glam/f32/sse2/mat3a.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
// Generated from mat.rs.tera template. Edit the template, not the generated file.
use crate::{
euler::{FromEuler, ToEuler},
f32::math,
swizzles::*,
DMat3, EulerRot, Mat2, Mat3, Mat4, Quat, Vec2, Vec3, Vec3A,
};
use core::fmt;
use core::iter::{Product, Sum};
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
/// Creates a 3x3 matrix from three column vectors.
#[inline(always)]
#[must_use]
pub const fn mat3a(x_axis: Vec3A, y_axis: Vec3A, z_axis: Vec3A) -> Mat3A {
Mat3A::from_cols(x_axis, y_axis, z_axis)
}
/// A 3x3 column major matrix.
///
/// This 3x3 matrix type features convenience methods for creating and using linear and
/// affine transformations. If you are primarily dealing with 2D affine transformations the
/// [`Affine2`](crate::Affine2) type is much faster and more space efficient than
/// using a 3x3 matrix.
///
/// Linear transformations including 3D rotation and scale can be created using methods
/// such as [`Self::from_diagonal()`], [`Self::from_quat()`], [`Self::from_axis_angle()`],
/// [`Self::from_rotation_x()`], [`Self::from_rotation_y()`], or
/// [`Self::from_rotation_z()`].
///
/// The resulting matrices can be use to transform 3D vectors using regular vector
/// multiplication.
///
/// Affine transformations including 2D translation, rotation and scale can be created
/// using methods such as [`Self::from_translation()`], [`Self::from_angle()`],
/// [`Self::from_scale()`] and [`Self::from_scale_angle_translation()`].
///
/// The [`Self::transform_point2()`] and [`Self::transform_vector2()`] convenience methods
/// are provided for performing affine transforms on 2D vectors and points. These multiply
/// 2D inputs as 3D vectors with an implicit `z` value of `1` for points and `0` for
/// vectors respectively. These methods assume that `Self` contains a valid affine
/// transform.
#[derive(Clone, Copy)]
#[repr(C)]
pub struct Mat3A {
pub x_axis: Vec3A,
pub y_axis: Vec3A,
pub z_axis: Vec3A,
}
impl Mat3A {
/// A 3x3 matrix with all elements set to `0.0`.
pub const ZERO: Self = Self::from_cols(Vec3A::ZERO, Vec3A::ZERO, Vec3A::ZERO);
/// A 3x3 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
pub const IDENTITY: Self = Self::from_cols(Vec3A::X, Vec3A::Y, Vec3A::Z);
/// All NAN:s.
pub const NAN: Self = Self::from_cols(Vec3A::NAN, Vec3A::NAN, Vec3A::NAN);
#[allow(clippy::too_many_arguments)]
#[inline(always)]
#[must_use]
const fn new(
m00: f32,
m01: f32,
m02: f32,
m10: f32,
m11: f32,
m12: f32,
m20: f32,
m21: f32,
m22: f32,
) -> Self {
Self {
x_axis: Vec3A::new(m00, m01, m02),
y_axis: Vec3A::new(m10, m11, m12),
z_axis: Vec3A::new(m20, m21, m22),
}
}
/// Creates a 3x3 matrix from three column vectors.
#[inline(always)]
#[must_use]
pub const fn from_cols(x_axis: Vec3A, y_axis: Vec3A, z_axis: Vec3A) -> Self {
Self {
x_axis,
y_axis,
z_axis,
}
}
/// Creates a 3x3 matrix from a `[f32; 9]` array stored in column major order.
/// If your data is stored in row major you will need to `transpose` the returned
/// matrix.
#[inline]
#[must_use]
pub const fn from_cols_array(m: &[f32; 9]) -> Self {
Self::new(m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8])
}
/// Creates a `[f32; 9]` array storing data in column major order.
/// If you require data in row major order `transpose` the matrix first.
#[inline]
#[must_use]
pub const fn to_cols_array(&self) -> [f32; 9] {
let [x_axis_x, x_axis_y, x_axis_z] = self.x_axis.to_array();
let [y_axis_x, y_axis_y, y_axis_z] = self.y_axis.to_array();
let [z_axis_x, z_axis_y, z_axis_z] = self.z_axis.to_array();
[
x_axis_x, x_axis_y, x_axis_z, y_axis_x, y_axis_y, y_axis_z, z_axis_x, z_axis_y,
z_axis_z,
]
}
/// Creates a 3x3 matrix from a `[[f32; 3]; 3]` 3D array stored in column major order.
/// If your data is in row major order you will need to `transpose` the returned
/// matrix.
#[inline]
#[must_use]
pub const fn from_cols_array_2d(m: &[[f32; 3]; 3]) -> Self {
Self::from_cols(
Vec3A::from_array(m[0]),
Vec3A::from_array(m[1]),
Vec3A::from_array(m[2]),
)
}
/// Creates a `[[f32; 3]; 3]` 3D array storing data in column major order.
/// If you require data in row major order `transpose` the matrix first.
#[inline]
#[must_use]
pub const fn to_cols_array_2d(&self) -> [[f32; 3]; 3] {
[
self.x_axis.to_array(),
self.y_axis.to_array(),
self.z_axis.to_array(),
]
}
/// Creates a 3x3 matrix with its diagonal set to `diagonal` and all other entries set to 0.
#[doc(alias = "scale")]
#[inline]
#[must_use]
pub const fn from_diagonal(diagonal: Vec3) -> Self {
Self::new(
diagonal.x, 0.0, 0.0, 0.0, diagonal.y, 0.0, 0.0, 0.0, diagonal.z,
)
}
/// Creates a 3x3 matrix from a 4x4 matrix, discarding the 4th row and column.
#[inline]
#[must_use]
pub fn from_mat4(m: Mat4) -> Self {
Self::from_cols(
Vec3A::from_vec4(m.x_axis),
Vec3A::from_vec4(m.y_axis),
Vec3A::from_vec4(m.z_axis),
)
}
/// Creates a 3x3 matrix from the minor of the given 4x4 matrix, discarding the `i`th column
/// and `j`th row.
///
/// # Panics
///
/// Panics if `i` or `j` is greater than 3.
#[inline]
#[must_use]
pub fn from_mat4_minor(m: Mat4, i: usize, j: usize) -> Self {
match (i, j) {
(0, 0) => Self::from_cols(
Vec3A::from_vec4(m.y_axis.yzww()),
Vec3A::from_vec4(m.z_axis.yzww()),
Vec3A::from_vec4(m.w_axis.yzww()),
),
(0, 1) => Self::from_cols(
Vec3A::from_vec4(m.y_axis.xzww()),
Vec3A::from_vec4(m.z_axis.xzww()),
Vec3A::from_vec4(m.w_axis.xzww()),
),
(0, 2) => Self::from_cols(
Vec3A::from_vec4(m.y_axis.xyww()),
Vec3A::from_vec4(m.z_axis.xyww()),
Vec3A::from_vec4(m.w_axis.xyww()),
),
(0, 3) => Self::from_cols(
Vec3A::from_vec4(m.y_axis.xyzw()),
Vec3A::from_vec4(m.z_axis.xyzw()),
Vec3A::from_vec4(m.w_axis.xyzw()),
),
(1, 0) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.yzww()),
Vec3A::from_vec4(m.z_axis.yzww()),
Vec3A::from_vec4(m.w_axis.yzww()),
),
(1, 1) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xzww()),
Vec3A::from_vec4(m.z_axis.xzww()),
Vec3A::from_vec4(m.w_axis.xzww()),
),
(1, 2) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xyww()),
Vec3A::from_vec4(m.z_axis.xyww()),
Vec3A::from_vec4(m.w_axis.xyww()),
),
(1, 3) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xyzw()),
Vec3A::from_vec4(m.z_axis.xyzw()),
Vec3A::from_vec4(m.w_axis.xyzw()),
),
(2, 0) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.yzww()),
Vec3A::from_vec4(m.y_axis.yzww()),
Vec3A::from_vec4(m.w_axis.yzww()),
),
(2, 1) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xzww()),
Vec3A::from_vec4(m.y_axis.xzww()),
Vec3A::from_vec4(m.w_axis.xzww()),
),
(2, 2) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xyww()),
Vec3A::from_vec4(m.y_axis.xyww()),
Vec3A::from_vec4(m.w_axis.xyww()),
),
(2, 3) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xyzw()),
Vec3A::from_vec4(m.y_axis.xyzw()),
Vec3A::from_vec4(m.w_axis.xyzw()),
),
(3, 0) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.yzww()),
Vec3A::from_vec4(m.y_axis.yzww()),
Vec3A::from_vec4(m.z_axis.yzww()),
),
(3, 1) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xzww()),
Vec3A::from_vec4(m.y_axis.xzww()),
Vec3A::from_vec4(m.z_axis.xzww()),
),
(3, 2) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xyww()),
Vec3A::from_vec4(m.y_axis.xyww()),
Vec3A::from_vec4(m.z_axis.xyww()),
),
(3, 3) => Self::from_cols(
Vec3A::from_vec4(m.x_axis.xyzw()),
Vec3A::from_vec4(m.y_axis.xyzw()),
Vec3A::from_vec4(m.z_axis.xyzw()),
),
_ => panic!("index out of bounds"),
}
}
/// Creates a 3D rotation matrix from the given quaternion.
///
/// # Panics
///
/// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn from_quat(rotation: Quat) -> Self {
glam_assert!(rotation.is_normalized());
let x2 = rotation.x + rotation.x;
let y2 = rotation.y + rotation.y;
let z2 = rotation.z + rotation.z;
let xx = rotation.x * x2;
let xy = rotation.x * y2;
let xz = rotation.x * z2;
let yy = rotation.y * y2;
let yz = rotation.y * z2;
let zz = rotation.z * z2;
let wx = rotation.w * x2;
let wy = rotation.w * y2;
let wz = rotation.w * z2;
Self::from_cols(
Vec3A::new(1.0 - (yy + zz), xy + wz, xz - wy),
Vec3A::new(xy - wz, 1.0 - (xx + zz), yz + wx),
Vec3A::new(xz + wy, yz - wx, 1.0 - (xx + yy)),
)
}
/// Creates a 3D rotation matrix from a normalized rotation `axis` and `angle` (in
/// radians).
///
/// # Panics
///
/// Will panic if `axis` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self {
glam_assert!(axis.is_normalized());
let (sin, cos) = math::sin_cos(angle);
let (xsin, ysin, zsin) = axis.mul(sin).into();
let (x, y, z) = axis.into();
let (x2, y2, z2) = axis.mul(axis).into();
let omc = 1.0 - cos;
let xyomc = x * y * omc;
let xzomc = x * z * omc;
let yzomc = y * z * omc;
Self::from_cols(
Vec3A::new(x2 * omc + cos, xyomc + zsin, xzomc - ysin),
Vec3A::new(xyomc - zsin, y2 * omc + cos, yzomc + xsin),
Vec3A::new(xzomc + ysin, yzomc - xsin, z2 * omc + cos),
)
}
/// Creates a 3D rotation matrix from the given euler rotation sequence and the angles (in
/// radians).
#[inline]
#[must_use]
pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self {
Self::from_euler_angles(order, a, b, c)
}
/// Extract Euler angles with the given Euler rotation order.
///
/// Note if the input matrix contains scales, shears, or other non-rotation transformations then
/// the resulting Euler angles will be ill-defined.
///
/// # Panics
///
/// Will panic if any input matrix column is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn to_euler(&self, order: EulerRot) -> (f32, f32, f32) {
glam_assert!(
self.x_axis.is_normalized()
&& self.y_axis.is_normalized()
&& self.z_axis.is_normalized()
);
self.to_euler_angles(order)
}
/// Creates a 3D rotation matrix from `angle` (in radians) around the x axis.
#[inline]
#[must_use]
pub fn from_rotation_x(angle: f32) -> Self {
let (sina, cosa) = math::sin_cos(angle);
Self::from_cols(
Vec3A::X,
Vec3A::new(0.0, cosa, sina),
Vec3A::new(0.0, -sina, cosa),
)
}
/// Creates a 3D rotation matrix from `angle` (in radians) around the y axis.
#[inline]
#[must_use]
pub fn from_rotation_y(angle: f32) -> Self {
let (sina, cosa) = math::sin_cos(angle);
Self::from_cols(
Vec3A::new(cosa, 0.0, -sina),
Vec3A::Y,
Vec3A::new(sina, 0.0, cosa),
)
}
/// Creates a 3D rotation matrix from `angle` (in radians) around the z axis.
#[inline]
#[must_use]
pub fn from_rotation_z(angle: f32) -> Self {
let (sina, cosa) = math::sin_cos(angle);
Self::from_cols(
Vec3A::new(cosa, sina, 0.0),
Vec3A::new(-sina, cosa, 0.0),
Vec3A::Z,
)
}
/// Creates an affine transformation matrix from the given 2D `translation`.
///
/// The resulting matrix can be used to transform 2D points and vectors. See
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
#[inline]
#[must_use]
pub fn from_translation(translation: Vec2) -> Self {
Self::from_cols(
Vec3A::X,
Vec3A::Y,
Vec3A::new(translation.x, translation.y, 1.0),
)
}
/// Creates an affine transformation matrix from the given 2D rotation `angle` (in
/// radians).
///
/// The resulting matrix can be used to transform 2D points and vectors. See
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
#[inline]
#[must_use]
pub fn from_angle(angle: f32) -> Self {
let (sin, cos) = math::sin_cos(angle);
Self::from_cols(
Vec3A::new(cos, sin, 0.0),
Vec3A::new(-sin, cos, 0.0),
Vec3A::Z,
)
}
/// Creates an affine transformation matrix from the given 2D `scale`, rotation `angle` (in
/// radians) and `translation`.
///
/// The resulting matrix can be used to transform 2D points and vectors. See
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
#[inline]
#[must_use]
pub fn from_scale_angle_translation(scale: Vec2, angle: f32, translation: Vec2) -> Self {
let (sin, cos) = math::sin_cos(angle);
Self::from_cols(
Vec3A::new(cos * scale.x, sin * scale.x, 0.0),
Vec3A::new(-sin * scale.y, cos * scale.y, 0.0),
Vec3A::new(translation.x, translation.y, 1.0),
)
}
/// Creates an affine transformation matrix from the given non-uniform 2D `scale`.
///
/// The resulting matrix can be used to transform 2D points and vectors. See
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
///
/// # Panics
///
/// Will panic if all elements of `scale` are zero when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn from_scale(scale: Vec2) -> Self {
// Do not panic as long as any component is non-zero
glam_assert!(scale.cmpne(Vec2::ZERO).any());
Self::from_cols(
Vec3A::new(scale.x, 0.0, 0.0),
Vec3A::new(0.0, scale.y, 0.0),
Vec3A::Z,
)
}
/// Creates an affine transformation matrix from the given 2x2 matrix.
///
/// The resulting matrix can be used to transform 2D points and vectors. See
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
#[inline]
pub fn from_mat2(m: Mat2) -> Self {
Self::from_cols((m.x_axis, 0.0).into(), (m.y_axis, 0.0).into(), Vec3A::Z)
}
/// Creates a 3x3 matrix from the first 9 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 9 elements long.
#[inline]
#[must_use]
pub const fn from_cols_slice(slice: &[f32]) -> Self {
Self::new(
slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7],
slice[8],
)
}
/// Writes the columns of `self` to the first 9 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 9 elements long.
#[inline]
pub fn write_cols_to_slice(self, slice: &mut [f32]) {
slice[0] = self.x_axis.x;
slice[1] = self.x_axis.y;
slice[2] = self.x_axis.z;
slice[3] = self.y_axis.x;
slice[4] = self.y_axis.y;
slice[5] = self.y_axis.z;
slice[6] = self.z_axis.x;
slice[7] = self.z_axis.y;
slice[8] = self.z_axis.z;
}
/// Returns the matrix column for the given `index`.
///
/// # Panics
///
/// Panics if `index` is greater than 2.
#[inline]
#[must_use]
pub fn col(&self, index: usize) -> Vec3A {
match index {
0 => self.x_axis,
1 => self.y_axis,
2 => self.z_axis,
_ => panic!("index out of bounds"),
}
}
/// Returns a mutable reference to the matrix column for the given `index`.
///
/// # Panics
///
/// Panics if `index` is greater than 2.
#[inline]
pub fn col_mut(&mut self, index: usize) -> &mut Vec3A {
match index {
0 => &mut self.x_axis,
1 => &mut self.y_axis,
2 => &mut self.z_axis,
_ => panic!("index out of bounds"),
}
}
/// Returns the matrix row for the given `index`.
///
/// # Panics
///
/// Panics if `index` is greater than 2.
#[inline]
#[must_use]
pub fn row(&self, index: usize) -> Vec3A {
match index {
0 => Vec3A::new(self.x_axis.x, self.y_axis.x, self.z_axis.x),
1 => Vec3A::new(self.x_axis.y, self.y_axis.y, self.z_axis.y),
2 => Vec3A::new(self.x_axis.z, self.y_axis.z, self.z_axis.z),
_ => panic!("index out of bounds"),
}
}
/// Returns `true` if, and only if, all elements are finite.
/// If any element is either `NaN`, positive or negative infinity, this will return `false`.
#[inline]
#[must_use]
pub fn is_finite(&self) -> bool {
self.x_axis.is_finite() && self.y_axis.is_finite() && self.z_axis.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
#[must_use]
pub fn is_nan(&self) -> bool {
self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan()
}
/// Returns the transpose of `self`.
#[inline]
#[must_use]
pub fn transpose(&self) -> Self {
unsafe {
let tmp0 = _mm_shuffle_ps(self.x_axis.0, self.y_axis.0, 0b01_00_01_00);
let tmp1 = _mm_shuffle_ps(self.x_axis.0, self.y_axis.0, 0b11_10_11_10);
Self {
x_axis: Vec3A(_mm_shuffle_ps(tmp0, self.z_axis.0, 0b00_00_10_00)),
y_axis: Vec3A(_mm_shuffle_ps(tmp0, self.z_axis.0, 0b01_01_11_01)),
z_axis: Vec3A(_mm_shuffle_ps(tmp1, self.z_axis.0, 0b10_10_10_00)),
}
}
}
/// Returns the determinant of `self`.
#[inline]
#[must_use]
pub fn determinant(&self) -> f32 {
self.z_axis.dot(self.x_axis.cross(self.y_axis))
}
/// Returns the inverse of `self`.
///
/// If the matrix is not invertible the returned matrix will be invalid.
///
/// # Panics
///
/// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn inverse(&self) -> Self {
let tmp0 = self.y_axis.cross(self.z_axis);
let tmp1 = self.z_axis.cross(self.x_axis);
let tmp2 = self.x_axis.cross(self.y_axis);
let det = self.z_axis.dot(tmp2);
glam_assert!(det != 0.0);
let inv_det = Vec3A::splat(det.recip());
Self::from_cols(tmp0.mul(inv_det), tmp1.mul(inv_det), tmp2.mul(inv_det)).transpose()
}
/// Transforms the given 2D vector as a point.
///
/// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `1`.
///
/// This method assumes that `self` contains a valid affine transform.
///
/// # Panics
///
/// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn transform_point2(&self, rhs: Vec2) -> Vec2 {
glam_assert!(self.row(2).abs_diff_eq(Vec3A::Z, 1e-6));
Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs + self.z_axis.xy()
}
/// Rotates the given 2D vector.
///
/// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `0`.
///
/// This method assumes that `self` contains a valid affine transform.
///
/// # Panics
///
/// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn transform_vector2(&self, rhs: Vec2) -> Vec2 {
glam_assert!(self.row(2).abs_diff_eq(Vec3A::Z, 1e-6));
Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs
}
/// Transforms a 3D vector.
#[inline]
#[must_use]
pub fn mul_vec3(&self, rhs: Vec3) -> Vec3 {
self.mul_vec3a(rhs.into()).into()
}
/// Transforms a [`Vec3A`].
#[inline]
#[must_use]
pub fn mul_vec3a(&self, rhs: Vec3A) -> Vec3A {
let mut res = self.x_axis.mul(rhs.xxx());
res = res.add(self.y_axis.mul(rhs.yyy()));
res = res.add(self.z_axis.mul(rhs.zzz()));
res
}
/// Multiplies two 3x3 matrices.
#[inline]
#[must_use]
pub fn mul_mat3(&self, rhs: &Self) -> Self {
Self::from_cols(
self.mul(rhs.x_axis),
self.mul(rhs.y_axis),
self.mul(rhs.z_axis),
)
}
/// Adds two 3x3 matrices.
#[inline]
#[must_use]
pub fn add_mat3(&self, rhs: &Self) -> Self {
Self::from_cols(
self.x_axis.add(rhs.x_axis),
self.y_axis.add(rhs.y_axis),
self.z_axis.add(rhs.z_axis),
)
}
/// Subtracts two 3x3 matrices.
#[inline]
#[must_use]
pub fn sub_mat3(&self, rhs: &Self) -> Self {
Self::from_cols(
self.x_axis.sub(rhs.x_axis),
self.y_axis.sub(rhs.y_axis),
self.z_axis.sub(rhs.z_axis),
)
}
/// Multiplies a 3x3 matrix by a scalar.
#[inline]
#[must_use]
pub fn mul_scalar(&self, rhs: f32) -> Self {
Self::from_cols(
self.x_axis.mul(rhs),
self.y_axis.mul(rhs),
self.z_axis.mul(rhs),
)
}
/// Divides a 3x3 matrix by a scalar.
#[inline]
#[must_use]
pub fn div_scalar(&self, rhs: f32) -> Self {
let rhs = Vec3A::splat(rhs);
Self::from_cols(
self.x_axis.div(rhs),
self.y_axis.div(rhs),
self.z_axis.div(rhs),
)
}
/// Returns true if the absolute difference of all elements between `self` and `rhs`
/// is less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two matrices contain similar elements. It works best
/// when comparing with a known value. The `max_abs_diff` that should be used used
/// depends on the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
#[must_use]
pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool {
self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
&& self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
&& self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff)
}
/// Takes the absolute value of each element in `self`
#[inline]
#[must_use]
pub fn abs(&self) -> Self {
Self::from_cols(self.x_axis.abs(), self.y_axis.abs(), self.z_axis.abs())
}
#[inline]
pub fn as_dmat3(&self) -> DMat3 {
DMat3::from_cols(
self.x_axis.as_dvec3(),
self.y_axis.as_dvec3(),
self.z_axis.as_dvec3(),
)
}
}
impl Default for Mat3A {
#[inline]
fn default() -> Self {
Self::IDENTITY
}
}
impl Add<Mat3A> for Mat3A {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
self.add_mat3(&rhs)
}
}
impl AddAssign<Mat3A> for Mat3A {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = self.add_mat3(&rhs);
}
}
impl Sub<Mat3A> for Mat3A {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
self.sub_mat3(&rhs)
}
}
impl SubAssign<Mat3A> for Mat3A {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = self.sub_mat3(&rhs);
}
}
impl Neg for Mat3A {
type Output = Self;
#[inline]
fn neg(self) -> Self::Output {
Self::from_cols(self.x_axis.neg(), self.y_axis.neg(), self.z_axis.neg())
}
}
impl Mul<Mat3A> for Mat3A {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
self.mul_mat3(&rhs)
}
}
impl MulAssign<Mat3A> for Mat3A {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = self.mul_mat3(&rhs);
}
}
impl Mul<Vec3A> for Mat3A {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: Vec3A) -> Self::Output {
self.mul_vec3a(rhs)
}
}
impl Mul<Mat3A> for f32 {
type Output = Mat3A;
#[inline]
fn mul(self, rhs: Mat3A) -> Self::Output {
rhs.mul_scalar(self)
}
}
impl Mul<f32> for Mat3A {
type Output = Self;
#[inline]
fn mul(self, rhs: f32) -> Self::Output {
self.mul_scalar(rhs)
}
}
impl MulAssign<f32> for Mat3A {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
*self = self.mul_scalar(rhs);
}
}
impl Div<Mat3A> for f32 {
type Output = Mat3A;
#[inline]
fn div(self, rhs: Mat3A) -> Self::Output {
rhs.div_scalar(self)
}
}
impl Div<f32> for Mat3A {
type Output = Self;
#[inline]
fn div(self, rhs: f32) -> Self::Output {
self.div_scalar(rhs)
}
}
impl DivAssign<f32> for Mat3A {
#[inline]
fn div_assign(&mut self, rhs: f32) {
*self = self.div_scalar(rhs);
}
}
impl Mul<Vec3> for Mat3A {
type Output = Vec3;
#[inline]
fn mul(self, rhs: Vec3) -> Vec3 {
self.mul_vec3a(rhs.into()).into()
}
}
impl From<Mat3> for Mat3A {
#[inline]
fn from(m: Mat3) -> Self {
Self {
x_axis: m.x_axis.into(),
y_axis: m.y_axis.into(),
z_axis: m.z_axis.into(),
}
}
}
impl Sum<Self> for Mat3A {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for Mat3A {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for Mat3A {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::IDENTITY, Self::mul)
}
}
impl<'a> Product<&'a Self> for Mat3A {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
}
}
impl PartialEq for Mat3A {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis) && self.z_axis.eq(&rhs.z_axis)
}
}
impl fmt::Debug for Mat3A {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct(stringify!(Mat3A))
.field("x_axis", &self.x_axis)
.field("y_axis", &self.y_axis)
.field("z_axis", &self.z_axis)
.finish()
}
}
impl fmt::Display for Mat3A {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(p) = f.precision() {
write!(
f,
"[{:.*}, {:.*}, {:.*}]",
p, self.x_axis, p, self.y_axis, p, self.z_axis
)
} else {
write!(f, "[{}, {}, {}]", self.x_axis, self.y_axis, self.z_axis)
}
}
}