1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
//! This module is used to instrument a Wasm module with gas metering code.
//!
//! The primary public interface is the [`inject`] function which transforms a given
//! module into one that charges gas for code to be executed. See function documentation for usage
//! and details.
#[cfg(test)]
mod validation;
use super::utils;
use alloc::{vec, vec::Vec};
use core::{cmp::min, mem, num::NonZeroU32};
use parity_wasm::{
builder,
elements::{self, Instruction, ValueType},
};
/// An interface that describes instruction costs.
pub trait Rules {
/// Returns the cost for the passed `instruction`.
///
/// Returning `None` makes the gas instrumention end with an error. This is meant
/// as a way to have a partial rule set where any instruction that is not specifed
/// is considered as forbidden.
fn instruction_cost(&self, instruction: &Instruction) -> Option<u32>;
/// Returns the costs for growing the memory using the `memory.grow` instruction.
///
/// Please note that these costs are in addition to the costs specified by `instruction_cost`
/// for the `memory.grow` instruction. Those are meant as dynamic costs which take the
/// amount of pages that the memory is grown by into consideration. This is not possible
/// using `instruction_cost` because those costs depend on the stack and must be injected as
/// code into the function calling `memory.grow`. Therefore returning anything but
/// [`MemoryGrowCost::Free`] introduces some overhead to the `memory.grow` instruction.
fn memory_grow_cost(&self) -> MemoryGrowCost;
/// A surcharge cost to calling a function that is added per local variable of the function.
fn call_per_local_cost(&self) -> u32;
}
/// Dynamic costs for memory growth.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum MemoryGrowCost {
/// Skip per page charge.
///
/// # Note
///
/// This makes sense when the amount of pages that a module is allowed to use is limited
/// to a rather small number by static validation. In that case it is viable to
/// benchmark the costs of `memory.grow` as the worst case (growing to to the maximum
/// number of pages).
Free,
/// Charge the specified amount for each page that the memory is grown by.
Linear(NonZeroU32),
}
impl MemoryGrowCost {
/// True iff memory growths code needs to be injected.
fn enabled(&self) -> bool {
match self {
Self::Free => false,
Self::Linear(_) => true,
}
}
}
/// A type that implements [`Rules`] so that every instruction costs the same.
///
/// This is a simplification that is mostly useful for development and testing.
///
/// # Note
///
/// In a production environment it usually makes no sense to assign every instruction
/// the same cost. A proper implemention of [`Rules`] should be prived that is probably
/// created by benchmarking.
pub struct ConstantCostRules {
instruction_cost: u32,
memory_grow_cost: u32,
call_per_local_cost: u32,
}
impl ConstantCostRules {
/// Create a new [`ConstantCostRules`].
///
/// Uses `instruction_cost` for every instruction and `memory_grow_cost` to dynamically
/// meter the memory growth instruction.
pub fn new(instruction_cost: u32, memory_grow_cost: u32, call_per_local_cost: u32) -> Self {
Self { instruction_cost, memory_grow_cost, call_per_local_cost }
}
}
impl Default for ConstantCostRules {
/// Uses instruction cost of `1` and disables memory growth instrumentation.
fn default() -> Self {
Self { instruction_cost: 1, memory_grow_cost: 0, call_per_local_cost: 1 }
}
}
impl Rules for ConstantCostRules {
fn instruction_cost(&self, _: &Instruction) -> Option<u32> {
Some(self.instruction_cost)
}
fn memory_grow_cost(&self) -> MemoryGrowCost {
NonZeroU32::new(self.memory_grow_cost).map_or(MemoryGrowCost::Free, MemoryGrowCost::Linear)
}
fn call_per_local_cost(&self) -> u32 {
self.call_per_local_cost
}
}
/// Transforms a given module into one that charges gas for code to be executed by proxy of an
/// imported gas metering function.
///
/// The output module imports a function "gas" from the specified module with type signature
/// [i32] -> []. The argument is the amount of gas required to continue execution. The external
/// function is meant to keep track of the total amount of gas used and trap or otherwise halt
/// execution of the runtime if the gas usage exceeds some allowed limit.
///
/// The body of each function is divided into metered blocks, and the calls to charge gas are
/// inserted at the beginning of every such block of code. A metered block is defined so that,
/// unless there is a trap, either all of the instructions are executed or none are. These are
/// similar to basic blocks in a control flow graph, except that in some cases multiple basic
/// blocks can be merged into a single metered block. This is the case if any path through the
/// control flow graph containing one basic block also contains another.
///
/// Charging gas is at the beginning of each metered block ensures that 1) all instructions
/// executed are already paid for, 2) instructions that will not be executed are not charged for
/// unless execution traps, and 3) the number of calls to "gas" is minimized. The corollary is that
/// modules instrumented with this metering code may charge gas for instructions not executed in
/// the event of a trap.
///
/// Additionally, each `memory.grow` instruction found in the module is instrumented to first make
/// a call to charge gas for the additional pages requested. This cannot be done as part of the
/// block level gas charges as the gas cost is not static and depends on the stack argument to
/// `memory.grow`.
///
/// The above transformations are performed for every function body defined in the module. This
/// function also rewrites all function indices references by code, table elements, etc., since
/// the addition of an imported functions changes the indices of module-defined functions. If the
/// the module has a NameSection, added by calling `parse_names`, the indices will also be updated.
///
/// This routine runs in time linear in the size of the input module.
///
/// The function fails if the module contains any operation forbidden by gas rule set, returning
/// the original module as an Err.
pub fn inject<R: Rules>(
module: elements::Module,
rules: &R,
gas_module_name: &str,
) -> Result<elements::Module, elements::Module> {
// Injecting gas counting external
let mut mbuilder = builder::from_module(module);
let import_sig =
mbuilder.push_signature(builder::signature().with_param(ValueType::I32).build_sig());
mbuilder.push_import(
builder::import()
.module(gas_module_name)
.field("gas")
.external()
.func(import_sig)
.build(),
);
// back to plain module
let module = mbuilder.build();
let gas_func = module.import_count(elements::ImportCountType::Function) - 1;
let module = utils::rewrite_sections_after_insertion(module, gas_func as u32, 1)?;
post_injection_handler(module, rules, gas_func)
}
/// Helper procedure that makes adjustments after gas metering function injected.
///
/// See documentation for [`inject`] for more details.
pub fn post_injection_handler<R: Rules>(
mut module: elements::Module,
rules: &R,
gas_charge_index: usize,
) -> Result<elements::Module, elements::Module> {
// calculate actual function index of the imported definition
// (subtract all imports that are NOT functions)
let import_count = module.import_count(elements::ImportCountType::Function);
let total_func = module.functions_space() as u32;
let mut need_grow_counter = false;
if let Some(code_section) = module.code_section_mut() {
for (i, func_body) in code_section.bodies_mut().iter_mut().enumerate() {
if i + import_count == gas_charge_index {
continue
}
let result = func_body
.locals()
.iter()
.try_fold(0u32, |count, val_type| count.checked_add(val_type.count()))
.ok_or(())
.and_then(|locals_count| {
inject_counter(
func_body.code_mut(),
rules,
locals_count,
gas_charge_index as u32,
)
});
if result.is_err() {
return Err(module)
}
if rules.memory_grow_cost().enabled() &&
inject_grow_counter(func_body.code_mut(), total_func) > 0
{
need_grow_counter = true;
}
}
}
match need_grow_counter {
true => Ok(add_grow_counter(module, rules, gas_charge_index as u32)),
false => Ok(module),
}
}
/// A control flow block is opened with the `block`, `loop`, and `if` instructions and is closed
/// with `end`. Each block implicitly defines a new label. The control blocks form a stack during
/// program execution.
///
/// An example of block:
///
/// ```wasm
/// loop
/// i32.const 1
/// local.get 0
/// i32.sub
/// local.tee 0
/// br_if 0
/// end
/// ```
///
/// The start of the block is `i32.const 1`.
#[derive(Debug)]
struct ControlBlock {
/// The lowest control stack index corresponding to a forward jump targeted by a br, br_if, or
/// br_table instruction within this control block. The index must refer to a control block
/// that is not a loop, meaning it is a forward jump. Given the way Wasm control flow is
/// structured, the lowest index on the stack represents the furthest forward branch target.
///
/// This value will always be at most the index of the block itself, even if there is no
/// explicit br instruction targeting this control block. This does not affect how the value is
/// used in the metering algorithm.
lowest_forward_br_target: usize,
/// The active metering block that new instructions contribute a gas cost towards.
active_metered_block: MeteredBlock,
/// Whether the control block is a loop. Loops have the distinguishing feature that branches to
/// them jump to the beginning of the block, not the end as with the other control blocks.
is_loop: bool,
}
/// A block of code that metering instructions will be inserted at the beginning of. Metered blocks
/// are constructed with the property that, in the absence of any traps, either all instructions in
/// the block are executed or none are.
#[derive(Debug)]
struct MeteredBlock {
/// Index of the first instruction (aka `Opcode`) in the block.
start_pos: usize,
/// Sum of costs of all instructions until end of the block.
cost: BlockCostCounter,
}
/// Metering block cost counter, which handles arithmetic overflows.
#[derive(Debug, PartialEq, PartialOrd)]
#[cfg_attr(test, derive(Copy, Clone, Default))]
struct BlockCostCounter {
/// Arithmetical overflows can occur while summarizing costs of some
/// instruction set. To handle this, we count amount of such overflows
/// with a separate counter and continue counting cost of metering block.
///
/// The overflow counter can overflow itself. However, this is not the
/// problem for the following reason. The returning after module instrumentation
/// set of instructions is a `Vec` which can't allocate more than `isize::MAX`
/// amount of memory, If, for instance, we are running the counter on the host
/// machine with 32 pointer size, reaching a huge amount of overflows can fail
/// instrumentation even if `overflows` is not overflowed, because we will
/// have a resulting set of instructions so big, that it will be impossible to
/// allocate a vector for it. So regardless of overflow of `overflows` field,
/// the field having huge value can fail instrumentation. This memory allocation
/// problem allows us to exhale and not think about the overflow of the
/// `overflows` field. What's more, the memory allocation problem (size of
/// instrumenting WASM) is a caller side concern.
overflows: usize,
/// Block's cost accumulator.
accumulator: u32,
}
impl BlockCostCounter {
/// Maximum value of the `gas` call argument.
///
/// This constant bounds maximum value of argument
/// in `gas` operation in order to prevent arithmetic
/// overflow. For more information see type docs.
const MAX_GAS_ARG: u32 = u32::MAX;
fn zero() -> Self {
Self::initialize(0)
}
fn initialize(initial_cost: u32) -> Self {
Self { overflows: 0, accumulator: initial_cost }
}
fn add(&mut self, counter: BlockCostCounter) {
// Overflow of `self.overflows` is not a big deal. See `overflows` field docs.
self.overflows = self.overflows.saturating_add(counter.overflows);
self.increment(counter.accumulator)
}
fn increment(&mut self, val: u32) {
if let Some(res) = self.accumulator.checked_add(val) {
self.accumulator = res;
} else {
// Case when self.accumulator + val > Self::MAX_GAS_ARG
self.accumulator = val - (u32::MAX - self.accumulator);
// Overflow of `self.overflows` is not a big deal. See `overflows` field docs.
self.overflows = self.overflows.saturating_add(1);
}
}
/// Returns the tuple of costs, where the first element is an amount of overflows
/// emerged when summating block's cost, and the second element is the current
/// (not overflowed remainder) block's cost.
fn block_costs(&self) -> (usize, u32) {
(self.overflows, self.accumulator)
}
/// Returns amount of costs for each of which the gas charging
/// procedure will be called.
fn costs_num(&self) -> usize {
if self.accumulator != 0 {
self.overflows + 1
} else {
self.overflows
}
}
}
/// Counter is used to manage state during the gas metering algorithm implemented by
/// `inject_counter`.
struct Counter {
/// A stack of control blocks. This stack grows when new control blocks are opened with
/// `block`, `loop`, and `if` and shrinks when control blocks are closed with `end`. The first
/// block on the stack corresponds to the function body, not to any labelled block. Therefore
/// the actual Wasm label index associated with each control block is 1 less than its position
/// in this stack.
stack: Vec<ControlBlock>,
/// A list of metered blocks that have been finalized, meaning they will no longer change.
finalized_blocks: Vec<MeteredBlock>,
}
impl Counter {
fn new() -> Counter {
Counter { stack: Vec::new(), finalized_blocks: Vec::new() }
}
/// Open a new control block. The cursor is the position of the first instruction in the block.
fn begin_control_block(&mut self, cursor: usize, is_loop: bool) {
let index = self.stack.len();
self.stack.push(ControlBlock {
lowest_forward_br_target: index,
active_metered_block: MeteredBlock {
start_pos: cursor,
cost: BlockCostCounter::zero(),
},
is_loop,
})
}
/// Close the last control block. The cursor is the position of the final (pseudo-)instruction
/// in the block.
fn finalize_control_block(&mut self, cursor: usize) -> Result<(), ()> {
// This either finalizes the active metered block or merges its cost into the active
// metered block in the previous control block on the stack.
self.finalize_metered_block(cursor)?;
// Pop the control block stack.
let closing_control_block = self.stack.pop().ok_or(())?;
let closing_control_index = self.stack.len();
if self.stack.is_empty() {
return Ok(())
}
// Update the lowest_forward_br_target for the control block now on top of the stack.
{
let control_block = self.stack.last_mut().ok_or(())?;
control_block.lowest_forward_br_target = min(
control_block.lowest_forward_br_target,
closing_control_block.lowest_forward_br_target,
);
}
// If there may have been a branch to a lower index, then also finalize the active metered
// block for the previous control block. Otherwise, finalize it and begin a new one.
let may_br_out = closing_control_block.lowest_forward_br_target < closing_control_index;
if may_br_out {
self.finalize_metered_block(cursor)?;
}
Ok(())
}
/// Finalize the current active metered block.
///
/// Finalized blocks have final cost which will not change later.
fn finalize_metered_block(&mut self, cursor: usize) -> Result<(), ()> {
let closing_metered_block = {
let control_block = self.stack.last_mut().ok_or(())?;
mem::replace(
&mut control_block.active_metered_block,
MeteredBlock { start_pos: cursor + 1, cost: BlockCostCounter::zero() },
)
};
// If the block was opened with a `block`, then its start position will be set to that of
// the active metered block in the control block one higher on the stack. This is because
// any instructions between a `block` and the first branch are part of the same basic block
// as the preceding instruction. In this case, instead of finalizing the block, merge its
// cost into the other active metered block to avoid injecting unnecessary instructions.
let last_index = self.stack.len() - 1;
if last_index > 0 {
let prev_control_block = self
.stack
.get_mut(last_index - 1)
.expect("last_index is greater than 0; last_index is stack size - 1; qed");
let prev_metered_block = &mut prev_control_block.active_metered_block;
if closing_metered_block.start_pos == prev_metered_block.start_pos {
prev_metered_block.cost.add(closing_metered_block.cost);
return Ok(())
}
}
if closing_metered_block.cost > BlockCostCounter::zero() {
self.finalized_blocks.push(closing_metered_block);
}
Ok(())
}
/// Handle a branch instruction in the program. The cursor is the index of the branch
/// instruction in the program. The indices are the stack positions of the target control
/// blocks. Recall that the index is 0 for a `return` and relatively indexed from the top of
/// the stack by the label of `br`, `br_if`, and `br_table` instructions.
fn branch(&mut self, cursor: usize, indices: &[usize]) -> Result<(), ()> {
self.finalize_metered_block(cursor)?;
// Update the lowest_forward_br_target of the current control block.
for &index in indices {
let target_is_loop = {
let target_block = self.stack.get(index).ok_or(())?;
target_block.is_loop
};
if target_is_loop {
continue
}
let control_block = self.stack.last_mut().ok_or(())?;
control_block.lowest_forward_br_target =
min(control_block.lowest_forward_br_target, index);
}
Ok(())
}
/// Returns the stack index of the active control block. Returns None if stack is empty.
fn active_control_block_index(&self) -> Option<usize> {
self.stack.len().checked_sub(1)
}
/// Get a reference to the currently active metered block.
fn active_metered_block(&mut self) -> Result<&mut MeteredBlock, ()> {
let top_block = self.stack.last_mut().ok_or(())?;
Ok(&mut top_block.active_metered_block)
}
/// Increment the cost of the current block by the specified value.
fn increment(&mut self, val: u32) -> Result<(), ()> {
let top_block = self.active_metered_block()?;
top_block.cost.increment(val);
Ok(())
}
}
fn inject_grow_counter(instructions: &mut elements::Instructions, grow_counter_func: u32) -> usize {
use parity_wasm::elements::Instruction::*;
let mut counter = 0;
for instruction in instructions.elements_mut() {
if let GrowMemory(_) = *instruction {
*instruction = Call(grow_counter_func);
counter += 1;
}
}
counter
}
fn add_grow_counter<R: Rules>(
module: elements::Module,
rules: &R,
gas_func: u32,
) -> elements::Module {
use parity_wasm::elements::Instruction::*;
let cost = match rules.memory_grow_cost() {
MemoryGrowCost::Free => return module,
MemoryGrowCost::Linear(val) => val.get(),
};
let mut b = builder::from_module(module);
b.push_function(
builder::function()
.signature()
.with_param(ValueType::I32)
.with_result(ValueType::I32)
.build()
.body()
.with_instructions(elements::Instructions::new(vec![
GetLocal(0),
GetLocal(0),
I32Const(cost as i32),
I32Mul,
// todo: there should be strong guarantee that it does not return anything on
// stack?
Call(gas_func),
GrowMemory(0),
End,
]))
.build()
.build(),
);
b.build()
}
fn determine_metered_blocks<R: Rules>(
instructions: &elements::Instructions,
rules: &R,
locals_count: u32,
) -> Result<Vec<MeteredBlock>, ()> {
use parity_wasm::elements::Instruction::*;
let mut counter = Counter::new();
// Begin an implicit function (i.e. `func...end`) block.
counter.begin_control_block(0, false);
// Add locals initialization cost to the function block.
let locals_init_cost = rules.call_per_local_cost().checked_mul(locals_count).ok_or(())?;
counter.increment(locals_init_cost)?;
for cursor in 0..instructions.elements().len() {
let instruction = &instructions.elements()[cursor];
let instruction_cost = rules.instruction_cost(instruction).ok_or(())?;
match instruction {
Block(_) => {
counter.increment(instruction_cost)?;
// Begin new block. The cost of the following opcodes until `end` or `else` will
// be included into this block. The start position is set to that of the previous
// active metered block to signal that they should be merged in order to reduce
// unnecessary metering instructions.
let top_block_start_pos = counter.active_metered_block()?.start_pos;
counter.begin_control_block(top_block_start_pos, false);
},
If(_) => {
counter.increment(instruction_cost)?;
counter.begin_control_block(cursor + 1, false);
},
Loop(_) => {
counter.increment(instruction_cost)?;
counter.begin_control_block(cursor + 1, true);
},
End => {
counter.finalize_control_block(cursor)?;
},
Else => {
counter.finalize_metered_block(cursor)?;
},
Br(label) | BrIf(label) => {
counter.increment(instruction_cost)?;
// Label is a relative index into the control stack.
let active_index = counter.active_control_block_index().ok_or(())?;
let target_index = active_index.checked_sub(*label as usize).ok_or(())?;
counter.branch(cursor, &[target_index])?;
},
BrTable(br_table_data) => {
counter.increment(instruction_cost)?;
let active_index = counter.active_control_block_index().ok_or(())?;
let target_indices = [br_table_data.default]
.iter()
.chain(br_table_data.table.iter())
.map(|label| active_index.checked_sub(*label as usize))
.collect::<Option<Vec<_>>>()
.ok_or(())?;
counter.branch(cursor, &target_indices)?;
},
Return => {
counter.increment(instruction_cost)?;
counter.branch(cursor, &[0])?;
},
_ => {
// An ordinal non control flow instruction increments the cost of the current block.
counter.increment(instruction_cost)?;
},
}
}
counter.finalized_blocks.sort_unstable_by_key(|block| block.start_pos);
Ok(counter.finalized_blocks)
}
fn inject_counter<R: Rules>(
instructions: &mut elements::Instructions,
rules: &R,
locals_count: u32,
gas_func: u32,
) -> Result<(), ()> {
let blocks = determine_metered_blocks(instructions, rules, locals_count)?;
insert_metering_calls(instructions, blocks, gas_func)
}
// Then insert metering calls into a sequence of instructions given the block locations and costs.
fn insert_metering_calls(
instructions: &mut elements::Instructions,
blocks: Vec<MeteredBlock>,
gas_func: u32,
) -> Result<(), ()> {
let block_cost_instrs = calculate_blocks_costs_num(&blocks);
// To do this in linear time, construct a new vector of instructions, copying over old
// instructions one by one and injecting new ones as required.
let new_instrs_len = instructions.elements().len() + 2 * block_cost_instrs;
let original_instrs =
mem::replace(instructions.elements_mut(), Vec::with_capacity(new_instrs_len));
let new_instrs = instructions.elements_mut();
let mut block_iter = blocks.into_iter().peekable();
for (original_pos, instr) in original_instrs.into_iter().enumerate() {
// If there the next block starts at this position, inject metering instructions.
let used_block = if let Some(block) = block_iter.peek() {
if block.start_pos == original_pos {
insert_gas_call(new_instrs, block, gas_func);
true
} else {
false
}
} else {
false
};
if used_block {
block_iter.next();
}
// Copy over the original instruction.
new_instrs.push(instr);
}
if block_iter.next().is_some() {
return Err(())
}
Ok(())
}
// Calculates total amount of costs (potential gas charging calls) in blocks
fn calculate_blocks_costs_num(blocks: &[MeteredBlock]) -> usize {
blocks.iter().map(|block| block.cost.costs_num()).sum()
}
fn insert_gas_call(new_instrs: &mut Vec<Instruction>, current_block: &MeteredBlock, gas_func: u32) {
use parity_wasm::elements::Instruction::*;
let (mut overflows_num, current_cost) = current_block.cost.block_costs();
// First insert gas charging call with maximum argument due to overflows.
while overflows_num != 0 {
new_instrs.push(I32Const(BlockCostCounter::MAX_GAS_ARG as i32));
new_instrs.push(Call(gas_func));
overflows_num -= 1;
}
// Second insert remaining block's cost, if necessary.
if current_cost != 0 {
new_instrs.push(I32Const(current_cost as i32));
new_instrs.push(Call(gas_func));
}
}
#[cfg(test)]
mod tests {
use super::*;
use parity_wasm::{builder, elements, elements::Instruction::*, serialize};
fn get_function_body(
module: &elements::Module,
index: usize,
) -> Option<&[elements::Instruction]> {
module
.code_section()
.and_then(|code_section| code_section.bodies().get(index))
.map(|func_body| func_body.code().elements())
}
fn prebuilt_simple_module() -> elements::Module {
builder::module()
.global()
.value_type()
.i32()
.build()
.function()
.signature()
.param()
.i32()
.build()
.body()
.build()
.build()
.function()
.signature()
.param()
.i32()
.build()
.body()
.with_instructions(elements::Instructions::new(vec![
Call(0),
If(elements::BlockType::NoResult),
Call(0),
Call(0),
Call(0),
Else,
Call(0),
Call(0),
End,
Call(0),
End,
]))
.build()
.build()
.build()
}
#[test]
fn simple_grow() {
let module = parse_wat(
r#"(module
(func (result i32)
global.get 0
memory.grow)
(global i32 (i32.const 42))
(memory 0 1)
)"#,
);
let injected_module = inject(module, &ConstantCostRules::new(1, 10_000, 1), "env").unwrap();
assert_eq!(
get_function_body(&injected_module, 0).unwrap(),
&vec![I32Const(2), Call(0), GetGlobal(0), Call(2), End][..]
);
assert_eq!(
get_function_body(&injected_module, 1).unwrap(),
&vec![GetLocal(0), GetLocal(0), I32Const(10000), I32Mul, Call(0), GrowMemory(0), End,]
[..]
);
let binary = serialize(injected_module).expect("serialization failed");
wasmparser::validate(&binary).unwrap();
}
#[test]
fn grow_no_gas_no_track() {
let module = parse_wat(
r"(module
(func (result i32)
global.get 0
memory.grow)
(global i32 (i32.const 42))
(memory 0 1)
)",
);
let injected_module = inject(module, &ConstantCostRules::default(), "env").unwrap();
assert_eq!(
get_function_body(&injected_module, 0).unwrap(),
&vec![I32Const(2), Call(0), GetGlobal(0), GrowMemory(0), End][..]
);
assert_eq!(injected_module.functions_space(), 2);
let binary = serialize(injected_module).expect("serialization failed");
wasmparser::validate(&binary).unwrap();
}
#[test]
fn call_index() {
let injected_module =
inject(prebuilt_simple_module(), &ConstantCostRules::default(), "env").unwrap();
assert_eq!(
get_function_body(&injected_module, 1).unwrap(),
&vec![
I32Const(3),
Call(0),
Call(1),
If(elements::BlockType::NoResult),
I32Const(3),
Call(0),
Call(1),
Call(1),
Call(1),
Else,
I32Const(2),
Call(0),
Call(1),
Call(1),
End,
Call(1),
End
][..]
);
}
#[test]
fn cost_overflow() {
let instruction_cost = u32::MAX / 2;
let injected_module = inject(
prebuilt_simple_module(),
&ConstantCostRules::new(instruction_cost, 0, instruction_cost),
"env",
)
.unwrap();
assert_eq!(
get_function_body(&injected_module, 1).unwrap(),
&vec![
// (instruction_cost * 3) as i32 => ((2147483647 * 2) + 2147483647) as i32 =>
// ((2147483647 + 2147483647 + 1) + 2147483646) as i32 =>
// (u32::MAX as i32) + 2147483646 as i32
I32Const(-1),
Call(0),
I32Const((instruction_cost - 1) as i32),
Call(0),
Call(1),
If(elements::BlockType::NoResult),
// Same as upper
I32Const(-1),
Call(0),
I32Const((instruction_cost - 1) as i32),
Call(0),
Call(1),
Call(1),
Call(1),
Else,
// (instruction_cost * 2) as i32
I32Const(-2),
Call(0),
Call(1),
Call(1),
End,
Call(1),
End
][..]
);
}
fn parse_wat(source: &str) -> elements::Module {
let module_bytes = wat::parse_str(source).unwrap();
elements::deserialize_buffer(module_bytes.as_ref()).unwrap()
}
macro_rules! test_gas_counter_injection {
(name = $name:ident; input = $input:expr; expected = $expected:expr) => {
#[test]
fn $name() {
let input_module = parse_wat($input);
let expected_module = parse_wat($expected);
let injected_module = inject(input_module, &ConstantCostRules::default(), "env")
.expect("inject_gas_counter call failed");
let actual_func_body = get_function_body(&injected_module, 0)
.expect("injected module must have a function body");
let expected_func_body = get_function_body(&expected_module, 0)
.expect("post-module must have a function body");
assert_eq!(actual_func_body, expected_func_body);
}
};
}
test_gas_counter_injection! {
name = simple;
input = r#"
(module
(func (result i32)
(global.get 0)))
"#;
expected = r#"
(module
(func (result i32)
(call 0 (i32.const 1))
(global.get 0)))
"#
}
test_gas_counter_injection! {
name = nested;
input = r#"
(module
(func (result i32)
(global.get 0)
(block
(global.get 0)
(global.get 0)
(global.get 0))
(global.get 0)))
"#;
expected = r#"
(module
(func (result i32)
(call 0 (i32.const 6))
(global.get 0)
(block
(global.get 0)
(global.get 0)
(global.get 0))
(global.get 0)))
"#
}
test_gas_counter_injection! {
name = ifelse;
input = r#"
(module
(func (result i32)
(global.get 0)
(if
(then
(global.get 0)
(global.get 0)
(global.get 0))
(else
(global.get 0)
(global.get 0)))
(global.get 0)))
"#;
expected = r#"
(module
(func (result i32)
(call 0 (i32.const 3))
(global.get 0)
(if
(then
(call 0 (i32.const 3))
(global.get 0)
(global.get 0)
(global.get 0))
(else
(call 0 (i32.const 2))
(global.get 0)
(global.get 0)))
(global.get 0)))
"#
}
test_gas_counter_injection! {
name = branch_innermost;
input = r#"
(module
(func (result i32)
(global.get 0)
(block
(global.get 0)
(drop)
(br 0)
(global.get 0)
(drop))
(global.get 0)))
"#;
expected = r#"
(module
(func (result i32)
(call 0 (i32.const 6))
(global.get 0)
(block
(global.get 0)
(drop)
(br 0)
(call 0 (i32.const 2))
(global.get 0)
(drop))
(global.get 0)))
"#
}
test_gas_counter_injection! {
name = branch_outer_block;
input = r#"
(module
(func (result i32)
(global.get 0)
(block
(global.get 0)
(if
(then
(global.get 0)
(global.get 0)
(drop)
(br_if 1)))
(global.get 0)
(drop))
(global.get 0)))
"#;
expected = r#"
(module
(func (result i32)
(call 0 (i32.const 5))
(global.get 0)
(block
(global.get 0)
(if
(then
(call 0 (i32.const 4))
(global.get 0)
(global.get 0)
(drop)
(br_if 1)))
(call 0 (i32.const 2))
(global.get 0)
(drop))
(global.get 0)))
"#
}
test_gas_counter_injection! {
name = branch_outer_loop;
input = r#"
(module
(func (result i32)
(global.get 0)
(loop
(global.get 0)
(if
(then
(global.get 0)
(br_if 0))
(else
(global.get 0)
(global.get 0)
(drop)
(br_if 1)))
(global.get 0)
(drop))
(global.get 0)))
"#;
expected = r#"
(module
(func (result i32)
(call 0 (i32.const 3))
(global.get 0)
(loop
(call 0 (i32.const 4))
(global.get 0)
(if
(then
(call 0 (i32.const 2))
(global.get 0)
(br_if 0))
(else
(call 0 (i32.const 4))
(global.get 0)
(global.get 0)
(drop)
(br_if 1)))
(global.get 0)
(drop))
(global.get 0)))
"#
}
test_gas_counter_injection! {
name = return_from_func;
input = r#"
(module
(func (result i32)
(global.get 0)
(if
(then
(return)))
(global.get 0)))
"#;
expected = r#"
(module
(func (result i32)
(call 0 (i32.const 2))
(global.get 0)
(if
(then
(call 0 (i32.const 1))
(return)))
(call 0 (i32.const 1))
(global.get 0)))
"#
}
test_gas_counter_injection! {
name = branch_from_if_not_else;
input = r#"
(module
(func (result i32)
(global.get 0)
(block
(global.get 0)
(if
(then (br 1))
(else (br 0)))
(global.get 0)
(drop))
(global.get 0)))
"#;
expected = r#"
(module
(func (result i32)
(call 0 (i32.const 5))
(global.get 0)
(block
(global.get 0)
(if
(then
(call 0 (i32.const 1))
(br 1))
(else
(call 0 (i32.const 1))
(br 0)))
(call 0 (i32.const 2))
(global.get 0)
(drop))
(global.get 0)))
"#
}
test_gas_counter_injection! {
name = empty_loop;
input = r#"
(module
(func
(loop
(br 0)
)
unreachable
)
)
"#;
expected = r#"
(module
(func
(call 0 (i32.const 2))
(loop
(call 0 (i32.const 1))
(br 0)
)
unreachable
)
)
"#
}
}