1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
//! Find all cycles in a graph
//!
//! A naive implementation of Johnson's algorithm to find all cycles
//! in a graph. Based on [petgraph](https://github.com/petgraph/petgraph).
//!
//! # Example
//!
//! The triangle graph has exactly one cycle, namely the full graph itself.
//!
//! ```rust
//! use graph_cycles::Cycles;
//! use petgraph::graph::Graph;
//!
//! let g = Graph::<(), ()>::from_edges([(0, 1), (1, 2), (2, 0)]);
//!
//! // find all cycles
//! let cycles = g.cycles();
//! assert_eq!(cycles.len(), 1);
//! assert_eq!(cycles[0].len(), 3);
//!
//! // print each cycle in turn
//! g.visit_all_cycles(|_g, c| {
//! println!("Found new cycle with vertices {c:?}");
//! });
//! ```
//!
//! # Caveats
//!
//! This crate is essentially untested.
//!
//! # References
//!
//! Donald B. Johnson,
//! Finding all the elementary circuits of a directed graph,
//! SIAM Journal on Computing, 1975.
//!
use std::ops::ControlFlow;
use ahash::AHashSet;
use petgraph::{
algo::tarjan_scc,
stable_graph::IndexType,
visit::{GraphBase, IntoNeighbors, IntoNodeIdentifiers, NodeIndexable},
EdgeType, Graph,
};
/// Trait for identifying cycles in a graph
pub trait Cycles {
//! The node identifier of the underlying graph
type NodeId;
/// Apply the `visitor` to each cycle until we are told to stop
///
/// The first argument passed to the visitor is a reference to the
/// graph and the second one a slice with all nodes that form the
/// cycle. If at any point the visitor returns
/// `ControlFlow::Break(b)` this function stops visiting any
/// further cycles and returns `Some(b)`. Otherwise the return
/// value is `None`.
fn visit_cycles<F, B>(&self, visitor: F) -> Option<B>
where
F: FnMut(&Self, &[Self::NodeId]) -> ControlFlow<B>;
/// Apply the `visitor` to each cycle until we are told to stop
///
/// The first argument passed to the visitor is a reference to the
/// graph and the second one a slice with all nodes that form the
/// cycle.
fn visit_all_cycles<F>(&self, mut visitor: F)
where
F: FnMut(&Self, &[Self::NodeId]),
{
self.visit_cycles(|g, n| {
visitor(g, n);
ControlFlow::<(), ()>::Continue(())
});
}
/// Find all cycles
///
/// Each element of the returned `Vec` is a `Vec` of all nodes in one cycle.
fn cycles(&self) -> Vec<Vec<Self::NodeId>>;
}
impl<N, E, Ty: EdgeType, Ix: IndexType> Cycles for Graph<N, E, Ty, Ix> {
type NodeId = <Graph<N, E, Ty, Ix> as GraphBase>::NodeId;
fn visit_cycles<F, B>(&self, mut visitor: F) -> Option<B>
where
F: FnMut(&Graph<N, E, Ty, Ix>, &[Self::NodeId]) -> ControlFlow<B>,
{
for component in tarjan_scc(self) {
let mut finder = CycleFinder::new(self, component);
if let ControlFlow::Break(b) = finder.visit(&mut visitor) {
return Some(b);
}
}
None
}
fn cycles(&self) -> Vec<Vec<Self::NodeId>> {
let mut cycles = Vec::new();
self.visit_all_cycles(|_, cycle| cycles.push(cycle.to_vec()));
cycles
}
}
// // TODO: when trying to use this on a petgraph::graph::Graph rust
// // complains that `IntoNeighbors` and `IntoNodeIdentifiers` are
// // not satisfied
// impl<Graph> Cycles for Graph
// where
// Graph: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable,
// {
// type NodeId = Graph::NodeId;
// fn visit_cycles<F, B>(&self, mut visitor: F) -> Option<B>
// where F: FnMut(&Graph, &[Self::NodeId]) -> ControlFlow<B> {
// for component in tarjan_scc(self) {
// let mut finder = CycleFinder::new(self, component);
// if let ControlFlow::Break(b) = finder.visit(&mut visitor) {
// return Some(b);
// }
// }
// None
// }
// fn cycles(&self) -> Vec<Vec<Self::NodeId>> {
// let mut cycles = Vec::new();
// self.visit_cycles(|_, cycle| {
// cycles.push(cycle.to_vec());
// ControlFlow::<(), ()>::Continue(())
// });
// cycles
// }
// }
#[derive(Clone, Debug, Eq, PartialEq)]
struct CycleFinder<G, N> {
graph: G,
scc: Vec<N>,
blocked: Vec<bool>,
b: Vec<AHashSet<usize>>,
stack: Vec<N>,
s: usize,
}
impl<G> CycleFinder<G, G::NodeId>
where
G: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable,
{
fn new(graph: G, scc: Vec<G::NodeId>) -> Self {
let num_vertices = scc.len();
Self {
graph,
scc,
blocked: vec![false; num_vertices],
b: vec![Default::default(); num_vertices],
stack: Default::default(),
s: Default::default(),
}
}
fn visit<F, B>(&mut self, visitor: &mut F) -> ControlFlow<B>
where
F: FnMut(G, &[G::NodeId]) -> ControlFlow<B>,
{
// cycle finding algorithm from
for s in 0..self.scc.len() {
self.s = s;
self.blocked[s..].fill(false);
for b in &mut self.b[s + 1..] {
b.clear();
}
if let ControlFlow::Break(b) = self.circuit(s, visitor) {
return ControlFlow::Break(b);
}
self.blocked[s] = true;
}
ControlFlow::Continue(())
}
fn circuit<B, F>(
&mut self,
v: usize,
visitor: &mut F,
) -> ControlFlow<B, bool>
where
F: FnMut(G, &[G::NodeId]) -> ControlFlow<B>,
{
let mut f = false;
self.stack.push(self.scc[v]);
self.blocked[v] = true;
// L1:
for w in self.adjacent_vertices(v) {
if w == self.s {
if let ControlFlow::Break(b) = visitor(self.graph, &self.stack)
{
return ControlFlow::Break(b);
}
f = true;
} else if !self.blocked[w]
&& matches!(
self.circuit(w, visitor),
ControlFlow::Continue(true)
)
{
f = true;
}
}
// L2:
if f {
self.unblock(v)
} else {
for w in self.adjacent_vertices(v) {
self.b[w].insert(v);
}
}
self.stack.pop(); // v
ControlFlow::Continue(f)
}
fn unblock(&mut self, v: usize) {
self.blocked[v] = false;
let tmp = self.b[v].clone();
for w in tmp {
if self.blocked[w] {
self.unblock(w)
}
}
self.b[v].clear()
}
fn adjacent_vertices(&self, v: usize) -> Vec<usize> {
self.graph
.neighbors(self.scc[v])
.filter_map(|n| self.scc.iter().position(|v| *v == n))
.collect()
}
}
#[cfg(test)]
mod tests {
#[test]
fn test() {}
}