goblin/elf/reloc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
//! # Relocation computations
//!
//! The following notation is used to describe relocation computations
//! specific to x86_64 ELF.
//!
//! * A: The addend used to compute the value of the relocatable field.
//! * B: The base address at which a shared object is loaded into memory
//! during execution. Generally, a shared object file is built with a
//! base virtual address of 0. However, the execution address of the
//! shared object is different.
//! * G: The offset into the global offset table at which the address of
//! the relocation entry's symbol resides during execution.
//! * GOT: The address of the global offset table.
//! * L: The section offset or address of the procedure linkage table entry
//! for a symbol.
//! * P: The section offset or address of the storage unit being relocated,
//! computed using r_offset.
//! * S: The value of the symbol whose index resides in the relocation entry.
//! * Z: The size of the symbol whose index resides in the relocation entry.
//!
//! Below are some common x86_64 relocation computations you might find useful:
//!
//! | Relocation | Value | Size | Formula |
//! |:--------------------------|:------|:----------|:------------------|
//! | `R_X86_64_NONE` | 0 | NONE | NONE |
//! | `R_X86_64_64` | 1 | 64 | S + A |
//! | `R_X86_64_PC32` | 2 | 32 | S + A - P |
//! | `R_X86_64_GOT32` | 3 | 32 | G + A |
//! | `R_X86_64_PLT32` | 4 | 32 | L + A - P |
//! | `R_X86_64_COPY` | 5 | NONE | NONE |
//! | `R_X86_64_GLOB_DAT` | 6 | 64 | S |
//! | `R_X86_64_JUMP_SLOT` | 7 | 64 | S |
//! | `R_X86_64_RELATIVE` | 8 | 64 | B + A |
//! | `R_X86_64_GOTPCREL` | 9 | 32 | G + GOT + A - P |
//! | `R_X86_64_32` | 10 | 32 | S + A |
//! | `R_X86_64_32S` | 11 | 32 | S + A |
//! | `R_X86_64_16` | 12 | 16 | S + A |
//! | `R_X86_64_PC16` | 13 | 16 | S + A - P |
//! | `R_X86_64_8` | 14 | 8 | S + A |
//! | `R_X86_64_PC8` | 15 | 8 | S + A - P |
//! | `R_X86_64_DTPMOD64` | 16 | 64 | |
//! | `R_X86_64_DTPOFF64` | 17 | 64 | |
//! | `R_X86_64_TPOFF64` | 18 | 64 | |
//! | `R_X86_64_TLSGD` | 19 | 32 | |
//! | `R_X86_64_TLSLD` | 20 | 32 | |
//! | `R_X86_64_DTPOFF32` | 21 | 32 | |
//! | `R_X86_64_GOTTPOFF` | 22 | 32 | |
//! | `R_X86_64_TPOFF32` | 23 | 32 | |
//! | `R_X86_64_PC64` | 24 | 64 | S + A - P |
//! | `R_X86_64_GOTOFF64` | 25 | 64 | S + A - GOT |
//! | `R_X86_64_GOTPC32` | 26 | 32 | GOT + A - P |
//! | `R_X86_64_SIZE32` | 32 | 32 | Z + A |
//! | `R_X86_64_SIZE64` | 33 | 64 | Z + A |
//! | `R_X86_64_GOTPC32_TLSDESC`| 34 | 32 | |
//! | `R_X86_64_TLSDESC_CALL` | 35 | NONE | |
//! | `R_X86_64_TLSDESC` | 36 | 64 × 2 | |
//! | `R_X86_64_IRELATIVE` | 37 | 64 | indirect (B + A) |
//!
//! TLS information is at <http://people.redhat.com/aoliva/writeups/TLS/RFC-TLSDESC-x86.txt>
//!
//! `R_X86_64_IRELATIVE` is similar to `R_X86_64_RELATIVE` except that
//! the value used in this relocation is the program address returned by the function,
//! which takes no arguments, at the address of the result of the corresponding
//! `R_X86_64_RELATIVE` relocation.
//!
//! Read more <https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-54839.html>
include!("constants_relocation.rs");
macro_rules! elf_reloc {
($size:ident, $isize:ty) => {
use core::fmt;
#[cfg(feature = "alloc")]
use scroll::{Pread, Pwrite, SizeWith};
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Default)]
#[cfg_attr(feature = "alloc", derive(Pread, Pwrite, SizeWith))]
/// Relocation with an explicit addend
pub struct Rela {
/// Address
pub r_offset: $size,
/// Relocation type and symbol index
pub r_info: $size,
/// Addend
pub r_addend: $isize,
}
#[repr(C)]
#[derive(Clone, PartialEq, Default)]
#[cfg_attr(feature = "alloc", derive(Pread, Pwrite, SizeWith))]
/// Relocation without an addend
pub struct Rel {
/// address
pub r_offset: $size,
/// relocation type and symbol address
pub r_info: $size,
}
use plain;
unsafe impl plain::Plain for Rela {}
unsafe impl plain::Plain for Rel {}
impl fmt::Debug for Rela {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let sym = r_sym(self.r_info);
let typ = r_type(self.r_info);
f.debug_struct("Rela")
.field("r_offset", &format_args!("{:x}", self.r_offset))
.field("r_info", &format_args!("{:x}", self.r_info))
.field("r_addend", &format_args!("{:x}", self.r_addend))
.field("r_typ", &typ)
.field("r_sym", &sym)
.finish()
}
}
impl fmt::Debug for Rel {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let sym = r_sym(self.r_info);
let typ = r_type(self.r_info);
f.debug_struct("Rel")
.field("r_offset", &format_args!("{:x}", self.r_offset))
.field("r_info", &format_args!("{:x}", self.r_info))
.field("r_typ", &typ)
.field("r_sym", &sym)
.finish()
}
}
};
}
macro_rules! elf_rela_std_impl {
($size:ident, $isize:ty) => {
if_alloc! {
use core::slice;
if_std! {
use crate::error::Result;
use std::fs::File;
use std::io::{Read, Seek};
use std::io::SeekFrom::Start;
}
impl From<Rela> for Reloc {
fn from(rela: Rela) -> Self {
Reloc {
r_offset: u64::from(rela.r_offset),
r_addend: Some(i64::from(rela.r_addend)),
r_sym: r_sym(rela.r_info) as usize,
r_type: r_type(rela.r_info),
}
}
}
impl From<Rel> for Reloc {
fn from(rel: Rel) -> Self {
Reloc {
r_offset: u64::from(rel.r_offset),
r_addend: None,
r_sym: r_sym(rel.r_info) as usize,
r_type: r_type(rel.r_info),
}
}
}
impl From<Reloc> for Rela {
fn from(rela: Reloc) -> Self {
let r_info = r_info(rela.r_sym as $size, $size::from(rela.r_type));
Rela {
r_offset: rela.r_offset as $size,
r_info: r_info,
r_addend: rela.r_addend.unwrap_or(0) as $isize,
}
}
}
impl From<Reloc> for Rel {
fn from(rel: Reloc) -> Self {
let r_info = r_info(rel.r_sym as $size, $size::from(rel.r_type));
Rel {
r_offset: rel.r_offset as $size,
r_info: r_info,
}
}
}
/// Gets the rela entries given a rela pointer and the _size_ of the rela section in the binary,
/// in bytes.
/// Assumes the pointer is valid and can safely return a slice of memory pointing to the relas because:
/// 1. `ptr` points to memory received from the kernel (i.e., it loaded the executable), _or_
/// 2. The binary has already been mmapped (i.e., it's a `SharedObject`), and hence it's safe to return a slice of that memory.
/// 3. Or if you obtained the pointer in some other lawful manner
pub unsafe fn from_raw_rela<'a>(ptr: *const Rela, size: usize) -> &'a [Rela] {
slice::from_raw_parts(ptr, size / SIZEOF_RELA)
}
/// Gets the rel entries given a rel pointer and the _size_ of the rel section in the binary,
/// in bytes.
/// Assumes the pointer is valid and can safely return a slice of memory pointing to the rels because:
/// 1. `ptr` points to memory received from the kernel (i.e., it loaded the executable), _or_
/// 2. The binary has already been mmapped (i.e., it's a `SharedObject`), and hence it's safe to return a slice of that memory.
/// 3. Or if you obtained the pointer in some other lawful manner
pub unsafe fn from_raw_rel<'a>(ptr: *const Rel, size: usize) -> &'a [Rel] {
slice::from_raw_parts(ptr, size / SIZEOF_REL)
}
#[cfg(feature = "std")]
pub fn from_fd(fd: &mut File, offset: usize, size: usize) -> Result<Vec<Rela>> {
let count = size / SIZEOF_RELA;
let mut relocs = vec![Rela::default(); count];
fd.seek(Start(offset as u64))?;
unsafe {
fd.read_exact(plain::as_mut_bytes(&mut *relocs))?;
}
Ok(relocs)
}
} // end if_alloc
};
}
pub mod reloc32 {
pub use crate::elf::reloc::*;
elf_reloc!(u32, i32);
pub const SIZEOF_RELA: usize = 4 + 4 + 4;
pub const SIZEOF_REL: usize = 4 + 4;
#[inline(always)]
pub fn r_sym(info: u32) -> u32 {
info >> 8
}
#[inline(always)]
pub fn r_type(info: u32) -> u32 {
info & 0xff
}
#[inline(always)]
pub fn r_info(sym: u32, typ: u32) -> u32 {
(sym << 8) + (typ & 0xff)
}
elf_rela_std_impl!(u32, i32);
}
pub mod reloc64 {
pub use crate::elf::reloc::*;
elf_reloc!(u64, i64);
pub const SIZEOF_RELA: usize = 8 + 8 + 8;
pub const SIZEOF_REL: usize = 8 + 8;
#[inline(always)]
pub fn r_sym(info: u64) -> u32 {
(info >> 32) as u32
}
#[inline(always)]
pub fn r_type(info: u64) -> u32 {
(info & 0xffff_ffff) as u32
}
#[inline(always)]
pub fn r_info(sym: u64, typ: u64) -> u64 {
(sym << 32) + typ
}
elf_rela_std_impl!(u64, i64);
}
//////////////////////////////
// Generic Reloc
/////////////////////////////
if_alloc! {
use scroll::{ctx, Pread};
use scroll::ctx::SizeWith;
use core::fmt;
use core::result;
use crate::container::{Ctx, Container};
use alloc::vec::Vec;
#[derive(Clone, Copy, PartialEq, Default)]
/// A unified ELF relocation structure
pub struct Reloc {
/// Address
pub r_offset: u64,
/// Addend
pub r_addend: Option<i64>,
/// The index into the corresponding symbol table - either dynamic or regular
pub r_sym: usize,
/// The relocation type
pub r_type: u32,
}
impl Reloc {
pub fn size(is_rela: bool, ctx: Ctx) -> usize {
use scroll::ctx::SizeWith;
Reloc::size_with(&(is_rela, ctx))
}
}
type RelocCtx = (bool, Ctx);
impl ctx::SizeWith<RelocCtx> for Reloc {
fn size_with( &(is_rela, Ctx { container, .. }): &RelocCtx) -> usize {
match container {
Container::Little => {
if is_rela { reloc32::SIZEOF_RELA } else { reloc32::SIZEOF_REL }
},
Container::Big => {
if is_rela { reloc64::SIZEOF_RELA } else { reloc64::SIZEOF_REL }
}
}
}
}
impl<'a> ctx::TryFromCtx<'a, RelocCtx> for Reloc {
type Error = crate::error::Error;
fn try_from_ctx(bytes: &'a [u8], (is_rela, Ctx { container, le }): RelocCtx) -> result::Result<(Self, usize), Self::Error> {
use scroll::Pread;
let reloc = match container {
Container::Little => {
if is_rela {
(bytes.pread_with::<reloc32::Rela>(0, le)?.into(), reloc32::SIZEOF_RELA)
} else {
(bytes.pread_with::<reloc32::Rel>(0, le)?.into(), reloc32::SIZEOF_REL)
}
},
Container::Big => {
if is_rela {
(bytes.pread_with::<reloc64::Rela>(0, le)?.into(), reloc64::SIZEOF_RELA)
} else {
(bytes.pread_with::<reloc64::Rel>(0, le)?.into(), reloc64::SIZEOF_REL)
}
}
};
Ok(reloc)
}
}
impl ctx::TryIntoCtx<RelocCtx> for Reloc {
type Error = crate::error::Error;
/// Writes the relocation into `bytes`
fn try_into_ctx(self, bytes: &mut [u8], (is_rela, Ctx {container, le}): RelocCtx) -> result::Result<usize, Self::Error> {
use scroll::Pwrite;
match container {
Container::Little => {
if is_rela {
let rela: reloc32::Rela = self.into();
Ok(bytes.pwrite_with(rela, 0, le)?)
} else {
let rel: reloc32::Rel = self.into();
Ok(bytes.pwrite_with(rel, 0, le)?)
}
},
Container::Big => {
if is_rela {
let rela: reloc64::Rela = self.into();
Ok(bytes.pwrite_with(rela, 0, le)?)
} else {
let rel: reloc64::Rel = self.into();
Ok(bytes.pwrite_with(rel, 0, le)?)
}
},
}
}
}
impl ctx::IntoCtx<(bool, Ctx)> for Reloc {
/// Writes the relocation into `bytes`
fn into_ctx(self, bytes: &mut [u8], ctx: RelocCtx) {
use scroll::Pwrite;
bytes.pwrite_with(self, 0, ctx).unwrap();
}
}
impl fmt::Debug for Reloc {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Reloc")
.field("r_offset", &format_args!("{:x}", self.r_offset))
.field("r_addend", &format_args!("{:x}", self.r_addend.unwrap_or(0)))
.field("r_sym", &self.r_sym)
.field("r_type", &self.r_type)
.finish()
}
}
#[derive(Default)]
/// An ELF section containing relocations, allowing lazy iteration over symbols.
pub struct RelocSection<'a> {
bytes: &'a [u8],
count: usize,
ctx: RelocCtx,
start: usize,
end: usize,
}
impl<'a> fmt::Debug for RelocSection<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let len = self.bytes.len();
fmt.debug_struct("RelocSection")
.field("bytes", &len)
.field("range", &format!("{:#x}..{:#x}", self.start, self.end))
.field("count", &self.count)
.field("Relocations", &self.to_vec())
.finish()
}
}
impl<'a> RelocSection<'a> {
#[cfg(feature = "endian_fd")]
/// Parse a REL or RELA section of size `filesz` from `offset`.
pub fn parse(bytes: &'a [u8], offset: usize, filesz: usize, is_rela: bool, ctx: Ctx) -> crate::error::Result<RelocSection<'a>> {
// TODO: better error message when too large (see symtab implementation)
let bytes = if filesz != 0 {
bytes.pread_with::<&'a [u8]>(offset, filesz)?
} else {
&[]
};
Ok(RelocSection {
bytes: bytes,
count: filesz / Reloc::size(is_rela, ctx),
ctx: (is_rela, ctx),
start: offset,
end: offset + filesz,
})
}
/// Try to parse a single relocation from the binary, at `index`.
#[inline]
pub fn get(&self, index: usize) -> Option<Reloc> {
if index >= self.count {
None
} else {
Some(self.bytes.pread_with(index * Reloc::size_with(&self.ctx), self.ctx).unwrap())
}
}
/// The number of relocations in the section.
#[inline]
pub fn len(&self) -> usize {
self.count
}
/// Returns true if section has no relocations.
#[inline]
pub fn is_empty(&self) -> bool {
self.count == 0
}
/// Iterate over all relocations.
pub fn iter(&self) -> RelocIterator<'a> {
self.into_iter()
}
/// Parse all relocations into a vector.
pub fn to_vec(&self) -> Vec<Reloc> {
self.iter().collect()
}
}
impl<'a, 'b> IntoIterator for &'b RelocSection<'a> {
type Item = <RelocIterator<'a> as Iterator>::Item;
type IntoIter = RelocIterator<'a>;
#[inline]
fn into_iter(self) -> Self::IntoIter {
RelocIterator {
bytes: self.bytes,
offset: 0,
index: 0,
count: self.count,
ctx: self.ctx,
}
}
}
pub struct RelocIterator<'a> {
bytes: &'a [u8],
offset: usize,
index: usize,
count: usize,
ctx: RelocCtx,
}
impl<'a> fmt::Debug for RelocIterator<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("RelocIterator")
.field("bytes", &"<... redacted ...>")
.field("offset", &self.offset)
.field("index", &self.index)
.field("count", &self.count)
.field("ctx", &self.ctx)
.finish()
}
}
impl<'a> Iterator for RelocIterator<'a> {
type Item = Reloc;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.index >= self.count {
None
} else {
self.index += 1;
Some(self.bytes.gread_with(&mut self.offset, self.ctx).unwrap())
}
}
}
impl<'a> ExactSizeIterator for RelocIterator<'a> {
#[inline]
fn len(&self) -> usize {
self.count - self.index
}
}
} // end if_alloc