glib_macros/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
// Take a look at the license at the top of the repository in the LICENSE file.
mod async_test;
mod boxed_derive;
mod clone;
mod clone_old;
mod closure;
mod closure_old;
mod derived_properties_attribute;
mod downgrade_derive;
mod enum_derive;
mod error_domain_derive;
mod flags_attribute;
mod object_impl_attributes;
mod properties;
mod shared_boxed_derive;
mod value_delegate_derive;
mod variant_derive;
mod utils;
use flags_attribute::AttrInput;
use proc_macro::{TokenStream, TokenTree};
use proc_macro2::Span;
use syn::{parse_macro_input, DeriveInput};
use utils::{parse_nested_meta_items_from_stream, NestedMetaItem};
/// Macro for passing variables as strong or weak references into a closure.
///
/// This macro can be useful in combination with closures, e.g. signal handlers, to reduce the
/// boilerplate required for passing strong or weak references into the closure. It will
/// automatically create the new reference and pass it with the same name into the closure.
///
/// If upgrading the weak reference to a strong reference inside the closure is failing, the
/// closure is immediately returning an optional default return value. If none is provided, `()` is
/// returned.
///
/// **⚠️ IMPORTANT ⚠️**
///
/// `glib` needs to be in scope, so unless it's one of the direct crate dependencies, you need to
/// import it because `clone!` is using it. For example:
///
/// ```rust,ignore
/// use gtk::glib;
/// ```
///
/// ### Debugging
///
/// In case something goes wrong inside the `clone!` macro, we use the [`g_debug`] macro. Meaning
/// that if you want to see these debug messages, you'll have to set the `G_MESSAGES_DEBUG`
/// environment variable when running your code (either in the code directly or when running the
/// binary) to either "all" or [`CLONE_MACRO_LOG_DOMAIN`]:
///
/// [`g_debug`]: ../glib/macro.g_debug.html
/// [`CLONE_MACRO_LOG_DOMAIN`]: ../glib/constant.CLONE_MACRO_LOG_DOMAIN.html
///
/// ```rust,ignore
/// use glib::CLONE_MACRO_LOG_DOMAIN;
///
/// std::env::set_var("G_MESSAGES_DEBUG", CLONE_MACRO_LOG_DOMAIN);
/// std::env::set_var("G_MESSAGES_DEBUG", "all");
/// ```
///
/// Or:
///
/// ```bash
/// $ G_MESSAGES_DEBUG=all ./binary
/// ```
///
/// ### Passing a strong reference
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let v = Rc::new(1);
/// let closure = clone!(
/// #[strong] v,
/// move |x| {
/// println!("v: {}, x: {}", v, x);
/// },
/// );
///
/// closure(2);
/// ```
///
/// ### Passing a weak reference
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let u = Rc::new(2);
/// let closure = clone!(
/// #[weak]
/// u,
/// move |x| {
/// println!("u: {}, x: {}", u, x);
/// },
/// );
///
/// closure(3);
/// ```
///
/// #### Allowing a nullable weak reference
///
/// In some cases, even if the weak references can't be retrieved, you might want to still have
/// your closure called. In this case, you need to use `#[weak_allow_none]` instead of `#[weak]`:
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let closure = {
/// // This `Rc` won't be available in the closure because it's dropped at the end of the
/// // current block
/// let u = Rc::new(2);
/// clone!(
/// #[weak_allow_none]
/// u,
/// move |x| {
/// // We need to use a Debug print for `u` because it'll be an `Option`.
/// println!("u: {:?}, x: {}", u, x);
/// true
/// },
/// )
/// };
///
/// assert_eq!(closure(3), true);
/// ```
///
/// ### Creating owned values from references (`ToOwned`)
///
/// ```
/// use glib;
/// use glib_macros::clone;
///
/// let v = "123";
/// let closure = clone!(
/// #[to_owned] v,
/// move |x| {
/// // v is passed as `String` here
/// println!("v: {}, x: {}", v, x);
/// },
/// );
///
/// closure(2);
/// ```
///
/// ### Renaming variables
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let v = Rc::new(1);
/// let u = Rc::new(2);
/// let closure = clone!(
/// #[strong(rename_to = y)]
/// v,
/// #[weak] u,
/// move |x| {
/// println!("v as y: {}, u: {}, x: {}", y, u, x);
/// },
/// );
///
/// closure(3);
/// ```
///
/// ### Providing a return value if upgrading a weak reference fails
///
/// By default, `()` is returned if upgrading a weak reference fails. This behaviour can be
/// adjusted in two different ways:
///
/// Either by providing the value yourself using one of
///
/// * `#[upgrade_or]`: Requires an expression that returns a `Copy` value of the expected return type,
/// * `#[upgrade_or_else]`: Requires a closure that returns a value of the expected return type,
/// * `#[upgrade_or_default]`: Requires that the return type implements `Default` and returns that.
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let v = Rc::new(1);
/// let closure = clone!(
/// #[weak] v,
/// #[upgrade_or]
/// false,
/// move |x| {
/// println!("v: {}, x: {}", v, x);
/// true
/// },
/// );
///
/// // Drop value so that the weak reference can't be upgraded.
/// drop(v);
///
/// assert_eq!(closure(2), false);
/// ```
///
/// Or by using `#[upgrade_or_panic]`: If the value fails to get upgraded, it'll panic.
///
/// ```should_panic
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// # let v = Rc::new(1);
/// let closure = clone!(
/// #[weak] v,
/// #[upgrade_or_panic]
/// move |x| {
/// println!("v: {}, x: {}", v, x);
/// true
/// },
/// );
/// # drop(v);
/// # assert_eq!(closure(2), false);
/// ```
///
/// ### Errors
///
/// Here is a list of errors you might encounter:
///
/// **Missing `#[weak]` or `#[strong]`**:
///
/// ```compile_fail
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// let v = Rc::new(1);
///
/// let closure = clone!(
/// v,
/// move |x| println!("v: {}, x: {}", v, x),
/// );
/// # drop(v);
/// # closure(2);
/// ```
///
/// **Passing `self` as an argument**:
///
/// ```compile_fail
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// #[derive(Debug)]
/// struct Foo;
///
/// impl Foo {
/// fn foo(&self) {
/// let closure = clone!(
/// #[strong] self,
/// move |x| {
/// println!("self: {:?}", self);
/// },
/// );
/// # closure(2);
/// }
/// }
/// ```
///
/// If you want to use `self` directly, you'll need to rename it:
///
/// ```
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// #[derive(Debug)]
/// struct Foo;
///
/// impl Foo {
/// fn foo(&self) {
/// let closure = clone!(
/// #[strong(rename_to = this)]
/// self,
/// move |x| {
/// println!("self: {:?}", this);
/// },
/// );
/// # closure(2);
/// }
/// }
/// ```
///
/// **Passing fields directly**
///
/// ```compile_fail
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// #[derive(Debug)]
/// struct Foo {
/// v: Rc<usize>,
/// }
///
/// impl Foo {
/// fn foo(&self) {
/// let closure = clone!(
/// #[strong] self.v,
/// move |x| {
/// println!("self.v: {:?}", v);
/// },
/// );
/// # closure(2);
/// }
/// }
/// ```
///
/// You can do it by renaming it:
///
/// ```
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// # struct Foo {
/// # v: Rc<usize>,
/// # }
/// impl Foo {
/// fn foo(&self) {
/// let closure = clone!(
/// #[strong(rename_to = v)]
/// self.v,
/// move |x| {
/// println!("self.v: {}", v);
/// },
/// );
/// # closure(2);
/// }
/// }
/// ```
#[proc_macro]
pub fn clone(item: TokenStream) -> TokenStream {
// Check if this is an old-style clone macro invocation.
// These always start with an '@' punctuation.
let Some(first) = item.clone().into_iter().next() else {
return syn::Error::new(Span::call_site(), "expected a closure or async block")
.to_compile_error()
.into();
};
match first {
TokenTree::Punct(ref p) if p.to_string() == "@" => clone_old::clone_inner(item),
_ => clone::clone_inner(item),
}
}
/// Macro for creating a [`Closure`] object. This is a wrapper around [`Closure::new`] that
/// automatically type checks its arguments at run-time.
///
/// A `Closure` takes [`Value`] objects as inputs and output. This macro will automatically convert
/// the inputs to Rust types when invoking its callback, and then will convert the output back to a
/// `Value`. All inputs must implement the [`FromValue`] trait, and outputs must either implement
/// the [`ToValue`] trait or be the unit type `()`. Type-checking of inputs is done at run-time; if
/// incorrect types are passed via [`Closure::invoke`] then the closure will panic. Note that when
/// passing input types derived from [`Object`] or [`Interface`], you must take care to upcast to
/// the exact object or interface type that is being received.
///
/// Similarly to [`clone!`](crate::clone!), this macro can be useful in combination with signal
/// handlers to reduce boilerplate when passing references. Unique to `Closure` objects is the
/// ability to watch an object using the `#[watch]` attribute. Only an [`Object`] value can be
/// passed to `#[watch]`, and only one object can be watched per closure. When an object is watched,
/// a weak reference to the object is held in the closure. When the object is destroyed, the
/// closure will become invalidated: all signal handlers connected to the closure will become
/// disconnected, and any calls to [`Closure::invoke`] on the closure will be silently ignored.
/// Internally, this is accomplished using [`Object::watch_closure`] on the watched object.
///
/// The `#[weak]`, `#[weak_allow_none]`, `#[strong]`, `#[to_owned]` captures are also supported and
/// behave the same as in [`clone!`](crate::clone!), as is aliasing captures via `rename_to`.
/// Similarly, upgrade failure of weak references can be adjusted via `#[upgrade_or]`,
/// `#[upgrade_or_else]`, `#[upgrade_or_default]` and `#[upgrade_or_panic]`.
///
/// Notably, these captures are able to reference `Rc` and `Arc` values in addition to `Object`
/// values.
///
/// [`Closure`]: ../glib/closure/struct.Closure.html
/// [`Closure::new`]: ../glib/closure/struct.Closure.html#method.new
/// [`Closure::new_local`]: ../glib/closure/struct.Closure.html#method.new_local
/// [`Closure::invoke`]: ../glib/closure/struct.Closure.html#method.invoke
/// [`Value`]: ../glib/value/struct.Value.html
/// [`FromValue`]: ../glib/value/trait.FromValue.html
/// [`ToValue`]: ../glib/value/trait.ToValue.html
/// [`Interface`]: ../glib/object/struct.Interface.html
/// [`Object`]: ../glib/object/struct.Object.html
/// [`Object::watch_closure`]: ../glib/object/trait.ObjectExt.html#tymethod.watch_closure
/// **⚠️ IMPORTANT ⚠️**
///
/// `glib` needs to be in scope, so unless it's one of the direct crate dependencies, you need to
/// import it because `closure!` is using it. For example:
///
/// ```rust,ignore
/// use gtk::glib;
/// ```
///
/// ### Using as a closure object
///
/// ```
/// use glib_macros::closure;
///
/// let concat_str = closure!(|s: &str| s.to_owned() + " World");
/// let result = concat_str.invoke::<String>(&[&"Hello"]);
/// assert_eq!(result, "Hello World");
/// ```
///
/// ### Connecting to a signal
///
/// For wrapping closures that can't be sent across threads, the
/// [`closure_local!`](crate::closure_local!) macro can be used. It has the same syntax as
/// `closure!`, but instead uses [`Closure::new_local`] internally.
///
/// ```
/// use glib;
/// use glib::prelude::*;
/// use glib_macros::closure_local;
///
/// let obj = glib::Object::new::<glib::Object>();
/// obj.connect_closure(
/// "notify", false,
/// closure_local!(|_obj: glib::Object, pspec: glib::ParamSpec| {
/// println!("property notify: {}", pspec.name());
/// }));
/// ```
///
/// ### Object Watching
///
/// ```
/// use glib;
/// use glib::prelude::*;
/// use glib_macros::closure_local;
///
/// let closure = {
/// let obj = glib::Object::new::<glib::Object>();
/// let closure = closure_local!(
/// #[watch] obj,
/// move || {
/// obj.type_().name()
/// },
/// );
/// assert_eq!(closure.invoke::<String>(&[]), "GObject");
/// closure
/// };
/// // `obj` is dropped, closure invalidated so it always does nothing and returns None
/// closure.invoke::<()>(&[]);
/// ```
///
/// `#[watch]` has special behavior when connected to a signal:
///
/// ```
/// use glib;
/// use glib::prelude::*;
/// use glib_macros::closure_local;
///
/// let obj = glib::Object::new::<glib::Object>();
/// {
/// let other = glib::Object::new::<glib::Object>();
/// obj.connect_closure(
/// "notify", false,
/// closure_local!(
/// #[watch(rename_to = b)]
/// other,
/// move |a: glib::Object, pspec: glib::ParamSpec| {
/// let value = a.property_value(pspec.name());
/// b.set_property(pspec.name(), &value);
/// },
/// ),
/// );
/// // The signal handler will disconnect automatically at the end of this
/// // block when `other` is dropped.
/// }
/// ```
///
/// ### Weak and Strong References
///
/// ```
/// use glib;
/// use glib::prelude::*;
/// use glib_macros::closure;
/// use std::sync::Arc;
///
/// let closure = {
/// let a = Arc::new(String::from("Hello"));
/// let b = Arc::new(String::from("World"));
/// let c = "!";
/// let closure = closure!(
/// #[strong] a,
/// #[weak_allow_none]
/// b,
/// #[to_owned]
/// c,
/// move || {
/// // `a` is Arc<String>, `b` is Option<Arc<String>>, `c` is a `String`
/// format!("{} {}{}", a, b.as_ref().map(|b| b.as_str()).unwrap_or_else(|| "Moon"), c)
/// },
/// );
/// assert_eq!(closure.invoke::<String>(&[]), "Hello World!");
/// closure
/// };
/// // `a`, `c` still kept alive, `b` is dropped
/// assert_eq!(closure.invoke::<String>(&[]), "Hello Moon!");
/// ```
#[proc_macro]
pub fn closure(item: TokenStream) -> TokenStream {
// Check if this is an old-style closure macro invocation.
// These always start with an '@' punctuation.
let Some(first) = item.clone().into_iter().next() else {
return syn::Error::new(Span::call_site(), "expected a closure")
.to_compile_error()
.into();
};
match first {
TokenTree::Punct(ref p) if p.to_string() == "@" => closure_old::closure_inner(item, "new"),
_ => closure::closure_inner(item, "new"),
}
}
/// The same as [`closure!`](crate::closure!) but uses [`Closure::new_local`] as a constructor.
/// This is useful for closures which can't be sent across threads. See the documentation of
/// [`closure!`](crate::closure!) for details.
///
/// [`Closure::new_local`]: ../glib/closure/struct.Closure.html#method.new_local
#[proc_macro]
pub fn closure_local(item: TokenStream) -> TokenStream {
// Check if this is an old-style closure macro invocation.
// These always start with an '@' punctuation.
let Some(first) = item.clone().into_iter().next() else {
return syn::Error::new(Span::call_site(), "expected a closure")
.to_compile_error()
.into();
};
match first {
TokenTree::Punct(ref p) if p.to_string() == "@" => {
closure_old::closure_inner(item, "new_local")
}
_ => closure::closure_inner(item, "new_local"),
}
}
/// Derive macro to register a Rust enum in the GLib type system and derive the
/// [`glib::Value`] traits.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)]
/// #[enum_type(name = "MyEnum")]
/// enum MyEnum {
/// Val,
/// #[enum_value(name = "My Val")]
/// ValWithCustomName,
/// #[enum_value(name = "My Other Val", nick = "other")]
/// ValWithCustomNameAndNick,
/// }
/// ```
///
/// An enum can be registered as a dynamic type by setting the derive macro
/// helper attribute `enum_dynamic`:
///
/// ```ignore
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)]
/// #[enum_type(name = "MyEnum")]
/// #[enum_dynamic]
/// enum MyEnum {
/// ...
/// }
/// ```
///
/// As a dynamic type, an enum must be explicitly registered when the system
/// loads the implementation (see [`TypePlugin`] and [`TypeModule`]).
/// Therefore, whereas an enum can be registered only once as a static type,
/// it can be registered several times as a dynamic type.
///
/// An enum registered as a dynamic type is never unregistered. The system
/// calls [`TypePluginExt::unuse`] to unload the implementation. If the
/// [`TypePlugin`] subclass is a [`TypeModule`], the enum registered as a
/// dynamic type is marked as unloaded and must be registered again when the
/// module is reloaded.
///
/// The derive macro helper attribute `enum_dynamic` provides two behaviors
/// when registering an enum as a dynamic type:
///
/// - lazy registration: by default an enum is registered as a dynamic type
/// when the system loads the implementation (e.g. when the module is loaded).
/// Optionally setting `lazy_registration` to `true` postpones registration on
/// the first use (when `static_type()` is called for the first time):
///
/// ```ignore
/// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)]
/// #[enum_type(name = "MyEnum")]
/// #[enum_dynamic(lazy_registration = true)]
/// enum MyEnum {
/// ...
/// }
/// ```
///
/// - registration within [`TypeModule`] subclass or within [`TypePlugin`]
/// subclass: an enum is usually registered as a dynamic type within a
/// [`TypeModule`] subclass:
///
/// ```ignore
/// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)]
/// #[enum_type(name = "MyModuleEnum")]
/// #[enum_dynamic]
/// enum MyModuleEnum {
/// ...
/// }
/// ...
/// #[derive(Default)]
/// pub struct MyModule;
/// ...
/// impl TypeModuleImpl for MyModule {
/// fn load(&self) -> bool {
/// // registers enums as dynamic types.
/// let my_module = self.obj();
/// let type_module: &glib::TypeModule = my_module.upcast_ref();
/// MyModuleEnum::on_implementation_load(type_module)
/// }
/// ...
/// }
/// ```
///
/// Optionally setting `plugin_type` allows to register an enum as a dynamic
/// type within a [`TypePlugin`] subclass that is not a [`TypeModule`]:
///
/// ```ignore
/// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)]
/// #[enum_type(name = "MyPluginEnum")]
/// #[enum_dynamic(plugin_type = MyPlugin)]
/// enum MyPluginEnum {
/// ...
/// }
/// ...
/// #[derive(Default)]
/// pub struct MyPlugin;
/// ...
/// impl TypePluginImpl for MyPlugin {
/// fn use_plugin(&self) {
/// // register enums as dynamic types.
/// let my_plugin = self.obj();
/// MyPluginEnum::on_implementation_load(my_plugin.as_ref());
/// }
/// ...
/// }
/// ```
///
/// [`glib::Value`]: ../glib/value/struct.Value.html
/// [`TypePlugin`]: ../glib/gobject/type_plugin/struct.TypePlugin.html
/// [`TypeModule`]: ../glib/gobject/type_module/struct.TypeModule.html
/// [`TypePluginExt::unuse`]: ../glib/gobject/type_plugin/trait.TypePluginExt.
#[proc_macro_derive(Enum, attributes(enum_type, enum_dynamic, enum_value))]
pub fn enum_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
enum_derive::impl_enum(&input)
.unwrap_or_else(syn::Error::into_compile_error)
.into()
}
/// Attribute macro for defining flags using the `bitflags` crate.
/// This macro will also define a `GFlags::type_` function and
/// the [`glib::Value`] traits.
///
/// The expected `GType` name has to be passed as macro attribute.
/// The name and nick of each flag can also be optionally defined.
/// Default name is the flag identifier in CamelCase and default nick
/// is the identifier in kebab-case.
/// Combined flags should not be registered with the `GType` system
/// and so need to be tagged with the `#[flags_value(skip)]` attribute.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[glib::flags(name = "MyFlags")]
/// enum MyFlags {
/// #[flags_value(name = "Flag A", nick = "nick-a")]
/// A = 0b00000001,
/// #[flags_value(name = "Flag B")]
/// B = 0b00000010,
/// #[flags_value(skip)]
/// AB = Self::A.bits() | Self::B.bits(),
/// C = 0b00000100,
/// }
/// ```
///
/// The flags can be registered as a dynamic type by setting the macro helper
/// attribute `flags_dynamic`:
/// ```ignore
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[glib::flags(name = "MyFlags")]
/// #[flags_dynamic]
/// enum MyFlags {
/// ...
/// }
/// ```
///
/// As a dynamic type, the flags must be explicitly registered when the system
/// loads the implementation (see [`TypePlugin`] and [`TypeModule`]).
/// Therefore, whereas the flags can be registered only once as a static type,
/// they can be registered several times as a dynamic type.
///
/// The flags registered as a dynamic type are never unregistered. The system
/// calls [`TypePluginExt::unuse`] to unload the implementation. If the
/// [`TypePlugin`] subclass is a [`TypeModule`], the flags registered as a
/// dynamic type are marked as unloaded and must be registered again when the
/// module is reloaded.
///
/// The macro helper attribute `flags_dynamic` provides two behaviors when
/// registering the flags as a dynamic type:
///
/// - lazy registration: by default the flags are registered as a dynamic type
/// when the system loads the implementation (e.g. when the module is loaded).
/// Optionally setting `lazy_registration` to `true` postpones registration on
/// the first use (when `static_type()` is called for the first time):
///
/// ```ignore
/// #[glib::flags(name = "MyFlags")]
/// #[flags_dynamic(lazy_registration = true)]
/// enum MyFlags {
/// ...
/// }
/// ```
///
/// - registration within [`TypeModule`] subclass or within [`TypePlugin`]
/// subclass: the flags are usually registered as a dynamic type within a
/// [`TypeModule`] subclass:
///
/// ```ignore
/// #[glib::flags(name = "MyModuleFlags")]
/// #[flags_dynamic]
/// enum MyModuleFlags {
/// ...
/// }
/// ...
/// #[derive(Default)]
/// pub struct MyModule;
/// ...
/// impl TypeModuleImpl for MyModule {
/// fn load(&self) -> bool {
/// // registers flags as dynamic types.
/// let my_module = self.obj();
/// let type_module: &glib::TypeModule = my_module.upcast_ref();
/// MyModuleFlags::on_implementation_load(type_module)
/// }
/// ...
/// }
/// ```
///
/// Optionally setting `plugin_type` allows to register the flags as a dynamic
/// type within a [`TypePlugin`] subclass that is not a [`TypeModule`]:
/// ```ignore
/// #[glib::flags(name = "MyModuleFlags")]
/// #[flags_dynamic(plugin_type = MyPlugin)]
/// enum MyModuleFlags {
/// ...
/// }
/// ...
/// #[derive(Default)]
/// pub struct MyPlugin;
/// ...
/// impl TypePluginImpl for MyPlugin {
/// fn use_plugin(&self) {
/// // register flags as dynamic types.
/// let my_plugin = self.obj();
/// MyPluginFlags::on_implementation_load(my_plugin.as_ref());
/// }
/// ...
/// }
/// ```
///
/// [`glib::Value`]: ../glib/value/struct.Value.html
/// [`TypePlugin`]: ../glib/gobject/type_plugin/struct.TypePlugin.html
/// [`TypeModule`]: ../glib/gobject/type_module/struct.TypeModule.html
/// [`TypePluginExt::unuse`]: ../glib/gobject/type_plugin/trait.TypePluginExt.
#[proc_macro_attribute]
pub fn flags(attr: TokenStream, item: TokenStream) -> TokenStream {
let mut name = NestedMetaItem::<syn::LitStr>::new("name")
.required()
.value_required();
let mut allow_name_conflict_attr =
NestedMetaItem::<syn::LitBool>::new("allow_name_conflict").value_optional();
if let Err(e) = parse_nested_meta_items_from_stream(
attr.into(),
&mut [&mut name, &mut allow_name_conflict_attr],
) {
return e.to_compile_error().into();
}
let allow_name_conflict = allow_name_conflict_attr.found
|| allow_name_conflict_attr
.value
.map(|b| b.value())
.unwrap_or(false);
let attr_meta = AttrInput {
enum_name: name.value.unwrap(),
allow_name_conflict,
};
syn::parse::<syn::ItemEnum>(item)
.map_err(|_| syn::Error::new(Span::call_site(), flags_attribute::WRONG_PLACE_MSG))
.map(|mut input| flags_attribute::impl_flags(attr_meta, &mut input))
.unwrap_or_else(syn::Error::into_compile_error)
.into()
}
/// Derive macro for defining a GLib error domain and its associated
/// [`ErrorDomain`] trait.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Debug, Copy, Clone, glib::ErrorDomain)]
/// #[error_domain(name = "ex-foo")]
/// enum Foo {
/// Blah,
/// Baaz,
/// }
/// ```
///
/// [`ErrorDomain`]: ../glib/error/trait.ErrorDomain.html
#[proc_macro_derive(ErrorDomain, attributes(error_domain))]
pub fn error_domain_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
error_domain_derive::impl_error_domain(&input)
.unwrap_or_else(syn::Error::into_compile_error)
.into()
}
/// Derive macro for defining a [`BoxedType`]`::type_` function and
/// the [`glib::Value`] traits. Optionally, the type can be marked as
/// `nullable` to get an implementation of `glib::value::ToValueOptional`.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Clone, Debug, PartialEq, Eq, glib::Boxed)]
/// #[boxed_type(name = "MyBoxed")]
/// struct MyBoxed(String);
///
/// #[derive(Clone, Debug, PartialEq, Eq, glib::Boxed)]
/// #[boxed_type(name = "MyNullableBoxed", nullable)]
/// struct MyNullableBoxed(String);
/// ```
///
/// [`BoxedType`]: ../glib/subclass/boxed/trait.BoxedType.html
/// [`glib::Value`]: ../glib/value/struct.Value.html
#[proc_macro_derive(Boxed, attributes(boxed_type))]
pub fn boxed_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
boxed_derive::impl_boxed(&input)
.unwrap_or_else(syn::Error::into_compile_error)
.into()
}
/// Derive macro for defining a [`SharedType`]`::get_type` function and
/// the [`glib::Value`] traits. Optionally, the type can be marked as
/// `nullable` to get an implementation of `glib::value::ToValueOptional`.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Clone, Debug, PartialEq, Eq)]
/// struct MySharedInner {
/// foo: String,
/// }
///
/// #[derive(Clone, Debug, PartialEq, Eq, glib::SharedBoxed)]
/// #[shared_boxed_type(name = "MySharedBoxed")]
/// struct MySharedBoxed(std::sync::Arc<MySharedInner>);
///
/// #[derive(Clone, Debug, PartialEq, Eq, glib::SharedBoxed)]
/// #[shared_boxed_type(name = "MyNullableSharedBoxed", nullable)]
/// struct MyNullableSharedBoxed(std::sync::Arc<MySharedInner>);
/// ```
///
/// [`SharedType`]: ../glib/subclass/shared/trait.SharedType.html
/// [`glib::Value`]: ../glib/value/struct.Value.html
#[proc_macro_derive(SharedBoxed, attributes(shared_boxed_type))]
pub fn shared_boxed_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
shared_boxed_derive::impl_shared_boxed(&input)
.unwrap_or_else(syn::Error::into_compile_error)
.into()
}
/// Macro for boilerplate of [`ObjectSubclass`] implementations.
///
/// This adds implementations for the `type_data()` and `type_()` methods,
/// which should probably never be defined differently.
///
/// It provides default values for the `Instance`, `Class`, and `Interfaces`
/// type parameters. If these are present, the macro will use the provided value
/// instead of the default.
///
/// Usually the defaults for `Instance` and `Class` will work. `Interfaces` is
/// necessary for types that implement interfaces.
///
/// ```ignore
/// type Instance = glib::subclass::basic::InstanceStruct<Self>;
/// type Class = glib::subclass::basic::ClassStruct<Self>;
/// type Interfaces = ();
/// ```
///
/// If no `new()` or `with_class()` method is provided, the macro adds a `new()`
/// implementation calling `Default::default()`. So the type needs to implement
/// `Default`, or this should be overridden.
///
/// ```ignore
/// fn new() -> Self {
/// Default::default()
/// }
/// ```
///
/// An object subclass can be registered as a dynamic type by setting the macro
/// helper attribute `object_class_dynamic`:
///
/// ```ignore
/// #[derive(Default)]
/// pub struct MyType;
///
/// #[glib::object_subclass]
/// #[object_subclass_dynamic]
/// impl ObjectSubclass for MyType { ... }
/// ```
///
/// As a dynamic type, an object subclass must be explicitly registered when
/// the system loads the implementation (see [`TypePlugin`] and [`TypeModule`]).
/// Therefore, whereas an object subclass can be registered only once as a
/// static type, it can be registered several times as a dynamic type.
///
/// An object subclass registered as a dynamic type is never unregistered. The
/// system calls [`TypePluginExt::unuse`] to unload the implementation. If the
/// [`TypePlugin`] subclass is a [`TypeModule`], the object subclass registered
/// as a dynamic type is marked as unloaded and must be registered again when
/// the module is reloaded.
///
/// The macro helper attribute `object_class_dynamic` provides two behaviors
/// when registering an object subclass as a dynamic type:
///
/// - lazy registration: by default an object subclass is registered as a
/// dynamic type when the system loads the implementation (e.g. when the module
/// is loaded). Optionally setting `lazy_registration` to `true` postpones
/// registration on the first use (when `static_type()` is called for the first
/// time):
///
/// ```ignore
/// #[derive(Default)]
/// pub struct MyType;
///
/// #[glib::object_subclass]
/// #[object_subclass_dynamic(lazy_registration = true)]
/// impl ObjectSubclass for MyType { ... }
/// ```
///
/// - registration within [`TypeModule`] subclass or within [`TypePlugin`]
/// subclass: an object subclass is usually registered as a dynamic type within
/// a [`TypeModule`] subclass:
///
/// ```ignore
/// #[derive(Default)]
/// pub struct MyModuleType;
///
/// #[glib::object_subclass]
/// #[object_subclass_dynamic]
/// impl ObjectSubclass for MyModuleType { ... }
/// ...
/// #[derive(Default)]
/// pub struct MyModule;
/// ...
/// impl TypeModuleImpl for MyModule {
/// fn load(&self) -> bool {
/// // registers object subclasses as dynamic types.
/// let my_module = self.obj();
/// let type_module: &glib::TypeModule = my_module.upcast_ref();
/// MyModuleType::on_implementation_load(type_module)
/// }
/// ...
/// }
/// ```
///
/// Optionally setting `plugin_type` allows to register an object subclass as a
/// dynamic type within a [`TypePlugin`] subclass that is not a [`TypeModule`]:
///
/// ```ignore
/// #[derive(Default)]
/// pub struct MyPluginType;
///
/// #[glib::object_subclass]
/// #[object_subclass_dynamic(plugin_type = MyPlugin)]
/// impl ObjectSubclass for MyPluginType { ... }
/// ...
/// #[derive(Default)]
/// pub struct MyPlugin;
/// ...
/// impl TypePluginImpl for MyPlugin {
/// fn use_plugin(&self) {
/// // register object subclasses as dynamic types.
/// let my_plugin = self.obj();
/// MyPluginType::on_implementation_load(my_plugin.as_ref());
/// }
/// ...
/// }
/// ```
///
/// [`ObjectSubclass`]: ../glib/subclass/types/trait.ObjectSubclass.html
/// [`TypePlugin`]: ../glib/gobject/type_plugin/struct.TypePlugin.html
/// [`TypeModule`]: ../glib/gobject/type_module/struct.TypeModule.html
/// [`TypePluginExt::unuse`]: ../glib/gobject/type_plugin/trait.TypePluginExt.html#method.unuse
#[proc_macro_attribute]
pub fn object_subclass(_attr: TokenStream, item: TokenStream) -> TokenStream {
let input = parse_macro_input!(item with object_impl_attributes::Input::parse_subclass);
object_impl_attributes::subclass::impl_object_subclass(input).into()
}
/// Macro for boilerplate of [`ObjectInterface`] implementations.
///
/// This adds implementations for the `get_type()` method, which should probably never be defined
/// differently.
///
/// It provides default values for the `Prerequisites` type parameter. If this is present, the macro
/// will use the provided value instead of the default.
///
/// `Prerequisites` are interfaces for types that require a specific base class or interfaces.
///
/// ```ignore
/// type Prerequisites = ();
/// ```
///
/// An object interface can be registered as a dynamic type by setting the
/// macro helper attribute `object_interface_dynamic`:
/// ```ignore
/// pub struct MyInterface {
/// parent: glib::gobject_ffi::GTypeInterface,
/// }
/// #[glib::object_interface]
/// #[object_interface_dynamic]
/// unsafe impl ObjectInterface for MyInterface { ... }
/// ```
///
/// As a dynamic type, an object interface must be explicitly registered when
/// the system loads the implementation (see [`TypePlugin`] and [`TypeModule`]).
/// Therefore, whereas an object interface can be registered only once as a
/// static type, it can be registered several times as a dynamic type.
///
/// An object interface registered as a dynamic type is never unregistered. The
/// system calls [`TypePluginExt::unuse`] to unload the implementation. If the
/// [`TypePlugin`] subclass is a [`TypeModule`], the object interface
/// registered as a dynamic type is marked as unloaded and must be registered
/// again when the module is reloaded.
///
/// The macro helper attribute `object_interface_dynamic` provides two
/// behaviors when registering an object interface as a dynamic type:
///
/// - lazy registration: by default an object interface is registered as a
/// dynamic type when the system loads the implementation (e.g. when the module
/// is loaded). Optionally setting `lazy_registration` to `true` postpones
/// registration on the first use (when `type_()` is called for the first time):
///
/// ```ignore
/// pub struct MyInterface {
/// parent: glib::gobject_ffi::GTypeInterface,
/// }
/// #[glib::object_interface]
/// #[object_interface_dynamic(lazy_registration = true)]
/// unsafe impl ObjectInterface for MyInterface { ... }
/// ```
///
/// - registration within [`TypeModule`] subclass or within [`TypePlugin`]
/// subclass: an object interface is usually registered as a dynamic type
/// within a [`TypeModule`] subclass:
///
/// ```ignore
/// pub struct MyModuleInterface {
/// parent: glib::gobject_ffi::GTypeInterface,
/// }
/// #[glib::object_interface]
/// #[object_interface_dynamic]
/// unsafe impl ObjectInterface for MyModuleInterface { ... }
/// ...
/// #[derive(Default)]
/// pub struct MyModule;
/// ...
/// impl TypeModuleImpl for MyModule {
/// fn load(&self) -> bool {
/// // registers object interfaces as dynamic types.
/// let my_module = self.obj();
/// let type_module: &glib::TypeModule = my_module.upcast_ref();
/// MyModuleInterface::on_implementation_load(type_module)
/// }
/// ...
/// }
/// ```
///
/// Optionally setting `plugin_type` allows to register an object interface as
/// a dynamic type within a [`TypePlugin`] subclass that is not a [`TypeModule`]:
///
/// ```ignore
/// pub struct MyPluginInterface {
/// parent: glib::gobject_ffi::GTypeInterface,
/// }
/// #[glib::object_interface]
/// #[object_interface_dynamic(plugin_type = MyPlugin)]
/// unsafe impl ObjectInterface for MyPluginInterface { ... }
/// ...
/// #[derive(Default)]
/// pub struct MyPlugin;
/// ...
/// impl TypePluginImpl for MyPlugin {
/// fn use_plugin(&self) {
/// // register object interfaces as dynamic types.
/// let my_plugin = self.obj();
/// MyPluginInterface::on_implementation_load(my_plugin.as_ref());
/// }
/// ...
/// }
/// ```
///
/// [`ObjectInterface`]: ../glib/subclass/interface/trait.ObjectInterface.html
/// [`TypePlugin`]: ../glib/gobject/type_plugin/struct.TypePlugin.html
/// [`TypeModule`]: ../glib/gobject/type_module/struct.TypeModule.html
/// [`TypePluginExt::unuse`]: ../glib/gobject/type_plugin/trait.TypePluginExt.html#method.unuse///
#[proc_macro_attribute]
pub fn object_interface(_attr: TokenStream, item: TokenStream) -> TokenStream {
let input = parse_macro_input!(item with object_impl_attributes::Input::parse_interface);
object_impl_attributes::interface::impl_object_interface(input).into()
}
/// Macro for deriving implementations of [`glib::clone::Downgrade`] and
/// [`glib::clone::Upgrade`] traits and a weak type.
///
/// # Examples
///
/// ## New Type Idiom
///
/// ```rust,ignore
/// #[derive(glib::Downgrade)]
/// pub struct FancyLabel(gtk::Label);
///
/// impl FancyLabel {
/// pub fn new(label: &str) -> Self {
/// Self(gtk::LabelBuilder::new().label(label).build())
/// }
///
/// pub fn flip(&self) {
/// self.0.set_angle(180.0 - self.0.angle());
/// }
/// }
///
/// let fancy_label = FancyLabel::new("Look at me!");
/// let button = gtk::ButtonBuilder::new().label("Click me!").build();
/// button.connect_clicked(
/// clone!(
/// #[weak]
/// fancy_label,
/// move || fancy_label.flip(),
/// ),
/// );
/// ```
///
/// ## Generic New Type
///
/// ```rust,ignore
/// #[derive(glib::Downgrade)]
/// pub struct TypedEntry<T>(gtk::Entry, std::marker::PhantomData<T>);
///
/// impl<T: ToString + FromStr> for TypedEntry<T> {
/// // ...
/// }
/// ```
///
/// ## Structures and Enums
///
/// ```rust,ignore
/// #[derive(Clone, glib::Downgrade)]
/// pub struct ControlButtons {
/// pub up: gtk::Button,
/// pub down: gtk::Button,
/// pub left: gtk::Button,
/// pub right: gtk::Button,
/// }
///
/// #[derive(Clone, glib::Downgrade)]
/// pub enum DirectionButton {
/// Left(gtk::Button),
/// Right(gtk::Button),
/// Up(gtk::Button),
/// Down(gtk::Button),
/// }
/// ```
///
/// [`glib::clone::Downgrade`]: ../glib/clone/trait.Downgrade.html
/// [`glib::clone::Upgrade`]: ../glib/clone/trait.Upgrade.html
#[proc_macro_derive(Downgrade)]
pub fn downgrade(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
downgrade_derive::impl_downgrade(input)
}
/// Derive macro for serializing/deserializing custom structs/enums as [`glib::Variant`]s.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
///
/// #[derive(Debug, PartialEq, Eq, glib::Variant)]
/// struct Foo {
/// some_string: String,
/// some_int: i32,
/// }
///
/// let v = Foo { some_string: String::from("bar"), some_int: 1 };
/// let var = v.to_variant();
/// assert_eq!(var.get::<Foo>(), Some(v));
/// ```
///
/// When storing `Vec`s of fixed size types it is a good idea to wrap these in
/// `glib::FixedSizeVariantArray` as serialization/deserialization will be more efficient.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
///
/// #[derive(Debug, PartialEq, Eq, glib::Variant)]
/// struct Foo {
/// some_vec: glib::FixedSizeVariantArray<Vec<u32>, u32>,
/// some_int: i32,
/// }
///
/// let v = Foo { some_vec: vec![1u32, 2u32].into(), some_int: 1 };
/// let var = v.to_variant();
/// assert_eq!(var.get::<Foo>(), Some(v));
/// ```
///
/// Enums are serialized as a tuple `(sv)` with the first value as a [kebab case] string for the
/// enum variant, or just `s` if this is a C-style enum. Some additional attributes are supported
/// for enums:
/// - `#[variant_enum(repr)]` to serialize the enum variant as an integer type instead of `s`. The
/// `#[repr]` attribute must also be specified on the enum with a sized integer type, and the type
/// must implement `Copy`.
/// - `#[variant_enum(enum)]` uses [`EnumClass`] to serialize/deserialize as nicks. Meant for use
/// with [`glib::Enum`](Enum).
/// - `#[variant_enum(flags)]` uses [`FlagsClass`] to serialize/deserialize as nicks. Meant for use
/// with [`glib::flags`](macro@flags).
/// - `#[variant_enum(enum, repr)]` serializes as `i32`. Meant for use with [`glib::Enum`](Enum).
/// The type must also implement `Copy`.
/// - `#[variant_enum(flags, repr)]` serializes as `u32`. Meant for use with
/// [`glib::flags`](macro@flags).
///
/// # Example
///
/// ```
/// use glib::prelude::*;
///
/// #[derive(Debug, PartialEq, Eq, glib::Variant)]
/// enum Foo {
/// MyA,
/// MyB(i32),
/// MyC { some_int: u32, some_string: String }
/// }
///
/// let v = Foo::MyC { some_int: 1, some_string: String::from("bar") };
/// let var = v.to_variant();
/// assert_eq!(var.child_value(0).str(), Some("my-c"));
/// assert_eq!(var.get::<Foo>(), Some(v));
///
/// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Variant)]
/// #[variant_enum(repr)]
/// #[repr(u8)]
/// enum Bar {
/// A,
/// B = 3,
/// C = 7
/// }
///
/// let v = Bar::B;
/// let var = v.to_variant();
/// assert_eq!(var.get::<u8>(), Some(3));
/// assert_eq!(var.get::<Bar>(), Some(v));
///
/// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum, glib::Variant)]
/// #[variant_enum(enum)]
/// #[enum_type(name = "MyEnum")]
/// enum MyEnum {
/// Val,
/// #[enum_value(name = "My Val")]
/// ValWithCustomName,
/// #[enum_value(name = "My Other Val", nick = "other")]
/// ValWithCustomNameAndNick,
/// }
///
/// let v = MyEnum::ValWithCustomNameAndNick;
/// let var = v.to_variant();
/// assert_eq!(var.str(), Some("other"));
/// assert_eq!(var.get::<MyEnum>(), Some(v));
/// ```
///
/// [`glib::Variant`]: ../glib/variant/struct.Variant.html
/// [`EnumClass`]: ../glib/struct.EnumClass.html
/// [`FlagsClass`]: ../glib/struct.FlagsClass.html
/// [kebab case]: https://docs.rs/heck/0.4.0/heck/trait.ToKebabCase.html
#[proc_macro_derive(Variant, attributes(variant_enum))]
pub fn variant_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
variant_derive::impl_variant(input)
.unwrap_or_else(syn::Error::into_compile_error)
.into()
}
#[proc_macro]
pub fn cstr_bytes(item: TokenStream) -> TokenStream {
syn::parse::Parser::parse2(
|stream: syn::parse::ParseStream<'_>| {
let literal = stream.parse::<syn::LitStr>()?;
stream.parse::<syn::parse::Nothing>()?;
let bytes = std::ffi::CString::new(literal.value())
.map_err(|e| syn::Error::new_spanned(&literal, format!("{e}")))?
.into_bytes_with_nul();
let bytes = proc_macro2::Literal::byte_string(&bytes);
Ok(quote::quote! { #bytes }.into())
},
item.into(),
)
.unwrap_or_else(|e| e.into_compile_error().into())
}
/// This macro enables you to derive object properties in a quick way.
///
/// # Supported `#[property]` attributes
/// | Attribute | Description | Default | Example |
/// | --- | --- | --- | --- |
/// | `name = "literal"` | The name of the property | field ident where `_` (leading and trailing `_` are trimmed) is replaced into `-` | `#[property(name = "prop-name")]` |
/// | `type = expr` | The type of the property | inferred | `#[property(type = i32)]` |
/// | `get [= expr]` | Specify that the property is readable and use [`PropertyGet::get`] [or optionally set a custom internal getter] | | `#[property(get)]`, `#[property(get = get_prop)]`, or `[property(get = \|_\| 2)]` |
/// | `set [= expr]` | Specify that the property is writable and use [`PropertySet::set`] [or optionally set a custom internal setter] | | `#[property(set)]`, `#[property(set = set_prop)]`, or `[property(set = \|_, val\| {})]` |
/// | `override_class = expr` | The type of class of which to override the property from | | `#[property(override_class = SomeClass)]` |
/// | `override_interface = expr` | The type of interface of which to override the property from | | `#[property(override_interface = SomeInterface)]` |
/// | `nullable` | Whether to use `Option<T>` in the generated setter method | | `#[property(nullable)]` |
/// | `member = ident` | Field of the nested type where property is retrieved and set | | `#[property(member = author)]` |
/// | `construct` | Specify that the property is construct property. Ensures that the property is always set during construction (if not explicitly then the default value is used). The use of a custom internal setter is supported. | | `#[property(get, construct)]` or `#[property(get, set = set_prop, construct)]` |
/// | `construct_only` | Specify that the property is construct only. This will not generate a public setter and only allow the property to be set during object construction. The use of a custom internal setter is supported. | | `#[property(get, construct_only)]` or `#[property(get, set = set_prop, construct_only)]` |
/// | `builder(<required-params>)[.ident]*` | Used to input required params or add optional Param Spec builder fields | | `#[property(builder(SomeEnum::default()))]`, `#[builder().default_value(1).minimum(0).maximum(5)]`, etc. |
/// | `default` | Sets the `default_value` field of the Param Spec builder | | `#[property(default = 1)]` |
/// | `<optional-pspec-builder-fields> = expr` | Used to add optional Param Spec builder fields | | `#[property(minimum = 0)` , `#[property(minimum = 0, maximum = 1)]`, etc. |
/// | `<optional-pspec-builder-fields>` | Used to add optional Param Spec builder fields | | `#[property(explicit_notify)]` , `#[property(construct_only)]`, etc. |
///
/// ## Using Rust keywords as property names
/// You might hit a roadblock when declaring properties with this macro because you want to use a name that happens to be a Rust keyword. This may happen with names like `loop`, which is a pretty common name when creating things like animation handlers.
/// To use those names, you can make use of the raw identifier feature of Rust. Simply prefix the identifier name with `r#` in the struct declaration. Internally, those `r#`s are stripped so you can use its expected name in [`ObjectExt::property`] or within GtkBuilder template files.
///
/// # Generated methods
/// The following methods are generated on the wrapper type specified on `#[properties(wrapper_type = ...)]`:
/// * `$property()`, when the property is readable
/// * `set_$property()`, when the property is writable and not construct-only
/// * `connect_$property_notify()`
/// * `notify_$property()`
///
/// ## Extension trait
/// You can choose to move the method definitions to a trait by using `#[properties(wrapper_type = super::MyType, ext_trait = MyTypePropertiesExt)]`.
/// The trait name is optional, and defaults to `MyTypePropertiesExt`, where `MyType` is extracted from the wrapper type.
/// Note: The trait is defined in the same module where the `#[derive(Properties)]` call happens, and is implemented on the wrapper type.
///
/// Notice: You can't reimplement the generated methods on the wrapper type, unless you move them to a trait.
/// You can change the behavior of the generated getter/setter methods by using a custom internal getter/setter.
///
/// # Internal getters and setters
/// By default, they are generated for you. However, you can use a custom getter/setter
/// by assigning an expression to `get`/`set` `#[property]` attributes: `#[property(get = |_| 2, set)]` or `#[property(get, set = custom_setter_func)]`.
///
/// # Supported types
/// Every type implementing the trait [`Property`] is supported.
/// The type `Option<T>` is supported as a property only if `Option<T>` implements [`ToValueOptional`].
/// Optional types also require the `nullable` attribute: without it, the generated setter on the wrapper type
/// will take `T` instead of `Option<T>`, preventing the user from ever calling the setter with a `None` value.
///
/// ## Adding support for custom types
/// ### Types wrapping an existing <code>T: [ToValue] + [HasParamSpec]</code>
/// If you have declared a newtype as
/// ```rust
/// struct MyInt(i32);
/// ```
/// you can use it as a property by deriving [`ValueDelegate`].
///
/// ### Types with inner mutability
/// The trait [`Property`] must be implemented.
/// The traits [`PropertyGet`] and [`PropertySet`] should be implemented to enable the Properties macro
/// to generate a default internal getter/setter.
/// If possible, implementing [`PropertySetNested`] is preferred over `PropertySet`, because it
/// enables this macro to access the contained type and provide access to its fields,
/// using the `member = $structfield` syntax.
///
/// ### Types without [`HasParamSpec`][HasParamSpec]
/// If you have encountered a type <code>T: [ToValue]</code>, inside the gtk-rs crate, which doesn't implement [`HasParamSpec`][HasParamSpec],
/// then it's a bug and you should report it.
/// If you need to support a `ToValue` type with a [`ParamSpec`] not provided by gtk-rs, then you need to
/// implement `HasParamSpec` on that type.
///
/// # Example
/// ```
/// use std::cell::RefCell;
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
/// use glib_macros::Properties;
///
/// #[derive(Default, Clone)]
/// struct Author {
/// name: String,
/// nick: String,
/// }
///
/// pub mod imp {
/// use std::rc::Rc;
///
/// use super::*;
///
/// #[derive(Properties, Default)]
/// #[properties(wrapper_type = super::Foo)]
/// pub struct Foo {
/// #[property(get, set = Self::set_fizz)]
/// fizz: RefCell<String>,
/// #[property(name = "author-name", get, set, type = String, member = name)]
/// #[property(name = "author-nick", get, set, type = String, member = nick)]
/// author: RefCell<Author>,
/// #[property(get, set, explicit_notify, lax_validation)]
/// custom_flags: RefCell<String>,
/// #[property(get, set, minimum = 0, maximum = 3)]
/// numeric_builder: RefCell<u32>,
/// #[property(get, set, builder('c'))]
/// builder_with_required_param: RefCell<char>,
/// #[property(get, set, nullable)]
/// optional: RefCell<Option<String>>,
/// #[property(get, set)]
/// smart_pointer: Rc<RefCell<String>>,
/// }
///
/// #[glib::derived_properties]
/// impl ObjectImpl for Foo {}
///
/// #[glib::object_subclass]
/// impl ObjectSubclass for Foo {
/// const NAME: &'static str = "MyFoo";
/// type Type = super::Foo;
/// }
///
/// impl Foo {
/// fn set_fizz(&self, value: String) {
/// *self.fizz.borrow_mut() = format!("custom set: {}", value);
/// }
/// }
/// }
///
/// glib::wrapper! {
/// pub struct Foo(ObjectSubclass<imp::Foo>);
/// }
///
/// fn main() {
/// let myfoo: Foo = glib::object::Object::new();
///
/// myfoo.set_fizz("test value");
/// assert_eq!(myfoo.fizz(), "custom set: test value".to_string());
/// }
/// ```
///
/// [`Property`]: ../glib/property/trait.Property.html
/// [`PropertyGet`]: ../glib/property/trait.PropertyGet.html
/// [`PropertyGet::get`]: ../glib/property/trait.PropertyGet.html#tymethod.get
/// [`PropertySet`]: ../glib/property/trait.PropertySet.html
/// [`PropertySet::set`]: ../glib/property/trait.PropertySet.html#tymethod.set
/// [`PropertySetNested`]: ../glib/property/trait.PropertySetNested.html
/// [`ObjectExt::property`]: ../glib/object/trait.ObjectExt.html#tymethod.property
/// [HasParamSpec]: ../glib/trait.HasParamSpec.html
/// [`ParamSpec`]: ../glib/struct.ParamSpec.html
/// [`ToValueOptional`]: ../glib/value/trait.ToValueOptional.html
/// [ToValue]: ../glib/value/trait.ToValue.html
#[allow(clippy::needless_doctest_main)]
#[proc_macro_derive(Properties, attributes(properties, property))]
pub fn derive_props(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as properties::PropsMacroInput);
properties::impl_derive_props(input)
}
/// When applied to `ObjectImpl`
/// ```ignore
/// #[glib::derived_properties]
/// impl ObjectImpl for CustomObject
/// ```
/// this macro generates
/// ```ignore
/// impl ObjectImpl for CustomObject {
/// fn properties() -> &'static [glib::ParamSpec] {
/// Self::derived_properties()
/// }
/// fn set_property(&self, id: usize, value: &glib::Value, pspec: &glib::ParamSpec) {
/// self.derived_set_property(id, value, pspec)
/// }
/// fn property(&self, id: usize, pspec: &glib::ParamSpec) -> glib::Value {
/// self.derived_property(id, pspec)
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn derived_properties(_attr: TokenStream, item: TokenStream) -> TokenStream {
syn::parse::<syn::ItemImpl>(item)
.map_err(|_| {
syn::Error::new(
Span::call_site(),
derived_properties_attribute::WRONG_PLACE_MSG,
)
})
.and_then(|input| derived_properties_attribute::impl_derived_properties(&input))
.unwrap_or_else(syn::Error::into_compile_error)
.into()
}
/// # Example
/// ```
/// use glib::prelude::*;
/// use glib::ValueDelegate;
///
/// #[derive(ValueDelegate, Debug, PartialEq)]
/// struct MyInt(i32);
///
/// let myv = MyInt(2);
/// let convertedv = myv.to_value();
/// assert_eq!(convertedv.get::<MyInt>(), Ok(myv));
///
///
/// #[derive(ValueDelegate, Debug, PartialEq)]
/// #[value_delegate(from = u32)]
/// enum MyEnum {
/// Zero,
/// NotZero(u32)
/// }
///
/// impl From<u32> for MyEnum {
/// fn from(v: u32) -> Self {
/// match v {
/// 0 => MyEnum::Zero,
/// x => MyEnum::NotZero(x)
/// }
/// }
/// }
/// impl<'a> From<&'a MyEnum> for u32 {
/// fn from(v: &'a MyEnum) -> Self {
/// match v {
/// MyEnum::Zero => 0,
/// MyEnum::NotZero(x) => *x
/// }
/// }
/// }
/// impl From<MyEnum> for u32 {
/// fn from(v: MyEnum) -> Self {
/// match v {
/// MyEnum::Zero => 0,
/// MyEnum::NotZero(x) => x
/// }
/// }
/// }
///
/// let myv = MyEnum::NotZero(34);
/// let convertedv = myv.to_value();
/// assert_eq!(convertedv.get::<MyEnum>(), Ok(myv));
///
///
/// // If you want your type to be usable inside an `Option`, you can derive `ToValueOptional`
/// // by adding `nullable` as follows
/// #[derive(ValueDelegate, Debug, PartialEq)]
/// #[value_delegate(nullable)]
/// struct MyString(String);
///
/// let myv = Some(MyString("Hello world".to_string()));
/// let convertedv = myv.to_value();
/// assert_eq!(convertedv.get::<Option<MyString>>(), Ok(myv));
/// let convertedv = None::<MyString>.to_value();
/// assert_eq!(convertedv.get::<Option<MyString>>(), Ok(None::<MyString>));
/// ```
#[proc_macro_derive(ValueDelegate, attributes(value_delegate))]
pub fn derive_value_delegate(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as value_delegate_derive::ValueDelegateInput);
value_delegate_derive::impl_value_delegate(input).unwrap()
}
/// An attribute macro for writing asynchronous test functions.
///
/// This macro is designed to wrap an asynchronous test function and ensure that
/// it runs within a `glib::MainContext`. It helps in writing async tests that
/// require the use of an event loop for the asynchronous execution.
///
/// # Example
///
/// ```
/// #[glib::async_test]
/// async fn my_async_test() {
/// // Test code that runs asynchronously
/// }
/// ```
#[proc_macro_attribute]
pub fn async_test(args: TokenStream, item: TokenStream) -> TokenStream {
async_test::async_test(args, item)
}