gmt_dos_clients_crseo/pyramid/processing.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
use std::ops::{Add, DivAssign, Mul, Sub};
use crate::Processing;
use super::{PyramidData, PyramidProcessor};
impl<T> Processing for PyramidProcessor<T>
where
T: std::fmt::Debug
+ TryFrom<f32>
+ Copy
+ Add<Output = T>
+ Sub<Output = T>
+ DivAssign
+ Mul<Output = T>
+ PartialOrd
+ 'static,
for<'a> &'a T: Sub<Output = T> + Add<Output = T>,
<T as TryFrom<f32>>::Error: std::fmt::Debug,
{
type ProcessorData = PyramidData<T>;
fn processing(&self) -> Self::ProcessorData {
let (n, m) = self.frame.resolution;
assert!(n > 0 && m > 0, "the detector frame resolution is null");
let crseo::wavefrontsensor::LensletArray { n_side_lenslet, .. } = self.lenslet_array;
let n0 = n_side_lenslet / 2;
let n1 = n0 + n / 2;
/*
The detector frame of the pyramid is divided in 4 quadrants:
| I1 I2 |
| I3 I4 |
*/
/* left =
| I1 |
| I3 |
*/
let left = self.frame.value.chunks(n).skip(n0).take(n_side_lenslet);
/* right =
| I2 |
| I4 |
*/
let right = self.frame.value.chunks(n).skip(n1).take(n_side_lenslet);
// (left - right, left + right)
let row_diff_sum: Vec<_> = left
.zip(right)
.flat_map(|(left, right)| {
left.iter()
.zip(right)
.map(|(left, right)| (left - right, left + right))
.collect::<Vec<_>>()
})
.collect();
// top = ( I1 - I2 , I1 + I2 )
let top = (0..n)
.map(|i| row_diff_sum.iter().skip(i).step_by(m).collect::<Vec<_>>())
.skip(n0)
.take(n_side_lenslet);
// bottom = ( I3 -I4 , I3 + I4)
let bottom = (0..n)
.map(|i| row_diff_sum.iter().skip(i).step_by(m).collect::<Vec<_>>())
.skip(n1)
.take(n_side_lenslet);
/*
top - bottom = I1 - I2 + I3 - I4
top + bottom = I1 + I2 + I3 + I4
*/
let (row_col_data, flux): (Vec<_>, Vec<_>) = top
.zip(bottom)
.flat_map(|(top, bottom)| {
top.iter()
.zip(bottom)
.map(|((top_diff, top_sum), (bottom_diff, bottom_sum))| {
(*top_diff + *bottom_diff, *top_sum + *bottom_sum)
})
.collect::<Vec<_>>()
})
.unzip();
// top = | I1 I2 |
let top = (0..n)
.map(|i| {
self.frame
.value
.iter()
.skip(i)
.step_by(m)
.collect::<Vec<_>>()
})
.skip(n0)
.take(n_side_lenslet);
// bottom = | I3 I4 |
let bottom = (0..n)
.map(|i| {
self.frame
.value
.iter()
.skip(i)
.step_by(m)
.collect::<Vec<_>>()
})
.skip(n1)
.take(n_side_lenslet);
// top - bottom
let col_diff: Vec<_> = top
.zip(bottom)
.flat_map(|(top, bottom)| {
top.iter()
.zip(bottom)
.map(|(&&top, &bottom)| top - bottom)
.collect::<Vec<_>>()
})
.collect();
// I1 - I3 + I2 - I4
let left = col_diff.chunks(n);
let right = col_diff.chunks(n);
let col_row_data: Vec<_> = left
.zip(right)
.flat_map(|(left, right)| {
left.iter()
.skip(n0)
.take(n_side_lenslet)
.zip(right.iter().skip(n1).take(n_side_lenslet))
.map(|(&left, &right)| left + right)
.collect::<Vec<_>>()
})
.collect();
let mut _flux = flux.clone();
_flux.sort_by(|a, b| a.partial_cmp(b).unwrap());
let med_flux = match _flux.len() {
n if n % 2 == 0 => T::try_from(0.5).unwrap() * (_flux[n / 2] + _flux[1 + n / 2]),
n => _flux[(n + 1) / 2],
};
let (sx, sy): (Vec<_>, Vec<_>) = row_col_data
.into_iter()
.zip(col_row_data.into_iter())
.map(|(mut sx, mut sy)| {
sx /= med_flux;
sy /= med_flux;
(sx, sy)
})
.unzip();
/* let (sx, sy): (Vec<_>, Vec<_>) = row_col_data
.into_iter()
.zip(col_row_data.into_iter())
.zip(flux.iter())
.map(|((mut sx, mut sy), flux)| {
sx /= *flux;
sy /= *flux;
(sx, sy)
})
.unzip(); */
PyramidData { sx, sy, flux }
}
}