not(target_arch = "spriv"))]
        impl AsRef<[$t; 4]> for $quat {
            #[inline(always)]
            fn as_ref(&self) -> &[$t; 4] {
                unsafe { &*(self as *const Self as *const [$t; 4]) }
            }
        }

        #[cfg(not(target_arch = "spriv"))]
        impl AsMut<[$t; 4]> for $quat {
            #[inline(always)]
            fn as_mut(&mut self) -> &mut [$t; 4] {
                unsafe { &mut *(self as *mut Self as *mut [$t; 4]) }
            }
        }

        impl From<$quat> for $vec4 {
            #[inline(always)]
            fn from(q: $quat) -> Self {
                $vec4(q.0)
            }
        }

        impl From<$quat> for ($t, $t, $t, $t) {
            #[inline(always)]
            fn from(q: $quat) -> Self {
                Vector4::into_tuple(q.0)
            }
        }

        impl From<$quat> for [$t; 4] {
            #[inline(always)]
            fn from(q: $quat) -> Self {
                Vector4::into_array(q.0)
            }
        }

        impl From<$quat> for $inner {
            // TODO: write test
            #[inline(always)]
            fn from(q: $quat) -> Self {
                q.0
            }
        }

        impl Deref for $quat {
            type Target = crate::XYZW<$t>;
            #[inline(always)]
            fn deref(&self) -> &Self::Target {
                self.0.as_ref_xyzw()
            }
        }

        #[cfg(feature = "std")]
        impl<'a> Sum<&'a Self> for $quat {
            fn sum<I>(iter: I) -> Self
            where
                I: Iterator<Item = &'a Self>,
            {
                use crate::core::traits::vector::VectorConst;
                iter.fold(Self($inner::ZERO), |a, &b| Self::add(a, b))
            }
        }

        #[cfg(feature = "std")]
        impl<'a> Product<&'a Self> for $quat {
            fn product<I>(iter: I) -> Self
            where
                I: Iterator<Item = &'a Self>,
            {
                iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
            }
        }
    };
}

#[cfg(all(target_feature = "sse2", not(feature = "scalar-math")))]
type InnerF32 = __m128;

#[cfg(any(not(target_feature = "sse2"), feature = "scalar-math"))]
type InnerF32 = crate::XYZW<f32>;

/// A quaternion representing an orientation.
///
/// This quaternion is intended to be of unit length but may denormalize due to
/// floating point "error creep" which can occur when successive quaternion
/// operations are applied.
///
/// This type is 16 byte aligned.
#[derive(Clone, Copy)]
#[cfg_attr(
    not(any(feature = "scalar-math", target_arch = "spriv")),
    repr(align(16))
)]
#[cfg_attr(any(feature = "scalar-math", target_arch = "spriv"), repr(transparent))]
pub struct Quat(pub(crate) InnerF32);

impl Quat {
    impl_quat_methods!(f32, Quat, Vec3, Vec4, Mat3, Mat4, InnerF32);

    /// Multiplies a quaternion and a 3D vector, returning the rotated vector.
    #[inline(always)]
    pub fn mul_vec3a(self, other: Vec3A) -> Vec3A {
        #[allow(clippy::useless_conversion)]
        Vec3A(self.0.mul_float4_as_vector3(other.0.into()).into())
    }

    #[inline(always)]
    pub fn as_f64(self) -> DQuat {
        DQuat::from_xyzw(self.x as f64, self.y as f64, self.z as f64, self.w as f64)
    }

    /// Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform.
    #[inline]
    pub fn from_affine3(mat: &crate::Affine3A) -> Self {
        Self(Quaternion::from_rotation_axes(
            mat.x_axis.0.into(),
            mat.y_axis.0.into(),
            mat.z_axis.0.into(),
        ))
    }
}
impl_quat_traits!(f32, quat, Quat, Vec3, Vec4, InnerF32);

impl Mul<Vec3A> for Quat {
    type Output = Vec3A;
    #[inline(always)]
    fn mul(self, other: Vec3A) -> Self::Output {
        self.mul_vec3a(other)
    }
}

type InnerF64 = crate::XYZW<f64>;

/// A quaternion representing an orientation.
///
/// This quaternion is intended to be of unit length but may denormalize due to
/// floating point "error creep" which can occur when successive quaternion
/// operations are applied.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct DQuat(pub(crate) InnerF64);

impl DQuat {
    impl_quat_methods!(f64, DQuat, DVec3, DVec4, DMat3, DMat4, InnerF64);

    #[inline(always)]
    pub fn as_f32(self) -> Quat {
        Quat::from_xyzw(self.x as f32, self.y as f32, self.z as f32, self.w as f32)
    }

    /// Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform.
    #[inline]
    pub fn from_affine3(mat: &crate::DAffine3) -> Self {
        Self(Quaternion::from_rotation_axes(
            mat.x_axis.0,
            mat.y_axis.0,
            mat.z_axis.0,
        ))
    }
}
impl_quat_traits!(f64, dquat, DQuat, DVec3, DVec4, InnerF64);

#[cfg(any(feature = "scalar-math", target_arch = "spriv"))]
mod const_test_quat {
    const_assert_eq!(
        core::mem::align_of::<f32>(),
        core::mem::align_of::<super::Quat>()
    );
    const_assert_eq!(16, core::mem::size_of::<super::Quat>());
}

#[cfg(not(any(feature = "scalar-math", target_arch = "spriv")))]
mod const_test_quat {
    const_assert_eq!(16, core::mem::align_of::<super::Quat>());
    const_assert_eq!(16, core::mem::size_of::<super::Quat>());
}

mod const_test_dquat {
    const_assert_eq!(
        core::mem::align_of::<f64>(),
        core::mem::align_of::<super::DQuat>()
    );
    const_assert_eq!(32, core::mem::size_of::<super::DQuat>());
}