glium/buffer/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
//! A buffer is a memory location accessible to the video card.
//!
//! The purpose of buffers is to serve as a space where the GPU can read from or write data to.
//! It can contain a list of vertices, indices, uniform data, etc.
//!
//! # Buffers management in glium
//!
//! There are three levels of abstraction in glium:
//!
//! - An `Alloc` corresponds to an OpenGL buffer object and is unsafe to use.
//! This type is not public.
//! - A `Buffer` wraps around an `Alloc` and provides safety by handling the data type and fences.
//! - The `VertexBuffer`, `IndexBuffer`, `UniformBuffer`, `PixelBuffer`, etc. types are
//! abstractions over a `Buffer` indicating their specific purpose. They implement `Deref`
//! for the `Buffer`. These types are in the `vertex`, `index`, etc. modules.
//!
//! # Unsized types
//!
//! In order to put some data in a buffer, it must implement the `Content` trait. This trait is
//! automatically implemented on all `Sized` types and on slices (like `[u8]`). This means that
//! you can create a `Buffer<Foo>` (if `Foo` is sized) or a `Buffer<[u8]>` for example without
//! worrying about it.
//!
//! However unsized structs don't automatically implement this trait and you must call the
//! `implement_buffer_content!` macro on them. You must then use the `empty_unsized` constructor.
//!
//! ```no_run
//! # use glium::implement_buffer_content;
//! # use glutin::surface::{ResizeableSurface, SurfaceTypeTrait};
//! # fn example<T>(display: glium::Display<T>) where T: SurfaceTypeTrait + ResizeableSurface {
//! # use std::mem;
//! # use glium::buffer::{BufferType, BufferMode};
//! struct Data {
//! data: [f32], // `[f32]` is unsized, therefore `Data` is unsized too
//! }
//!
//! implement_buffer_content!(Data); // without this, you can't put `Data` in a glium buffer
//!
//! // creates a buffer of 64 bytes, which thus holds 8 f32s
//! let mut buffer = glium::buffer::Buffer::<Data>::empty_unsized(&display, BufferType::UniformBuffer,
//! 64, BufferMode::Default).unwrap();
//!
//! // you can then write to it like you normally would
//! buffer.map().data[4] = 2.1;
//! # }
//! ```
//!
pub use self::view::{Buffer, BufferAny, BufferMutSlice};
pub use self::view::{BufferSlice, BufferAnySlice};
pub use self::alloc::{Mapping, WriteMapping, ReadMapping, ReadError, CopyError};
pub use self::alloc::{is_buffer_read_supported};
pub use self::fences::Inserter;
/// DEPRECATED. Only here for backwards compatibility.
#[deprecated(note = "Only here for backwards compatibility")]
pub use self::view::Buffer as BufferView;
/// DEPRECATED. Only here for backwards compatibility.
#[deprecated(note = "Only here for backwards compatibility")]
pub use self::view::BufferSlice as BufferViewSlice;
/// DEPRECATED. Only here for backwards compatibility.
#[deprecated(note = "Only here for backwards compatibility")]
pub use self::view::BufferMutSlice as BufferViewMutSlice;
/// DEPRECATED. Only here for backwards compatibility.
#[deprecated(note = "Only here for backwards compatibility")]
pub use self::view::BufferAny as BufferViewAny;
/// DEPRECATED. Only here for backwards compatibility.
#[deprecated(note = "Only here for backwards compatibility")]
pub use self::view::BufferAnySlice as BufferViewAnySlice;
use crate::gl;
use std::error::Error;
use std::fmt;
use std::mem;
use std::slice;
mod alloc;
mod fences;
mod view;
/// Trait for types of data that can be put inside buffers.
pub unsafe trait Content {
/// A type that holds a sized version of the content.
type Owned;
/// Prepares an output buffer, then turns this buffer into an `Owned`.
/// User-provided closure `F` must only write to and not read from `&mut Self`.
unsafe fn read<F, E>(size: usize, _: F) -> Result<Self::Owned, E>
where F: FnOnce(&mut Self) -> Result<(), E>;
/// Returns the size of each element.
fn get_elements_size() -> usize;
/// Produces a pointer to the data.
fn to_void_ptr(&self) -> *const ();
/// Builds a pointer to this type from a raw pointer.
fn ref_from_ptr<'a>(ptr: *mut (), size: usize) -> Option<*mut Self>;
/// Returns true if the size is suitable to store a type like this.
fn is_size_suitable(_: usize) -> bool;
}
unsafe impl<T> Content for T where T: Copy {
type Owned = T;
#[inline]
unsafe fn read<F, E>(size: usize, f: F) -> Result<T, E> where F: FnOnce(&mut T) -> Result<(), E> {
assert!(size == mem::size_of::<T>());
// Note(Lokathor): This is brittle and dangerous if `T` isn't a type
// that can be zeroed. However, it's a breaking change to adjust the API
// here (eg: extra trait bound or something) so someone with more
// authority than me needs to look at and fix this.
let mut value = mem::zeroed();
f(&mut value)?;
Ok(value)
}
#[inline]
fn get_elements_size() -> usize {
mem::size_of::<T>()
}
#[inline]
fn to_void_ptr(&self) -> *const () {
self as *const T as *const ()
}
#[inline]
fn ref_from_ptr<'a>(ptr: *mut (), size: usize) -> Option<*mut T> {
if size != mem::size_of::<T>() {
return None;
}
Some(ptr as *mut T)
}
#[inline]
fn is_size_suitable(size: usize) -> bool {
size == mem::size_of::<T>()
}
}
unsafe impl<T> Content for [T] where T: Copy {
type Owned = Vec<T>;
#[inline]
unsafe fn read<F, E>(size: usize, f: F) -> Result<Vec<T>, E>
where F: FnOnce(&mut [T]) -> Result<(), E>
{
assert!(size % mem::size_of::<T>() == 0);
let len = size / mem::size_of::<T>();
let mut value = Vec::with_capacity(len);
value.set_len(len);
f(&mut value)?;
Ok(value)
}
#[inline]
fn get_elements_size() -> usize {
mem::size_of::<T>()
}
#[inline]
fn to_void_ptr(&self) -> *const () {
&self[0] as *const T as *const ()
}
#[inline]
fn ref_from_ptr<'a>(ptr: *mut (), size: usize) -> Option<*mut [T]> {
if size % mem::size_of::<T>() != 0 {
return None;
}
let ptr = ptr as *mut T;
let size = size / mem::size_of::<T>();
Some(unsafe { slice::from_raw_parts_mut(&mut *ptr, size) as *mut [T] })
}
#[inline]
fn is_size_suitable(size: usize) -> bool {
size % mem::size_of::<T>() == 0
}
}
/// Error that can happen when creating a buffer.
#[derive(Debug, Copy, Clone)]
pub enum BufferCreationError {
/// Not enough memory to create the buffer.
OutOfMemory,
/// This type of buffer is not supported.
BufferTypeNotSupported,
}
impl fmt::Display for BufferCreationError {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let desc = match self {
BufferCreationError::OutOfMemory => "Not enough memory to create the buffer",
BufferCreationError::BufferTypeNotSupported => "This type of buffer is not supported",
};
fmt.write_str(desc)
}
}
impl Error for BufferCreationError {}
/// How the buffer is created.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum BufferMode {
/// This is the default mode suitable for any usage. Will never be slow, will never be fast
/// either.
///
/// Other modes should always be preferred, but you can use this one if you don't know what
/// will happen to the buffer.
///
/// # Implementation
///
/// Tries to use `glBufferStorage` with the `GL_DYNAMIC_STORAGE_BIT` flag.
///
/// If this function is not available, falls back to `glBufferData` with `GL_STATIC_DRAW`.
///
Default,
/// The mode to use when you modify a buffer multiple times per frame. Similar to `Default` in
/// that it is suitable for most usages.
///
/// Use this if you do a quick succession of modify the buffer, draw, modify, draw, etc. This
/// is something that you shouldn't do by the way.
///
/// With this mode, the OpenGL driver automatically manages the buffer for us. It will try to
/// find the most appropriate storage depending on how we use it. It is guaranteed to never be
/// too slow, but it won't be too fast either.
///
/// # Implementation
///
/// Tries to use `glBufferStorage` with the `GL_DYNAMIC_STORAGE_BIT` and
/// `GL_CLIENT_STORAGE_BIT` flags.
///
/// If this function is not available, falls back to `glBufferData` with `GL_DYNAMIC_DRAW`.
///
Dynamic,
/// Optimized for when you modify a buffer exactly once per frame. You can modify it more than
/// once per frame, but if you modify it too often things will slow down.
///
/// With this mode, glium automatically handles synchronization to prevent the buffer from
/// being access by both the GPU and the CPU simultaneously. If you try to modify the buffer,
/// the execution will block until the GPU has finished using it. For this reason, a quick
/// succession of modifying and drawing using the same buffer will be very slow.
///
/// When using persistent mapping, it is recommended to use triple buffering. This is done by
/// creating a buffer that has three times the capacity that it would normally have. You modify
/// and draw the first third, then modify and draw the second third, then the last part, then
/// go back to the first third, etc.
///
/// # Implementation
///
/// Tries to use `glBufferStorage` with `GL_MAP_PERSISTENT_BIT`. Sync fences are automatically
/// managed by glium.
///
/// If this function is not available, falls back to `glBufferData` with `GL_DYNAMIC_DRAW`.
///
Persistent,
/// Optimized when you will never touch the content of the buffer.
///
/// Immutable buffers should be created once and never touched again. Modifying their content
/// is permitted, but is very slow.
///
/// # Implementation
///
/// Tries to use `glBufferStorage` without any flag. Modifications are done by creating
/// temporary buffers and making the GPU copy the data from the temporary buffer to the real
/// one.
///
/// If this function is not available, falls back to `glBufferData` with `GL_STATIC_DRAW`.
///
Immutable,
}
impl Default for BufferMode {
fn default() -> BufferMode {
BufferMode::Default
}
}
/// Type of a buffer.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[allow(missing_docs)]
pub enum BufferType {
ArrayBuffer,
PixelPackBuffer,
PixelUnpackBuffer,
UniformBuffer,
CopyReadBuffer,
CopyWriteBuffer,
AtomicCounterBuffer,
DispatchIndirectBuffer,
DrawIndirectBuffer,
QueryBuffer,
ShaderStorageBuffer,
TextureBuffer,
TransformFeedbackBuffer,
ElementArrayBuffer,
}
impl BufferType {
fn to_glenum(&self) -> gl::types::GLenum {
match *self {
BufferType::ArrayBuffer => gl::ARRAY_BUFFER,
BufferType::PixelPackBuffer => gl::PIXEL_PACK_BUFFER,
BufferType::PixelUnpackBuffer => gl::PIXEL_UNPACK_BUFFER,
BufferType::UniformBuffer => gl::UNIFORM_BUFFER,
BufferType::CopyReadBuffer => gl::COPY_READ_BUFFER,
BufferType::CopyWriteBuffer => gl::COPY_WRITE_BUFFER,
BufferType::AtomicCounterBuffer => gl::ATOMIC_COUNTER_BUFFER,
BufferType::DispatchIndirectBuffer => gl::DISPATCH_INDIRECT_BUFFER,
BufferType::DrawIndirectBuffer => gl::DRAW_INDIRECT_BUFFER,
BufferType::QueryBuffer => gl::QUERY_BUFFER,
BufferType::ShaderStorageBuffer => gl::SHADER_STORAGE_BUFFER,
BufferType::TextureBuffer => gl::TEXTURE_BUFFER,
BufferType::TransformFeedbackBuffer => gl::TRANSFORM_FEEDBACK_BUFFER,
BufferType::ElementArrayBuffer => gl::ELEMENT_ARRAY_BUFFER,
}
}
}