1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/*!
A texture is an image loaded in video memory, which can be sampled in your shaders.
# Texture kinds
One thing that is important to understand when it comes to textures is that the way a texture is
accessed (in other words, its "public API") is disconnected from the internal representation
of the data.
When it comes to accessing a texture, there are six kinds of textures:
- Floating-point textures.
- Integral textures (that contain signed integers).
- Unsigned textures (that contain unsigned integers).
- Depth textures (that contain depth information).
- Stencil textures (that contain stencil information).
- Depth-stencil textures (that contain at the same time depth and stencil information).
Textures have a different API depending on their kind. For example a integral texture can only
be sampled in GLSL through a sampler type which is prefixed with `i`.
The internal format can only be chosen when the texture is created, and then can never be touched
again. Integral and unsigned textures can only contain signed integers and unsigned integers.
Floating-point textures can contain either floating-points or integers. If integers are used,
then the maximum value corresponds to the floating-point value `1.0` and the minimal value to `0.0`.
For example if a texture contains `u8`s and internally contains the value `128`, reading from the
texture will yield the value `0.5`.
# Dimensions
Textures come in nine different dimensions:
- Textures with one dimension.
- Textures with two dimensions.
- Textures with two dimensions and multisampling enabled.
- Textures with three dimensions.
- Cube textures, which are arrays of six two-dimensional textures
corresponding to the six faces of a cube.
- Arrays of one-dimensional textures.
- Arrays of two-dimensional textures.
- Arrays of two-dimensional textures with multisampling enabled.
- Arrays of cube textures.
The difference between a 3D texture and a 2D textures array (and between a 2D texture and a 1D
textures array) is that texture arrays can only be accessed by individual layers. That is, you can
only access layer 0, or layer 1, or layer 2, and so on. Whereas if you use 3D textures you can
access layer `0.5` for example.
All textures except depth, stencil and depth-stencil textures have **mipmaps**. A mipmap is a
smaller version of the texture whose purpose is to be used during rendering when the texture will
be small on the screen.
# Texture types in glium
In addition to the nine different dimensions types, there are nine kinds of texture formats:
- The texture contains floating-point data,
with either the `Compressed` prefix or no prefix at all.
- The texture contains floating-point data in the sRGB color space, with either the `Compressed`
prefix or not.
- The texture contains signed integers, with the `Integral` prefix.
- The texture contains unsigned integers, with the `Unsigned` prefix.
- The texture contains depth information, with the `Depth` prefix.
- The texture contains stencil information, with the `Stencil` prefix.
- The texture contains depth and stencil information, with the `DepthStencil` prefix.
Each combination of dimensions and format corresponds to a sampler type in GLSL and in glium.
For example, an `IntegralTexture3d` can only be bound to an `isampler3D` uniform in GLSL.
The difference between compressed textures and uncompressed textures is that you can't do
render-to-texture on the former.
The most common types of textures are `CompressedSrgbTexture2d`, `SrgbTexture2d` and `Texture2d`
(the two dimensions being the width and height). These are what you will use most of the time.
# Buffer textures
A `BufferTexture` is a special kind of one-dimensional texture that gets its data from a buffer.
Buffer textures have very limited capabilities (you can't draw to them for example). They are an
alternative to uniform buffers and SSBOs.
See the `buffer_textures` module for more infos.
# About sRGB
For historical reasons, the color data contained in almost all image files are not in RGB but
in sRGB. sRGB colors are slightly brighter than linear RGB in order to compensate for the fact
that screens darken some values that they receive.
When you load image files, you are encouraged to create sRGB textures (with `SrgbTexture2d` instead
of `Texture2d` for example).
By default, glium enables the `GL_FRAMEBUFFER_SRGB` trigger, which expects the output of your
fragment shader to be in linear RGB and then turns it into sRGB before writing in the framebuffer.
Sampling from an sRGB texture will convert the texture colors from sRGB to RGB. If you create a
regular RGB texture and put sRGB data in it, then the result will be too bright.
# Bindless textures
*Bindless textures are a very recent feature that is supported only by recent hardware and
drivers.*
Without bindless textures, using a texture in a shader requires binding the texture to a specific
bind point before drawing. This not only slows down rendering, but may also prevent you from
grouping multiple draw calls into one because of the limitation to the number of available
texture units.
Instead, bindless textures allow you to manually manipulate pointers to textures in video memory.
You can use thousands of textures if you want.
*/
#![allow(unreachable_code)] // TODO: remove
use std::borrow::Cow;
use std::fmt;
use std::error::Error;
use crate::image_format::FormatNotSupportedError;
pub use crate::image_format::{ClientFormat, TextureFormat};
pub use crate::image_format::{UncompressedFloatFormat, UncompressedIntFormat, UncompressedUintFormat};
pub use crate::image_format::{CompressedFormat, DepthFormat, DepthStencilFormat, StencilFormat};
pub use crate::image_format::{CompressedSrgbFormat, SrgbFormat};
pub use self::any::{TextureAny, TextureAnyMipmap, TextureAnyLayer, TextureAnyLayerMipmap};
pub use self::any::{TextureAnyImage, Dimensions};
pub use self::bindless::{ResidentTexture, TextureHandle, BindlessTexturesNotSupportedError};
pub use self::get_format::{InternalFormat, InternalFormatType, GetFormatError};
pub use self::pixel::PixelValue;
pub use self::ty_support::{is_texture_1d_supported, is_texture_2d_supported};
pub use self::ty_support::{is_texture_3d_supported, is_texture_1d_array_supported};
pub use self::ty_support::{is_texture_2d_array_supported, is_texture_2d_multisample_supported};
pub use self::ty_support::{is_texture_2d_multisample_array_supported, is_cubemaps_supported};
pub use self::ty_support::is_cubemap_arrays_supported;
pub use self::texture_import::ExternalTilingMode;
pub use self::texture_import::ImportParameters;
pub use self::texture_import::TextureImportError;
pub mod bindless;
pub mod buffer_texture;
pub mod pixel_buffer;
mod any;
mod get_format;
mod pixel;
mod texture_import;
mod ty_support;
mod textures {
#![allow(clippy::all)]
include!(concat!(env!("OUT_DIR"), "/textures.rs"));
}
pub use self::textures::*;
/// Represents a layer of a cubemap.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[allow(missing_docs)] // TODO:
pub enum CubeLayer {
PositiveX,
NegativeX,
PositiveY,
NegativeY,
PositiveZ,
NegativeZ,
}
impl CubeLayer {
/// In some situations whole cubemaps can be bound at once. If this is the case, each layer
/// of the cubemap has a specific index.
///
/// For example, if you bind a whole cubemap array, then the index `8` will correspond to the
/// `PositiveY` face of the cubemap whose index is `1` in the array.
pub fn get_layer_index(&self) -> usize {
match self {
CubeLayer::PositiveX => 0,
CubeLayer::NegativeX => 1,
CubeLayer::PositiveY => 2,
CubeLayer::NegativeY => 3,
CubeLayer::PositiveZ => 4,
CubeLayer::NegativeZ => 5,
}
}
}
/// Represents a kind of texture.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[allow(missing_docs)] // TODO:
pub enum TextureKind {
Float,
Integral,
Unsigned,
Depth,
Stencil,
DepthStencil,
}
/// Describes what to do about mipmaps during texture creation.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum MipmapsOption {
/// No mipmap will be allocated or generated.
NoMipmap,
/// Allocates space for all the possible amount of mipmaps given the texture dimensions.
EmptyMipmaps,
/// Allocates space for the specified amount of mipmaps (excluding the top level) but does not
/// generate mipmaps.
EmptyMipmapsMax(u32),
/// Allocates and generates mipmaps for all the possible levels given the texture dimensions.
///
/// This does not mean that you will get mipmaps, instead it indicates that mipmaps are *allowed*
/// to be generated if possible.
AutoGeneratedMipmaps,
/// Allocates and generates mipmaps for the specified amount of mipmaps (excluding the top level)
/// the possible levels given the texture dimensions.
///
/// This does not mean that you will get mipmaps, instead it indicates that mipmaps are *allowed*
/// to be generated if possible.
AutoGeneratedMipmapsMax(u32),
}
impl MipmapsOption {
/// Tells whether mipmaps should be automatically generated.
#[inline]
fn should_generate(self) -> bool {
use self::MipmapsOption::*;
matches!(self, AutoGeneratedMipmaps | AutoGeneratedMipmapsMax(_))
}
/// Number of levels (including the main level).
fn num_levels(self, width: u32, height: Option<u32>, depth: Option<u32>) -> u32 {
use self::MipmapsOption::*;
use std::cmp;
use std::num::FpCategory;
match self {
NoMipmap => 1,
EmptyMipmaps | AutoGeneratedMipmaps => {
let max_dimension = cmp::max(width, cmp::max(height.unwrap_or(1),
depth.unwrap_or(1))) as f32;
if max_dimension.classify() == FpCategory::Zero {
1
} else {
1 + max_dimension.log2() as u32
}
},
EmptyMipmapsMax(i) | AutoGeneratedMipmapsMax(i) => {
let max = EmptyMipmaps.num_levels(width, height, depth) - 1;
if i > max { // TODO should we perform this check or just clamp the value?
panic!("Too many mipmap levels, received {}, maximum for this texture dimension is {}.", i, max);
}
1 + i
},
}
}
}
impl From<CompressedMipmapsOption> for MipmapsOption {
fn from(opt: CompressedMipmapsOption) -> MipmapsOption {
match opt {
CompressedMipmapsOption::NoMipmap => MipmapsOption::NoMipmap,
CompressedMipmapsOption::EmptyMipmaps => MipmapsOption::EmptyMipmaps,
CompressedMipmapsOption::EmptyMipmapsMax(i) => MipmapsOption::EmptyMipmapsMax(i),
}
}
}
/// Describes what to do about mipmaps during compressed texture creation.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum CompressedMipmapsOption {
/// No mipmaps will be allocated or generated.
NoMipmap,
/// Allocates space for all the possible amount of mipmaps given the texture dimensions.
EmptyMipmaps,
/// Allocates space for the specified amount of mipmaps (excluding the top level) but does not
/// generate mipmaps.
EmptyMipmapsMax(u32),
}
/// Trait that describes data for a one-dimensional texture.
pub trait Texture1dDataSource<'a> {
/// The type of each pixel.
type Data: Send + Copy + Clone + 'a;
/// Returns the raw representation of the data.
fn into_raw(self) -> RawImage1d<'a, Self::Data>;
}
/// Trait that describes types that can be built from one-dimensional texture data.
///
/// The parameter indicates the type of pixels accepted by this sink.
///
/// You are especially encouraged to implement this trait with the parameter `(u8, u8, u8, u8)`,
/// as this is the only format that is guaranteed to be supported by OpenGL when reading pixels.
pub trait Texture1dDataSink<T> {
/// Builds a new object from raw data.
fn from_raw(data: Cow<'_, [T]>, width: u32) -> Self where [T]: ToOwned;
}
/// Represents raw data for a two-dimensional image.
pub struct RawImage1d<'a, T: Clone> {
/// A contiguous array of pixel data.
///
/// The data must start by the left pixel and progress left-to-right.
///
/// `data.len()` must be equal to `width * format.get_size() / mem::size_of::<T>()`.
pub data: Cow<'a, [T]>,
/// Number of pixels per column.
pub width: u32,
/// Formats of the pixels.
pub format: ClientFormat,
}
impl<'a, P: PixelValue> Texture1dDataSource<'a> for Vec<P> where P: Copy + Clone + Send + 'static {
type Data = P;
#[inline]
fn into_raw(self) -> RawImage1d<'a, P> {
let width = self.len() as u32;
RawImage1d {
data: Cow::Owned(self),
width,
format: <P as PixelValue>::get_format(),
}
}
}
impl<'a, P: PixelValue + Clone> Texture1dDataSource<'a> for RawImage1d<'a, P> {
type Data = P;
#[inline]
fn into_raw(self) -> RawImage1d<'a, P> {
self
}
}
impl<P> Texture1dDataSink<P> for Vec<P> where P: Copy + Clone + Send {
#[inline]
fn from_raw(data: Cow<'_, [P]>, _width: u32) -> Self {
data.into_owned()
}
}
impl<'a, P: PixelValue> Texture1dDataSource<'a> for &'a[P] where P: Copy + Clone + Send + 'static {
type Data = P;
#[inline]
fn into_raw(self) -> RawImage1d<'a, P> {
let width = self.len();
RawImage1d {
data: Cow::Borrowed(self),
width: width as u32,
format: <P as PixelValue>::get_format(),
}
}
}
impl<'a, T: Clone + 'a> RawImage1d<'a, T> {
/// Builds a raw 1d image from a vector of interleaved RGB values.
pub fn from_raw_rgb(data: Vec<T>) -> RawImage1d<'a, T>
where T: ToClientFormat {
RawImage1d {
width: (data.len() / 3) as u32,
data: Cow::Owned(data),
format: T::rgb_format(),
}
}
/// Builds a raw 1d image from a vector of interleaved RGBA values.
pub fn from_raw_rgba(data: Vec<T>) -> RawImage1d<'a, T>
where T: ToClientFormat {
RawImage1d {
width: (data.len() / 4) as u32,
data: Cow::Owned(data),
format: T::rgba_format(),
}
}
}
/// Trait that describes data for a two-dimensional texture.
pub trait Texture2dDataSource<'a> {
/// The type of each pixel.
type Data: Send + Copy + Clone + 'a;
/// Returns the raw representation of the data.
fn into_raw(self) -> RawImage2d<'a, Self::Data>;
}
/// Trait that describes types that can be built from two-dimensional texture data.
///
/// The parameter indicates the type of pixels accepted by this sink.
///
/// You are especially encouraged to implement this trait with the parameter `(u8, u8, u8, u8)`,
/// as this is the only format that is guaranteed to be supported by OpenGL when reading pixels.
pub trait Texture2dDataSink<T> {
/// Builds a new object from raw data.
fn from_raw(data: Cow<'_, [T]>, width: u32, height: u32) -> Self where [T]: ToOwned;
}
/// Represents raw data for a two-dimensional image.
pub struct RawImage2d<'a, T: Clone> {
/// A contiguous array of pixel data.
///
/// The data must start by the bottom-left hand corner pixel and progress left-to-right and
/// bottom-to-top.
///
/// `data.len()` must be equal to `width * height * format.get_size() / mem::size_of::<T>()`.
pub data: Cow<'a, [T]>,
/// Number of pixels per column.
pub width: u32,
/// Number of pixels per row.
pub height: u32,
/// Formats of the pixels.
pub format: ClientFormat,
}
#[allow(missing_docs)]
pub trait ToClientFormat {
fn rgb_format() -> ClientFormat;
fn rgba_format() -> ClientFormat;
}
impl ToClientFormat for u8 {
fn rgb_format() -> ClientFormat { ClientFormat::U8U8U8 }
fn rgba_format() -> ClientFormat { ClientFormat::U8U8U8U8 }
}
impl ToClientFormat for i8 {
fn rgb_format() -> ClientFormat { ClientFormat::I8I8I8 }
fn rgba_format() -> ClientFormat { ClientFormat::I8I8I8I8 }
}
impl ToClientFormat for u16 {
fn rgb_format() -> ClientFormat { ClientFormat::U16U16U16 }
fn rgba_format() -> ClientFormat { ClientFormat::U16U16U16U16 }
}
impl ToClientFormat for i16 {
fn rgb_format() -> ClientFormat { ClientFormat::I16I16I16 }
fn rgba_format() -> ClientFormat { ClientFormat::I16I16I16I16 }
}
impl ToClientFormat for u32 {
fn rgb_format() -> ClientFormat { ClientFormat::U32U32U32 }
fn rgba_format() -> ClientFormat { ClientFormat::U32U32U32U32 }
}
impl ToClientFormat for i32 {
fn rgb_format() -> ClientFormat { ClientFormat::I32I32I32 }
fn rgba_format() -> ClientFormat { ClientFormat::I32I32I32I32 }
}
impl ToClientFormat for f32 {
fn rgb_format() -> ClientFormat { ClientFormat::F32F32F32 }
fn rgba_format() -> ClientFormat { ClientFormat::F32F32F32F32 }
}
impl<'a, T: Clone + 'a> RawImage2d<'a, T> {
/// Builds a raw image from a vector of interleaved RGB values.
///
/// The first pixel is at (0, 0), the last pixel is at (1, 1).
pub fn from_raw_rgb(data: Vec<T>, dimensions: (u32, u32)) -> RawImage2d<'a, T>
where T: ToClientFormat {
RawImage2d {
data: Cow::Owned(data),
width: dimensions.0,
height: dimensions.1,
format: T::rgb_format(),
}
}
/// Builds a raw image from a vector of interleaved RGBA values.
///
/// The first pixel is at (0, 0), the last pixel is at (1, 1).
pub fn from_raw_rgba(data: Vec<T>, dimensions: (u32, u32)) -> RawImage2d<'a, T>
where T: ToClientFormat {
RawImage2d {
data: Cow::Owned(data),
width: dimensions.0,
height: dimensions.1,
format: T::rgba_format(),
}
}
/// Builds a raw image from a vector of interleaved RGB values, flipping it vertically.
///
/// The first pixel is at (0, 1), the last pixel is at (1, 0).
pub fn from_raw_rgb_reversed(data: &[T], dimensions: (u32, u32)) -> RawImage2d<'a, T>
where T: ToClientFormat {
let data = data
.chunks(dimensions.0 as usize * 3)
.rev()
.flat_map(|row| row.iter()).cloned()
.collect();
RawImage2d::from_raw_rgb(data, dimensions)
}
/// Builds a raw image from a vector of interleaved RGBA values, flipping it vertically.
///
/// The first pixel is at (0, 1), the last pixel is at (1, 0).
pub fn from_raw_rgba_reversed(data: &[T], dimensions: (u32, u32)) -> RawImage2d<'a, T>
where T: ToClientFormat {
let data = data
.chunks(dimensions.0 as usize * 4)
.rev()
.flat_map(|row| row.iter()).cloned()
.collect();
RawImage2d::from_raw_rgba(data, dimensions)
}
///Transforms a Vec<RawImage1d> into a RawImage2d
pub fn from_vec_raw1d(arr: &Vec<RawImage1d<'a, T>>) -> RawImage2d<'a, T> {
let width = arr[0].width;
let height = arr.len() as u32;
let format = arr[0].format;
let raw_data = {
let mut vec = Vec::<T>::with_capacity((width * height) as usize);
for i in arr {
if width != i.width {
panic!("Varying dimensions were found.");
} else if format != i.format {
panic!("Varying formats were found.");
}
for j in i.data.iter() {
vec.push(j.clone());
}
}
vec
};
RawImage2d {
data: Cow::Owned(raw_data),
width,
height,
format,
}
}
}
impl<'a, P: PixelValue + Clone> Texture2dDataSource<'a> for Vec<Vec<P>> {
type Data = P;
fn into_raw(self) -> RawImage2d<'a, P> {
let width = self.get(0).map(|e| e.len()).unwrap_or(0) as u32;
let height = self.len() as u32;
RawImage2d {
data: Cow::Owned(self.into_iter().flat_map(|e| e.into_iter()).collect()),
width,
height,
format: <P as PixelValue>::get_format(),
}
}
}
impl<'a, P: PixelValue + Clone> Texture2dDataSource<'a> for RawImage2d<'a, P> {
type Data = P;
#[inline]
fn into_raw(self) -> RawImage2d<'a, P> {
self
}
}
impl<P> Texture2dDataSink<P> for Vec<Vec<P>> where P: Copy + Clone {
fn from_raw(data: Cow<'_, [P]>, width: u32, height: u32) -> Self {
data.chunks(width as usize).map(|e| e.to_vec()).collect()
}
}
macro_rules! impl_2d_sink_for_raw_image {
(($t1:ty, $t2:ty, $t3:ty, $t4:ty)) => (
impl<'a> Texture2dDataSink<($t1, $t2, $t3, $t4)> for RawImage2d<'a, $t1> {
fn from_raw(data: Cow<'_, [($t1, $t2, $t3, $t4)]>, width: u32, height: u32) -> Self {
RawImage2d {
data: Cow::Owned( {
let mut v = Vec::with_capacity(data.len() * 4);
for (a, b, c, d) in data.into_owned() {
v.push(a);
v.push(b);
v.push(c);
v.push(d);
}
v
} ),
width,
height,
format: <($t1, $t2, $t3, $t4) as PixelValue>::get_format(),
}
}
}
);
(($t1:ty, $t2:ty, $t3:ty)) => (
impl<'a> Texture2dDataSink<($t1, $t2, $t3)> for RawImage2d<'a, $t1> {
fn from_raw(data: Cow<'_, [($t1, $t2, $t3)]>, width: u32, height: u32) -> Self {
RawImage2d {
data: Cow::Owned( {
let mut v = Vec::with_capacity(data.len() * 3);
for (a, b, c) in data.into_owned() {
v.push(a);
v.push(b);
v.push(c);
}
v
} ),
width,
height,
format: <($t1, $t2, $t3) as PixelValue>::get_format(),
}
}
}
);
(($t1:ty, $t2:ty)) => (
impl<'a> Texture2dDataSink<($t1, $t2)> for RawImage2d<'a, $t1> {
fn from_raw(data: Cow<'_, [($t1, $t2)]>, width: u32, height: u32) -> Self {
RawImage2d {
data: Cow::Owned( {
let mut v = Vec::with_capacity(data.len() * 2);
for (a, b) in data.into_owned() {
v.push(a);
v.push(b);
}
v
} ),
width,
height,
format: <($t1, $t2) as PixelValue>::get_format(),
}
}
}
);
($t1:ty) => (
impl<'a> Texture2dDataSink<$t1> for RawImage2d<'a, $t1> {
fn from_raw(data: Cow<'_, [$t1]>, width: u32, height: u32) -> Self {
RawImage2d {
data: Cow::Owned(data.into_owned()),
width,
height,
format: <$t1 as PixelValue>::get_format(),
}
}
}
);
}
impl_2d_sink_for_raw_image!(i8);
impl_2d_sink_for_raw_image!((i8, i8));
impl_2d_sink_for_raw_image!((i8, i8, i8));
impl_2d_sink_for_raw_image!((i8, i8, i8, i8));
impl_2d_sink_for_raw_image!(u8);
impl_2d_sink_for_raw_image!((u8, u8));
impl_2d_sink_for_raw_image!((u8, u8, u8));
impl_2d_sink_for_raw_image!((u8, u8, u8, u8));
impl_2d_sink_for_raw_image!(i16);
impl_2d_sink_for_raw_image!((i16, i16));
impl_2d_sink_for_raw_image!((i16, i16, i16));
impl_2d_sink_for_raw_image!((i16, i16, i16, i16));
impl_2d_sink_for_raw_image!(u16);
impl_2d_sink_for_raw_image!((u16, u16));
impl_2d_sink_for_raw_image!((u16, u16, u16));
impl_2d_sink_for_raw_image!((u16, u16, u16, u16));
impl_2d_sink_for_raw_image!(i32);
impl_2d_sink_for_raw_image!((i32, i32));
impl_2d_sink_for_raw_image!((i32, i32, i32));
impl_2d_sink_for_raw_image!((i32, i32, i32, i32));
impl_2d_sink_for_raw_image!(u32);
impl_2d_sink_for_raw_image!((u32, u32));
impl_2d_sink_for_raw_image!((u32, u32, u32));
impl_2d_sink_for_raw_image!((u32, u32, u32, u32));
impl_2d_sink_for_raw_image!(f32);
impl_2d_sink_for_raw_image!((f32, f32));
impl_2d_sink_for_raw_image!((f32, f32, f32));
impl_2d_sink_for_raw_image!((f32, f32, f32, f32));
/// Trait that describes data for a two-dimensional texture.
pub trait Texture3dDataSource<'a> {
/// The type of each pixel.
type Data: Send + Copy + Clone + 'a;
/// Returns the raw representation of the data.
fn into_raw(self) -> RawImage3d<'a, Self::Data>;
}
/// Trait that describes types that can be built from one-dimensional texture data.
///
/// The parameter indicates the type of pixels accepted by this sink.
///
/// You are especially encouraged to implement this trait with the parameter `(u8, u8, u8, u8)`,
/// as this is the only format that is guaranteed to be supported by OpenGL when reading pixels.
pub trait Texture3dDataSink<T> {
/// Builds a new object from raw data.
fn from_raw(data: Cow<'_, [T]>, width: u32, height: u32, depth: u32) -> Self where [T]: ToOwned;
}
/// Represents raw data for a two-dimensional image.
pub struct RawImage3d<'a, T: Clone> {
/// A contiguous array of pixel data.
///
/// `data.len()` must be equal to `width * height * depth * format.get_size() / mem::size_of::<T>()`.
pub data: Cow<'a, [T]>,
/// Number of pixels per column.
pub width: u32,
/// Number of pixels per row.
pub height: u32,
/// Number of pixels per depth.
pub depth: u32,
/// Formats of the pixels.
pub format: ClientFormat,
}
impl<'a, T: Clone + 'a> RawImage3d<'a, T> {
///Transforms a Vec<RawImage2d> into a RawImage3d
pub fn from_vec_raw2d(arr: &Vec<RawImage2d<'a, T>>) -> RawImage3d<'a, T> {
let depth = arr.len() as u32;
let width = arr[0].width;
let height = arr[0].height;
let format = arr[0].format;
let raw_data = {
let mut vec = Vec::<T>::with_capacity((width * height * depth) as usize);
for i in arr {
if width != i.width || height != i.height {
panic!("Varying dimensions were found.");
} else if format != i.format {
panic!("Varying formats were found.");
}
for j in i.data.iter() {
vec.push(j.clone());
}
}
vec
};
RawImage3d {
data: Cow::Owned(raw_data),
width,
height,
depth,
format,
}
}
}
impl<'a, P: PixelValue + Clone> Texture3dDataSource<'a> for Vec<Vec<Vec<P>>> {
type Data = P;
fn into_raw(self) -> RawImage3d<'a, P> {
let width = self.get(0).and_then(|e| e.iter().next()).map(|e| e.len()).unwrap_or(0)
as u32;
let height = self.get(0).map(|e| e.len()).unwrap_or(0) as u32;
let depth = self.len() as u32;
RawImage3d {
data: self.into_iter().flat_map(|e| e.into_iter()).flat_map(|e| e.into_iter())
.collect(),
width,
height,
depth,
format: <P as PixelValue>::get_format(),
}
}
}
impl<'a, P: PixelValue + Clone> Texture3dDataSource<'a> for RawImage3d<'a, P> {
type Data = P;
#[inline]
fn into_raw(self) -> RawImage3d<'a, P> {
self
}
}
impl<P> Texture3dDataSink<P> for Vec<Vec<Vec<P>>> where P: Copy + Clone {
#[inline]
fn from_raw(_data: Cow<'_, [P]>, _width: u32, _height: u32, _depth: u32) -> Self {
unimplemented!()
}
}
/// Error that can happen when creating a texture.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TextureCreationError {
/// The requested format is not supported by the backend.
FormatNotSupported,
/// The requested texture dimensions are not supported.
DimensionsNotSupported,
/// The texture format is not supported by the backend.
TypeNotSupported,
}
impl fmt::Display for TextureCreationError {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::TextureCreationError::*;
let desc = match *self {
FormatNotSupported =>
"The requested format is not supported by the backend",
DimensionsNotSupported =>
"The requested texture dimensions are not supported",
TypeNotSupported =>
"The texture format is not supported by the backend",
};
fmt.write_str(desc)
}
}
impl Error for TextureCreationError {}
impl From<FormatNotSupportedError> for TextureCreationError {
#[inline]
fn from(_: FormatNotSupportedError) -> TextureCreationError {
TextureCreationError::FormatNotSupported
}
}