hacl_sys/bindings/
bindings.rs

1/* automatically generated by rust-bindgen 0.65.1 */
2
3pub const Spec_FFDHE_FFDHE2048: u32 = 0;
4pub const Spec_FFDHE_FFDHE3072: u32 = 1;
5pub const Spec_FFDHE_FFDHE4096: u32 = 2;
6pub const Spec_FFDHE_FFDHE6144: u32 = 3;
7pub const Spec_FFDHE_FFDHE8192: u32 = 4;
8pub const Spec_Agile_AEAD_AES128_GCM: u32 = 0;
9pub const Spec_Agile_AEAD_AES256_GCM: u32 = 1;
10pub const Spec_Agile_AEAD_CHACHA20_POLY1305: u32 = 2;
11pub const Spec_Agile_AEAD_AES128_CCM: u32 = 3;
12pub const Spec_Agile_AEAD_AES256_CCM: u32 = 4;
13pub const Spec_Agile_AEAD_AES128_CCM8: u32 = 5;
14pub const Spec_Agile_AEAD_AES256_CCM8: u32 = 6;
15pub const EverCrypt_Error_Success: u32 = 0;
16pub const EverCrypt_Error_UnsupportedAlgorithm: u32 = 1;
17pub const EverCrypt_Error_InvalidKey: u32 = 2;
18pub const EverCrypt_Error_AuthenticationFailure: u32 = 3;
19pub const EverCrypt_Error_InvalidIVLength: u32 = 4;
20pub const EverCrypt_Error_DecodeError: u32 = 5;
21pub const EverCrypt_Error_MaximumLengthExceeded: u32 = 6;
22pub const Spec_Hash_Definitions_SHA2_224: u32 = 0;
23pub const Spec_Hash_Definitions_SHA2_256: u32 = 1;
24pub const Spec_Hash_Definitions_SHA2_384: u32 = 2;
25pub const Spec_Hash_Definitions_SHA2_512: u32 = 3;
26pub const Spec_Hash_Definitions_SHA1: u32 = 4;
27pub const Spec_Hash_Definitions_MD5: u32 = 5;
28pub const Spec_Hash_Definitions_Blake2S: u32 = 6;
29pub const Spec_Hash_Definitions_Blake2B: u32 = 7;
30pub const Spec_Hash_Definitions_SHA3_256: u32 = 8;
31pub const Spec_Hash_Definitions_SHA3_224: u32 = 9;
32pub const Spec_Hash_Definitions_SHA3_384: u32 = 10;
33pub const Spec_Hash_Definitions_SHA3_512: u32 = 11;
34pub const Spec_Hash_Definitions_Shake128: u32 = 12;
35pub const Spec_Hash_Definitions_Shake256: u32 = 13;
36pub type Spec_FFDHE_ffdhe_alg = u8;
37pub type Spec_Agile_AEAD_alg = u8;
38pub type EverCrypt_Error_error_code = u8;
39extern "C" {
40    #[doc = "Encrypt a message `m` with key `k`.\n\nThe arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption.\nNote: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory.\n\n@param k Pointer to 32 bytes of memory where the AEAD key is read from.\n@param n Pointer to 12 bytes of memory where the AEAD nonce is read from.\n@param aadlen Length of the associated data.\n@param aad Pointer to `aadlen` bytes of memory where the associated data is read from.\n\n@param mlen Length of the message.\n@param m Pointer to `mlen` bytes of memory where the message is read from.\n@param cipher Pointer to `mlen` bytes of memory where the ciphertext is written to.\n@param mac Pointer to 16 bytes of memory where the mac is written to."]
41    pub fn Hacl_Chacha20Poly1305_32_aead_encrypt(
42        k: *mut u8,
43        n: *mut u8,
44        aadlen: u32,
45        aad: *mut u8,
46        mlen: u32,
47        m: *mut u8,
48        cipher: *mut u8,
49        mac: *mut u8,
50    );
51}
52extern "C" {
53    #[doc = "Decrypt a ciphertext `cipher` with key `k`.\n\nThe arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption.\nNote: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory.\n\nIf decryption succeeds, the resulting plaintext is stored in `m` and the function returns the success code 0.\nIf decryption fails, the array `m` remains unchanged and the function returns the error code 1.\n\n@param k Pointer to 32 bytes of memory where the AEAD key is read from.\n@param n Pointer to 12 bytes of memory where the AEAD nonce is read from.\n@param aadlen Length of the associated data.\n@param aad Pointer to `aadlen` bytes of memory where the associated data is read from.\n\n@param mlen Length of the ciphertext.\n@param m Pointer to `mlen` bytes of memory where the message is written to.\n@param cipher Pointer to `mlen` bytes of memory where the ciphertext is read from.\n@param mac Pointer to 16 bytes of memory where the mac is read from.\n\n@returns 0 on succeess; 1 on failure."]
54    pub fn Hacl_Chacha20Poly1305_32_aead_decrypt(
55        k: *mut u8,
56        n: *mut u8,
57        aadlen: u32,
58        aad: *mut u8,
59        mlen: u32,
60        m: *mut u8,
61        cipher: *mut u8,
62        mac: *mut u8,
63    ) -> u32;
64}
65pub type uint32x4_t = [u32; 4usize];
66pub type Lib_IntVector_Intrinsics_vec128 = uint32x4_t;
67extern "C" {
68    #[doc = "Encrypt a message `m` with key `k`.\n\nThe arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption.\nNote: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory.\n\n@param k Pointer to 32 bytes of memory where the AEAD key is read from.\n@param n Pointer to 12 bytes of memory where the AEAD nonce is read from.\n@param aadlen Length of the associated data.\n@param aad Pointer to `aadlen` bytes of memory where the associated data is read from.\n\n@param mlen Length of the message.\n@param m Pointer to `mlen` bytes of memory where the message is read from.\n@param cipher Pointer to `mlen` bytes of memory where the ciphertext is written to.\n@param mac Pointer to 16 bytes of memory where the mac is written to."]
69    pub fn Hacl_Chacha20Poly1305_256_aead_encrypt(
70        k: *mut u8,
71        n: *mut u8,
72        aadlen: u32,
73        aad: *mut u8,
74        mlen: u32,
75        m: *mut u8,
76        cipher: *mut u8,
77        mac: *mut u8,
78    );
79}
80extern "C" {
81    #[doc = "Decrypt a ciphertext `cipher` with key `k`.\n\nThe arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption.\nNote: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory.\n\nIf decryption succeeds, the resulting plaintext is stored in `m` and the function returns the success code 0.\nIf decryption fails, the array `m` remains unchanged and the function returns the error code 1.\n\n@param k Pointer to 32 bytes of memory where the AEAD key is read from.\n@param n Pointer to 12 bytes of memory where the AEAD nonce is read from.\n@param aadlen Length of the associated data.\n@param aad Pointer to `aadlen` bytes of memory where the associated data is read from.\n\n@param mlen Length of the ciphertext.\n@param m Pointer to `mlen` bytes of memory where the message is written to.\n@param cipher Pointer to `mlen` bytes of memory where the ciphertext is read from.\n@param mac Pointer to 16 bytes of memory where the mac is read from.\n\n@returns 0 on succeess; 1 on failure."]
82    pub fn Hacl_Chacha20Poly1305_256_aead_decrypt(
83        k: *mut u8,
84        n: *mut u8,
85        aadlen: u32,
86        aad: *mut u8,
87        mlen: u32,
88        m: *mut u8,
89        cipher: *mut u8,
90        mac: *mut u8,
91    ) -> u32;
92}
93extern "C" {
94    #[doc = "Encrypt a message `m` with key `k`.\n\nThe arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption.\nNote: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory.\n\n@param k Pointer to 32 bytes of memory where the AEAD key is read from.\n@param n Pointer to 12 bytes of memory where the AEAD nonce is read from.\n@param aadlen Length of the associated data.\n@param aad Pointer to `aadlen` bytes of memory where the associated data is read from.\n\n@param mlen Length of the message.\n@param m Pointer to `mlen` bytes of memory where the message is read from.\n@param cipher Pointer to `mlen` bytes of memory where the ciphertext is written to.\n@param mac Pointer to 16 bytes of memory where the mac is written to."]
95    pub fn Hacl_Chacha20Poly1305_128_aead_encrypt(
96        k: *mut u8,
97        n: *mut u8,
98        aadlen: u32,
99        aad: *mut u8,
100        mlen: u32,
101        m: *mut u8,
102        cipher: *mut u8,
103        mac: *mut u8,
104    );
105}
106extern "C" {
107    #[doc = "Decrypt a ciphertext `cipher` with key `k`.\n\nThe arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption.\nNote: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory.\n\nIf decryption succeeds, the resulting plaintext is stored in `m` and the function returns the success code 0.\nIf decryption fails, the array `m` remains unchanged and the function returns the error code 1.\n\n@param k Pointer to 32 bytes of memory where the AEAD key is read from.\n@param n Pointer to 12 bytes of memory where the AEAD nonce is read from.\n@param aadlen Length of the associated data.\n@param aad Pointer to `aadlen` bytes of memory where the associated data is read from.\n\n@param mlen Length of the ciphertext.\n@param m Pointer to `mlen` bytes of memory where the message is written to.\n@param cipher Pointer to `mlen` bytes of memory where the ciphertext is read from.\n@param mac Pointer to 16 bytes of memory where the mac is read from.\n\n@returns 0 on succeess; 1 on failure."]
108    pub fn Hacl_Chacha20Poly1305_128_aead_decrypt(
109        k: *mut u8,
110        n: *mut u8,
111        aadlen: u32,
112        aad: *mut u8,
113        mlen: u32,
114        m: *mut u8,
115        cipher: *mut u8,
116        mac: *mut u8,
117    ) -> u32;
118}
119extern "C" {
120    pub fn EverCrypt_AutoConfig2_has_shaext() -> bool;
121}
122extern "C" {
123    pub fn EverCrypt_AutoConfig2_has_aesni() -> bool;
124}
125extern "C" {
126    pub fn EverCrypt_AutoConfig2_has_pclmulqdq() -> bool;
127}
128extern "C" {
129    pub fn EverCrypt_AutoConfig2_has_avx2() -> bool;
130}
131extern "C" {
132    pub fn EverCrypt_AutoConfig2_has_avx() -> bool;
133}
134extern "C" {
135    pub fn EverCrypt_AutoConfig2_has_bmi2() -> bool;
136}
137extern "C" {
138    pub fn EverCrypt_AutoConfig2_has_adx() -> bool;
139}
140extern "C" {
141    pub fn EverCrypt_AutoConfig2_has_sse() -> bool;
142}
143extern "C" {
144    pub fn EverCrypt_AutoConfig2_has_movbe() -> bool;
145}
146extern "C" {
147    pub fn EverCrypt_AutoConfig2_has_rdrand() -> bool;
148}
149extern "C" {
150    pub fn EverCrypt_AutoConfig2_has_avx512() -> bool;
151}
152extern "C" {
153    pub fn EverCrypt_AutoConfig2_recall();
154}
155extern "C" {
156    pub fn EverCrypt_AutoConfig2_init();
157}
158extern "C" {
159    pub fn EverCrypt_AutoConfig2_disable_avx2();
160}
161extern "C" {
162    pub fn EverCrypt_AutoConfig2_disable_avx();
163}
164extern "C" {
165    pub fn EverCrypt_AutoConfig2_disable_bmi2();
166}
167extern "C" {
168    pub fn EverCrypt_AutoConfig2_disable_adx();
169}
170extern "C" {
171    pub fn EverCrypt_AutoConfig2_disable_shaext();
172}
173extern "C" {
174    pub fn EverCrypt_AutoConfig2_disable_aesni();
175}
176extern "C" {
177    pub fn EverCrypt_AutoConfig2_disable_pclmulqdq();
178}
179extern "C" {
180    pub fn EverCrypt_AutoConfig2_disable_sse();
181}
182extern "C" {
183    pub fn EverCrypt_AutoConfig2_disable_movbe();
184}
185extern "C" {
186    pub fn EverCrypt_AutoConfig2_disable_rdrand();
187}
188extern "C" {
189    pub fn EverCrypt_AutoConfig2_disable_avx512();
190}
191extern "C" {
192    pub fn EverCrypt_AutoConfig2_has_vec128() -> bool;
193}
194extern "C" {
195    pub fn EverCrypt_AutoConfig2_has_vec256() -> bool;
196}
197extern "C" {
198    pub fn EverCrypt_AEAD_uu___is_Ek(
199        a: Spec_Agile_AEAD_alg,
200        projectee: EverCrypt_AEAD_state_s,
201    ) -> bool;
202}
203extern "C" {
204    #[doc = "Return the algorithm used in the AEAD state.\n\n@param s State of the AEAD algorithm.\n\n@return Algorithm used in the AEAD state."]
205    pub fn EverCrypt_AEAD_alg_of_state(s: *mut EverCrypt_AEAD_state_s) -> Spec_Agile_AEAD_alg;
206}
207extern "C" {
208    #[doc = "Create the required AEAD state for the algorithm.\n\nNote: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.\n\n@param a The argument `a` must be either of:\n `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),\n `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or\n `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).\n@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.\n@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.\n\n@return The function returns `EverCrypt_Error_Success` on success or\n`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.\n(See `EverCrypt_Error.h`.)"]
209    pub fn EverCrypt_AEAD_create_in(
210        a: Spec_Agile_AEAD_alg,
211        dst: *mut *mut EverCrypt_AEAD_state_s,
212        k: *mut u8,
213    ) -> EverCrypt_Error_error_code;
214}
215extern "C" {
216    #[doc = "Encrypt and authenticate a message (`plain`) with associated data (`ad`).\n\n@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.\n@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.\n@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.\n@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.\n@param ad_len Length of the associated data.\n@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.\n@param plain_len Length of the to-be-encrypted plaintext.\n@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.\n@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.\nThe length of the `tag` must be of a suitable length for the chosen algorithm:\n `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)\n `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)\n `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)\n\n@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
217    pub fn EverCrypt_AEAD_encrypt(
218        s: *mut EverCrypt_AEAD_state_s,
219        iv: *mut u8,
220        iv_len: u32,
221        ad: *mut u8,
222        ad_len: u32,
223        plain: *mut u8,
224        plain_len: u32,
225        cipher: *mut u8,
226        tag: *mut u8,
227    ) -> EverCrypt_Error_error_code;
228}
229extern "C" {
230    #[doc = "WARNING: this function doesn't perform any dynamic\nhardware check. You MUST make sure your hardware supports the\nimplementation of AESGCM. Besides, this function was not designed\nfor cross-compilation: if you compile it on a system which doesn't\nsupport Vale, it will compile it to a function which makes the\nprogram exit."]
231    pub fn EverCrypt_AEAD_encrypt_expand_aes128_gcm_no_check(
232        k: *mut u8,
233        iv: *mut u8,
234        iv_len: u32,
235        ad: *mut u8,
236        ad_len: u32,
237        plain: *mut u8,
238        plain_len: u32,
239        cipher: *mut u8,
240        tag: *mut u8,
241    ) -> EverCrypt_Error_error_code;
242}
243extern "C" {
244    #[doc = "WARNING: this function doesn't perform any dynamic\nhardware check. You MUST make sure your hardware supports the\nimplementation of AESGCM. Besides, this function was not designed\nfor cross-compilation: if you compile it on a system which doesn't\nsupport Vale, it will compile it to a function which makes the\nprogram exit."]
245    pub fn EverCrypt_AEAD_encrypt_expand_aes256_gcm_no_check(
246        k: *mut u8,
247        iv: *mut u8,
248        iv_len: u32,
249        ad: *mut u8,
250        ad_len: u32,
251        plain: *mut u8,
252        plain_len: u32,
253        cipher: *mut u8,
254        tag: *mut u8,
255    ) -> EverCrypt_Error_error_code;
256}
257extern "C" {
258    pub fn EverCrypt_AEAD_encrypt_expand_aes128_gcm(
259        k: *mut u8,
260        iv: *mut u8,
261        iv_len: u32,
262        ad: *mut u8,
263        ad_len: u32,
264        plain: *mut u8,
265        plain_len: u32,
266        cipher: *mut u8,
267        tag: *mut u8,
268    ) -> EverCrypt_Error_error_code;
269}
270extern "C" {
271    pub fn EverCrypt_AEAD_encrypt_expand_aes256_gcm(
272        k: *mut u8,
273        iv: *mut u8,
274        iv_len: u32,
275        ad: *mut u8,
276        ad_len: u32,
277        plain: *mut u8,
278        plain_len: u32,
279        cipher: *mut u8,
280        tag: *mut u8,
281    ) -> EverCrypt_Error_error_code;
282}
283extern "C" {
284    pub fn EverCrypt_AEAD_encrypt_expand_chacha20_poly1305(
285        k: *mut u8,
286        iv: *mut u8,
287        iv_len: u32,
288        ad: *mut u8,
289        ad_len: u32,
290        plain: *mut u8,
291        plain_len: u32,
292        cipher: *mut u8,
293        tag: *mut u8,
294    ) -> EverCrypt_Error_error_code;
295}
296extern "C" {
297    pub fn EverCrypt_AEAD_encrypt_expand(
298        a: Spec_Agile_AEAD_alg,
299        k: *mut u8,
300        iv: *mut u8,
301        iv_len: u32,
302        ad: *mut u8,
303        ad_len: u32,
304        plain: *mut u8,
305        plain_len: u32,
306        cipher: *mut u8,
307        tag: *mut u8,
308    ) -> EverCrypt_Error_error_code;
309}
310extern "C" {
311    #[doc = "Verify the authenticity of `ad` || `cipher` and decrypt `cipher` into `dst`.\n\n@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.\n@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.\n@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.\n@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.\n@param ad_len Length of the associated data.\n@param cipher Pointer to `cipher_len` bytes of memory where the ciphertext is read from.\n@param cipher_len Length of the ciphertext.\n@param tag Pointer to `TAG_LEN` bytes of memory where the tag is read from.\nThe length of the `tag` must be of a suitable length for the chosen algorithm:\n `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)\n `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)\n `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)\n@param dst Pointer to `cipher_len` bytes of memory where the decrypted plaintext will be written to.\n\n@return `EverCrypt_AEAD_decrypt` returns ...\n\n `EverCrypt_Error_Success`\n\n... on success and either of ...\n\n `EverCrypt_Error_InvalidKey` (returned if and only if the `s` parameter is `NULL`),\n `EverCrypt_Error_InvalidIVLength` (see note about requirements on IV size above), or\n `EverCrypt_Error_AuthenticationFailure` (in case the ciphertext could not be authenticated, e.g., due to modifications)\n\n... on failure (`EverCrypt_error.h`).\n\nUpon success, the plaintext will be written into `dst`."]
312    pub fn EverCrypt_AEAD_decrypt(
313        s: *mut EverCrypt_AEAD_state_s,
314        iv: *mut u8,
315        iv_len: u32,
316        ad: *mut u8,
317        ad_len: u32,
318        cipher: *mut u8,
319        cipher_len: u32,
320        tag: *mut u8,
321        dst: *mut u8,
322    ) -> EverCrypt_Error_error_code;
323}
324extern "C" {
325    #[doc = "WARNING: this function doesn't perform any dynamic\nhardware check. You MUST make sure your hardware supports the\nimplementation of AESGCM. Besides, this function was not designed\nfor cross-compilation: if you compile it on a system which doesn't\nsupport Vale, it will compile it to a function which makes the\nprogram exit."]
326    pub fn EverCrypt_AEAD_decrypt_expand_aes128_gcm_no_check(
327        k: *mut u8,
328        iv: *mut u8,
329        iv_len: u32,
330        ad: *mut u8,
331        ad_len: u32,
332        cipher: *mut u8,
333        cipher_len: u32,
334        tag: *mut u8,
335        dst: *mut u8,
336    ) -> EverCrypt_Error_error_code;
337}
338extern "C" {
339    #[doc = "WARNING: this function doesn't perform any dynamic\nhardware check. You MUST make sure your hardware supports the\nimplementation of AESGCM. Besides, this function was not designed\nfor cross-compilation: if you compile it on a system which doesn't\nsupport Vale, it will compile it to a function which makes the\nprogram exit."]
340    pub fn EverCrypt_AEAD_decrypt_expand_aes256_gcm_no_check(
341        k: *mut u8,
342        iv: *mut u8,
343        iv_len: u32,
344        ad: *mut u8,
345        ad_len: u32,
346        cipher: *mut u8,
347        cipher_len: u32,
348        tag: *mut u8,
349        dst: *mut u8,
350    ) -> EverCrypt_Error_error_code;
351}
352extern "C" {
353    pub fn EverCrypt_AEAD_decrypt_expand_aes128_gcm(
354        k: *mut u8,
355        iv: *mut u8,
356        iv_len: u32,
357        ad: *mut u8,
358        ad_len: u32,
359        cipher: *mut u8,
360        cipher_len: u32,
361        tag: *mut u8,
362        dst: *mut u8,
363    ) -> EverCrypt_Error_error_code;
364}
365extern "C" {
366    pub fn EverCrypt_AEAD_decrypt_expand_aes256_gcm(
367        k: *mut u8,
368        iv: *mut u8,
369        iv_len: u32,
370        ad: *mut u8,
371        ad_len: u32,
372        cipher: *mut u8,
373        cipher_len: u32,
374        tag: *mut u8,
375        dst: *mut u8,
376    ) -> EverCrypt_Error_error_code;
377}
378extern "C" {
379    pub fn EverCrypt_AEAD_decrypt_expand_chacha20_poly1305(
380        k: *mut u8,
381        iv: *mut u8,
382        iv_len: u32,
383        ad: *mut u8,
384        ad_len: u32,
385        cipher: *mut u8,
386        cipher_len: u32,
387        tag: *mut u8,
388        dst: *mut u8,
389    ) -> EverCrypt_Error_error_code;
390}
391extern "C" {
392    pub fn EverCrypt_AEAD_decrypt_expand(
393        a: Spec_Agile_AEAD_alg,
394        k: *mut u8,
395        iv: *mut u8,
396        iv_len: u32,
397        ad: *mut u8,
398        ad_len: u32,
399        cipher: *mut u8,
400        cipher_len: u32,
401        tag: *mut u8,
402        dst: *mut u8,
403    ) -> EverCrypt_Error_error_code;
404}
405extern "C" {
406    #[doc = "Cleanup and free the AEAD state.\n\n@param s State of the AEAD algorithm."]
407    pub fn EverCrypt_AEAD_free(s: *mut EverCrypt_AEAD_state_s);
408}
409extern "C" {
410    #[doc = "Compute the scalar multiple of a point.\n\n@param out Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.\n@param priv Pointer to 32 bytes of memory where the secret/private key is read from.\n@param pub Pointer to 32 bytes of memory where the public point is read from."]
411    pub fn Hacl_Curve25519_64_scalarmult(out: *mut u8, priv_: *mut u8, pub_: *mut u8);
412}
413extern "C" {
414    #[doc = "Calculate a public point from a secret/private key.\n\nThis computes a scalar multiplication of the secret/private key with the curve's basepoint.\n\n@param pub Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.\n@param priv Pointer to 32 bytes of memory where the secret/private key is read from."]
415    pub fn Hacl_Curve25519_64_secret_to_public(pub_: *mut u8, priv_: *mut u8);
416}
417extern "C" {
418    #[doc = "Execute the diffie-hellmann key exchange.\n\n@param out Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.\n@param priv Pointer to 32 bytes of memory where **our** secret/private key is read from.\n@param pub Pointer to 32 bytes of memory where **their** public point is read from."]
419    pub fn Hacl_Curve25519_64_ecdh(out: *mut u8, priv_: *mut u8, pub_: *mut u8) -> bool;
420}
421extern "C" {
422    #[doc = "Compute the scalar multiple of a point.\n\n@param out Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.\n@param priv Pointer to 32 bytes of memory where the secret/private key is read from.\n@param pub Pointer to 32 bytes of memory where the public point is read from."]
423    pub fn Hacl_Curve25519_51_scalarmult(out: *mut u8, priv_: *mut u8, pub_: *mut u8);
424}
425extern "C" {
426    #[doc = "Calculate a public point from a secret/private key.\n\nThis computes a scalar multiplication of the secret/private key with the curve's basepoint.\n\n@param pub Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.\n@param priv Pointer to 32 bytes of memory where the secret/private key is read from."]
427    pub fn Hacl_Curve25519_51_secret_to_public(pub_: *mut u8, priv_: *mut u8);
428}
429extern "C" {
430    #[doc = "Execute the diffie-hellmann key exchange.\n\n@param out Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to.\n@param priv Pointer to 32 bytes of memory where **our** secret/private key is read from.\n@param pub Pointer to 32 bytes of memory where **their** public point is read from."]
431    pub fn Hacl_Curve25519_51_ecdh(out: *mut u8, priv_: *mut u8, pub_: *mut u8) -> bool;
432}
433extern "C" {
434    #[doc = "Calculate a public point from a secret/private key.\n\nThis computes a scalar multiplication of the secret/private key with the curve's basepoint.\n\n@param pub Pointer to 32 bytes of memory where the resulting point is written to.\n@param priv Pointer to 32 bytes of memory where the secret/private key is read from."]
435    pub fn EverCrypt_Curve25519_secret_to_public(pub_: *mut u8, priv_: *mut u8);
436}
437extern "C" {
438    #[doc = "Compute the scalar multiple of a point.\n\n@param shared Pointer to 32 bytes of memory where the resulting point is written to.\n@param my_priv Pointer to 32 bytes of memory where the secret/private key is read from.\n@param their_pub Pointer to 32 bytes of memory where the public point is read from."]
439    pub fn EverCrypt_Curve25519_scalarmult(shared: *mut u8, my_priv: *mut u8, their_pub: *mut u8);
440}
441extern "C" {
442    #[doc = "Execute the diffie-hellmann key exchange.\n\n@param shared Pointer to 32 bytes of memory where the resulting point is written to.\n@param my_priv Pointer to 32 bytes of memory where **our** secret/private key is read from.\n@param their_pub Pointer to 32 bytes of memory where **their** public point is read from."]
443    pub fn EverCrypt_Curve25519_ecdh(shared: *mut u8, my_priv: *mut u8, their_pub: *mut u8)
444        -> bool;
445}
446pub type Spec_Hash_Definitions_hash_alg = u8;
447pub type Hacl_Streaming_Types_error_code = u8;
448#[repr(C)]
449#[derive(Debug, Copy, Clone)]
450pub struct Hacl_Streaming_MD_state_32_s {
451    pub block_state: *mut u32,
452    pub buf: *mut u8,
453    pub total_len: u64,
454}
455pub type Hacl_Streaming_MD_state_32 = Hacl_Streaming_MD_state_32_s;
456#[repr(C)]
457#[derive(Debug, Copy, Clone)]
458pub struct Hacl_Streaming_MD_state_64_s {
459    pub block_state: *mut u64,
460    pub buf: *mut u8,
461    pub total_len: u64,
462}
463pub type Hacl_Streaming_MD_state_64 = Hacl_Streaming_MD_state_64_s;
464pub type Hacl_Streaming_SHA2_state_sha2_224 = Hacl_Streaming_MD_state_32;
465pub type Hacl_Streaming_SHA2_state_sha2_256 = Hacl_Streaming_MD_state_32;
466pub type Hacl_Streaming_SHA2_state_sha2_384 = Hacl_Streaming_MD_state_64;
467pub type Hacl_Streaming_SHA2_state_sha2_512 = Hacl_Streaming_MD_state_64;
468extern "C" {
469    #[doc = "Allocate initial state for the SHA2_256 hash. The state is to be freed by\ncalling `free_256`."]
470    pub fn Hacl_Streaming_SHA2_create_in_256() -> *mut Hacl_Streaming_MD_state_32;
471}
472extern "C" {
473    #[doc = "Copies the state passed as argument into a newly allocated state (deep copy).\nThe state is to be freed by calling `free_256`. Cloning the state this way is\nuseful, for instance, if your control-flow diverges and you need to feed\nmore (different) data into the hash in each branch."]
474    pub fn Hacl_Streaming_SHA2_copy_256(
475        s0: *mut Hacl_Streaming_MD_state_32,
476    ) -> *mut Hacl_Streaming_MD_state_32;
477}
478extern "C" {
479    #[doc = "Reset an existing state to the initial hash state with empty data."]
480    pub fn Hacl_Streaming_SHA2_init_256(s: *mut Hacl_Streaming_MD_state_32);
481}
482extern "C" {
483    #[doc = "Feed an arbitrary amount of data into the hash. This function returns 0 for\nsuccess, or 1 if the combined length of all of the data passed to `update_256`\n(since the last call to `init_256`) exceeds 2^61-1 bytes.\n\nThis function is identical to the update function for SHA2_224."]
484    pub fn Hacl_Streaming_SHA2_update_256(
485        p: *mut Hacl_Streaming_MD_state_32,
486        input: *mut u8,
487        input_len: u32,
488    ) -> Hacl_Streaming_Types_error_code;
489}
490extern "C" {
491    #[doc = "Write the resulting hash into `dst`, an array of 32 bytes. The state remains\nvalid after a call to `finish_256`, meaning the user may feed more data into\nthe hash via `update_256`. (The finish_256 function operates on an internal copy of\nthe state and therefore does not invalidate the client-held state `p`.)"]
492    pub fn Hacl_Streaming_SHA2_finish_256(p: *mut Hacl_Streaming_MD_state_32, dst: *mut u8);
493}
494extern "C" {
495    #[doc = "Free a state allocated with `create_in_256`.\n\nThis function is identical to the free function for SHA2_224."]
496    pub fn Hacl_Streaming_SHA2_free_256(s: *mut Hacl_Streaming_MD_state_32);
497}
498extern "C" {
499    #[doc = "Hash `input`, of len `input_len`, into `dst`, an array of 32 bytes."]
500    pub fn Hacl_Streaming_SHA2_hash_256(input: *mut u8, input_len: u32, dst: *mut u8);
501}
502extern "C" {
503    pub fn Hacl_Streaming_SHA2_create_in_224() -> *mut Hacl_Streaming_MD_state_32;
504}
505extern "C" {
506    pub fn Hacl_Streaming_SHA2_init_224(s: *mut Hacl_Streaming_MD_state_32);
507}
508extern "C" {
509    pub fn Hacl_Streaming_SHA2_update_224(
510        p: *mut Hacl_Streaming_MD_state_32,
511        input: *mut u8,
512        input_len: u32,
513    ) -> Hacl_Streaming_Types_error_code;
514}
515extern "C" {
516    #[doc = "Write the resulting hash into `dst`, an array of 28 bytes. The state remains\nvalid after a call to `finish_224`, meaning the user may feed more data into\nthe hash via `update_224`."]
517    pub fn Hacl_Streaming_SHA2_finish_224(p: *mut Hacl_Streaming_MD_state_32, dst: *mut u8);
518}
519extern "C" {
520    pub fn Hacl_Streaming_SHA2_free_224(p: *mut Hacl_Streaming_MD_state_32);
521}
522extern "C" {
523    #[doc = "Hash `input`, of len `input_len`, into `dst`, an array of 28 bytes."]
524    pub fn Hacl_Streaming_SHA2_hash_224(input: *mut u8, input_len: u32, dst: *mut u8);
525}
526extern "C" {
527    pub fn Hacl_Streaming_SHA2_create_in_512() -> *mut Hacl_Streaming_MD_state_64;
528}
529extern "C" {
530    #[doc = "Copies the state passed as argument into a newly allocated state (deep copy).\nThe state is to be freed by calling `free_512`. Cloning the state this way is\nuseful, for instance, if your control-flow diverges and you need to feed\nmore (different) data into the hash in each branch."]
531    pub fn Hacl_Streaming_SHA2_copy_512(
532        s0: *mut Hacl_Streaming_MD_state_64,
533    ) -> *mut Hacl_Streaming_MD_state_64;
534}
535extern "C" {
536    pub fn Hacl_Streaming_SHA2_init_512(s: *mut Hacl_Streaming_MD_state_64);
537}
538extern "C" {
539    #[doc = "Feed an arbitrary amount of data into the hash. This function returns 0 for\nsuccess, or 1 if the combined length of all of the data passed to `update_512`\n(since the last call to `init_512`) exceeds 2^125-1 bytes.\n\nThis function is identical to the update function for SHA2_384."]
540    pub fn Hacl_Streaming_SHA2_update_512(
541        p: *mut Hacl_Streaming_MD_state_64,
542        input: *mut u8,
543        input_len: u32,
544    ) -> Hacl_Streaming_Types_error_code;
545}
546extern "C" {
547    #[doc = "Write the resulting hash into `dst`, an array of 64 bytes. The state remains\nvalid after a call to `finish_512`, meaning the user may feed more data into\nthe hash via `update_512`. (The finish_512 function operates on an internal copy of\nthe state and therefore does not invalidate the client-held state `p`.)"]
548    pub fn Hacl_Streaming_SHA2_finish_512(p: *mut Hacl_Streaming_MD_state_64, dst: *mut u8);
549}
550extern "C" {
551    #[doc = "Free a state allocated with `create_in_512`.\n\nThis function is identical to the free function for SHA2_384."]
552    pub fn Hacl_Streaming_SHA2_free_512(s: *mut Hacl_Streaming_MD_state_64);
553}
554extern "C" {
555    #[doc = "Hash `input`, of len `input_len`, into `dst`, an array of 64 bytes."]
556    pub fn Hacl_Streaming_SHA2_hash_512(input: *mut u8, input_len: u32, dst: *mut u8);
557}
558extern "C" {
559    pub fn Hacl_Streaming_SHA2_create_in_384() -> *mut Hacl_Streaming_MD_state_64;
560}
561extern "C" {
562    pub fn Hacl_Streaming_SHA2_init_384(s: *mut Hacl_Streaming_MD_state_64);
563}
564extern "C" {
565    pub fn Hacl_Streaming_SHA2_update_384(
566        p: *mut Hacl_Streaming_MD_state_64,
567        input: *mut u8,
568        input_len: u32,
569    ) -> Hacl_Streaming_Types_error_code;
570}
571extern "C" {
572    #[doc = "Write the resulting hash into `dst`, an array of 48 bytes. The state remains\nvalid after a call to `finish_384`, meaning the user may feed more data into\nthe hash via `update_384`."]
573    pub fn Hacl_Streaming_SHA2_finish_384(p: *mut Hacl_Streaming_MD_state_64, dst: *mut u8);
574}
575extern "C" {
576    pub fn Hacl_Streaming_SHA2_free_384(p: *mut Hacl_Streaming_MD_state_64);
577}
578extern "C" {
579    #[doc = "Hash `input`, of len `input_len`, into `dst`, an array of 48 bytes."]
580    pub fn Hacl_Streaming_SHA2_hash_384(input: *mut u8, input_len: u32, dst: *mut u8);
581}
582extern "C" {
583    #[doc = "Compute the public key from the private key.\n\nThe outparam `public_key`  points to 32 bytes of valid memory, i.e., uint8_t[32].\nThe argument `private_key` points to 32 bytes of valid memory, i.e., uint8_t[32]."]
584    pub fn Hacl_Ed25519_secret_to_public(public_key: *mut u8, private_key: *mut u8);
585}
586extern "C" {
587    #[doc = "Compute the expanded keys for an Ed25519 signature.\n\nThe outparam `expanded_keys` points to 96 bytes of valid memory, i.e., uint8_t[96].\nThe argument `private_key`   points to 32 bytes of valid memory, i.e., uint8_t[32].\n\nIf one needs to sign several messages under the same private key, it is more efficient\nto call `expand_keys` only once and `sign_expanded` multiple times, for each message."]
588    pub fn Hacl_Ed25519_expand_keys(expanded_keys: *mut u8, private_key: *mut u8);
589}
590extern "C" {
591    #[doc = "Create an Ed25519 signature with the (precomputed) expanded keys.\n\nThe outparam `signature`     points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `expanded_keys` points to 96 bytes of valid memory, i.e., uint8_t[96].\nThe argument `msg`    points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\n\nThe argument `expanded_keys` is obtained through `expand_keys`.\n\nIf one needs to sign several messages under the same private key, it is more efficient\nto call `expand_keys` only once and `sign_expanded` multiple times, for each message."]
592    pub fn Hacl_Ed25519_sign_expanded(
593        signature: *mut u8,
594        expanded_keys: *mut u8,
595        msg_len: u32,
596        msg: *mut u8,
597    );
598}
599extern "C" {
600    #[doc = "Create an Ed25519 signature.\n\nThe outparam `signature`   points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `private_key` points to 32 bytes of valid memory, i.e., uint8_t[32].\nThe argument `msg`  points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\n\nThe function first calls `expand_keys` and then invokes `sign_expanded`.\n\nIf one needs to sign several messages under the same private key, it is more efficient\nto call `expand_keys` only once and `sign_expanded` multiple times, for each message."]
601    pub fn Hacl_Ed25519_sign(signature: *mut u8, private_key: *mut u8, msg_len: u32, msg: *mut u8);
602}
603extern "C" {
604    #[doc = "Verify an Ed25519 signature.\n\nThe function returns `true` if the signature is valid and `false` otherwise.\n\nThe argument `public_key` points to 32 bytes of valid memory, i.e., uint8_t[32].\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe argument `signature`  points to 64 bytes of valid memory, i.e., uint8_t[64]."]
605    pub fn Hacl_Ed25519_verify(
606        public_key: *mut u8,
607        msg_len: u32,
608        msg: *mut u8,
609        signature: *mut u8,
610    ) -> bool;
611}
612extern "C" {
613    pub fn EverCrypt_Ed25519_secret_to_public(public_key: *mut u8, private_key: *mut u8);
614}
615extern "C" {
616    pub fn EverCrypt_Ed25519_expand_keys(expanded_keys: *mut u8, private_key: *mut u8);
617}
618extern "C" {
619    pub fn EverCrypt_Ed25519_sign_expanded(
620        signature: *mut u8,
621        expanded_keys: *mut u8,
622        msg_len: u32,
623        msg: *mut u8,
624    );
625}
626extern "C" {
627    pub fn EverCrypt_Ed25519_sign(
628        signature: *mut u8,
629        private_key: *mut u8,
630        msg_len: u32,
631        msg: *mut u8,
632    );
633}
634extern "C" {
635    pub fn EverCrypt_Ed25519_verify(
636        public_key: *mut u8,
637        msg_len: u32,
638        msg: *mut u8,
639        signature: *mut u8,
640    ) -> bool;
641}
642extern "C" {
643    #[doc = "Expand pseudorandom key to desired length.\n\n@param a Hash function to use. Usually, the same as used in `EverCrypt_HKDF_extract`.\n@param okm Pointer to `len` bytes of memory where output keying material is written to.\n@param prk Pointer to at least `HashLen` bytes of memory where pseudorandom key is read from. Usually, this points to the output from the extract step.\n@param prklen Length of pseudorandom key.\n@param info Pointer to `infolen` bytes of memory where context and application specific information is read from.\n@param infolen Length of context and application specific information. Can be 0.\n@param len Length of output keying material."]
644    pub fn EverCrypt_HKDF_expand(
645        a: Spec_Hash_Definitions_hash_alg,
646        okm: *mut u8,
647        prk: *mut u8,
648        prklen: u32,
649        info: *mut u8,
650        infolen: u32,
651        len: u32,
652    );
653}
654extern "C" {
655    #[doc = "Extract a fixed-length pseudorandom key from input keying material.\n\n@param a Hash function to use. The allowed values are:\n `Spec_Hash_Definitions_Blake2B` (`HashLen` = 64),\n `Spec_Hash_Definitions_Blake2S` (`HashLen` = 32),\n `Spec_Hash_Definitions_SHA2_256` (`HashLen` = 32),\n `Spec_Hash_Definitions_SHA2_384` (`HashLen` = 48),\n `Spec_Hash_Definitions_SHA2_512` (`HashLen` = 64), and\n `Spec_Hash_Definitions_SHA1` (`HashLen` = 20).\n@param prk Pointer to `HashLen` bytes of memory where pseudorandom key is written to.\n`HashLen` depends on the used algorithm `a`. See above.\n@param salt Pointer to `saltlen` bytes of memory where salt value is read from.\n@param saltlen Length of salt value.\n@param ikm Pointer to `ikmlen` bytes of memory where input keying material is read from.\n@param ikmlen Length of input keying material."]
656    pub fn EverCrypt_HKDF_extract(
657        a: Spec_Hash_Definitions_hash_alg,
658        prk: *mut u8,
659        salt: *mut u8,
660        saltlen: u32,
661        ikm: *mut u8,
662        ikmlen: u32,
663    );
664}
665extern "C" {
666    pub fn Hacl_Blake2b_32_blake2b_init(hash: *mut u64, kk: u32, nn: u32);
667}
668extern "C" {
669    pub fn Hacl_Blake2b_32_blake2b_update_key(
670        wv: *mut u64,
671        hash: *mut u64,
672        kk: u32,
673        k: *mut u8,
674        ll: u32,
675    );
676}
677extern "C" {
678    pub fn Hacl_Blake2b_32_blake2b_finish(nn: u32, output: *mut u8, hash: *mut u64);
679}
680extern "C" {
681    #[doc = "Write the BLAKE2b digest of message `d` using key `k` into `output`.\n\n@param nn Length of the to-be-generated digest with 1 <= `nn` <= 64.\n@param output Pointer to `nn` bytes of memory where the digest is written to.\n@param ll Length of the input message.\n@param d Pointer to `ll` bytes of memory where the input message is read from.\n@param kk Length of the key. Can be 0.\n@param k Pointer to `kk` bytes of memory where the key is read from."]
682    pub fn Hacl_Blake2b_32_blake2b(
683        nn: u32,
684        output: *mut u8,
685        ll: u32,
686        d: *mut u8,
687        kk: u32,
688        k: *mut u8,
689    );
690}
691extern "C" {
692    pub fn Hacl_Blake2b_32_blake2b_malloc() -> *mut u64;
693}
694extern "C" {
695    pub fn Hacl_Blake2s_32_blake2s_init(hash: *mut u32, kk: u32, nn: u32);
696}
697extern "C" {
698    pub fn Hacl_Blake2s_32_blake2s_update_key(
699        wv: *mut u32,
700        hash: *mut u32,
701        kk: u32,
702        k: *mut u8,
703        ll: u32,
704    );
705}
706extern "C" {
707    pub fn Hacl_Blake2s_32_blake2s_update_multi(
708        len: u32,
709        wv: *mut u32,
710        hash: *mut u32,
711        prev: u64,
712        blocks: *mut u8,
713        nb: u32,
714    );
715}
716extern "C" {
717    pub fn Hacl_Blake2s_32_blake2s_update_last(
718        len: u32,
719        wv: *mut u32,
720        hash: *mut u32,
721        prev: u64,
722        rem: u32,
723        d: *mut u8,
724    );
725}
726extern "C" {
727    pub fn Hacl_Blake2s_32_blake2s_finish(nn: u32, output: *mut u8, hash: *mut u32);
728}
729extern "C" {
730    #[doc = "Write the BLAKE2s digest of message `d` using key `k` into `output`.\n\n@param nn Length of to-be-generated digest with 1 <= `nn` <= 32.\n@param output Pointer to `nn` bytes of memory where the digest is written to.\n@param ll Length of the input message.\n@param d Pointer to `ll` bytes of memory where the input message is read from.\n@param kk Length of the key. Can be 0.\n@param k Pointer to `kk` bytes of memory where the key is read from."]
731    pub fn Hacl_Blake2s_32_blake2s(
732        nn: u32,
733        output: *mut u8,
734        ll: u32,
735        d: *mut u8,
736        kk: u32,
737        k: *mut u8,
738    );
739}
740extern "C" {
741    pub fn Hacl_Blake2s_32_blake2s_malloc() -> *mut u32;
742}
743extern "C" {
744    pub fn EverCrypt_HMAC_is_supported_alg(uu___: Spec_Hash_Definitions_hash_alg) -> bool;
745}
746extern "C" {
747    pub fn EverCrypt_HMAC_compute(
748        a: Spec_Hash_Definitions_hash_alg,
749        mac: *mut u8,
750        key: *mut u8,
751        keylen: u32,
752        data: *mut u8,
753        datalen: u32,
754    );
755}
756#[repr(C)]
757#[derive(Debug, Copy, Clone)]
758pub struct Hacl_Streaming_Keccak_hash_buf_s {
759    pub fst: Spec_Hash_Definitions_hash_alg,
760    pub snd: *mut u64,
761}
762pub type Hacl_Streaming_Keccak_hash_buf = Hacl_Streaming_Keccak_hash_buf_s;
763#[repr(C)]
764#[derive(Debug, Copy, Clone)]
765pub struct Hacl_Streaming_Keccak_state_s {
766    pub block_state: Hacl_Streaming_Keccak_hash_buf,
767    pub buf: *mut u8,
768    pub total_len: u64,
769}
770pub type Hacl_Streaming_Keccak_state = Hacl_Streaming_Keccak_state_s;
771extern "C" {
772    pub fn Hacl_Streaming_Keccak_get_alg(
773        s: *mut Hacl_Streaming_Keccak_state,
774    ) -> Spec_Hash_Definitions_hash_alg;
775}
776extern "C" {
777    pub fn Hacl_Streaming_Keccak_malloc(
778        a: Spec_Hash_Definitions_hash_alg,
779    ) -> *mut Hacl_Streaming_Keccak_state;
780}
781extern "C" {
782    pub fn Hacl_Streaming_Keccak_free(s: *mut Hacl_Streaming_Keccak_state);
783}
784extern "C" {
785    pub fn Hacl_Streaming_Keccak_copy(
786        s0: *mut Hacl_Streaming_Keccak_state,
787    ) -> *mut Hacl_Streaming_Keccak_state;
788}
789extern "C" {
790    pub fn Hacl_Streaming_Keccak_reset(s: *mut Hacl_Streaming_Keccak_state);
791}
792extern "C" {
793    pub fn Hacl_Streaming_Keccak_update(
794        p: *mut Hacl_Streaming_Keccak_state,
795        data: *mut u8,
796        len: u32,
797    ) -> Hacl_Streaming_Types_error_code;
798}
799extern "C" {
800    pub fn Hacl_Streaming_Keccak_finish(
801        s: *mut Hacl_Streaming_Keccak_state,
802        dst: *mut u8,
803    ) -> Hacl_Streaming_Types_error_code;
804}
805extern "C" {
806    pub fn Hacl_Streaming_Keccak_squeeze(
807        s: *mut Hacl_Streaming_Keccak_state,
808        dst: *mut u8,
809        l: u32,
810    ) -> Hacl_Streaming_Types_error_code;
811}
812extern "C" {
813    pub fn Hacl_Streaming_Keccak_block_len(s: *mut Hacl_Streaming_Keccak_state) -> u32;
814}
815extern "C" {
816    pub fn Hacl_Streaming_Keccak_hash_len(s: *mut Hacl_Streaming_Keccak_state) -> u32;
817}
818extern "C" {
819    pub fn Hacl_Streaming_Keccak_is_shake(s: *mut Hacl_Streaming_Keccak_state) -> bool;
820}
821extern "C" {
822    pub fn Hacl_SHA3_shake128_hacl(
823        inputByteLen: u32,
824        input: *mut u8,
825        outputByteLen: u32,
826        output: *mut u8,
827    );
828}
829extern "C" {
830    pub fn Hacl_SHA3_shake256_hacl(
831        inputByteLen: u32,
832        input: *mut u8,
833        outputByteLen: u32,
834        output: *mut u8,
835    );
836}
837extern "C" {
838    pub fn Hacl_SHA3_sha3_224(inputByteLen: u32, input: *mut u8, output: *mut u8);
839}
840extern "C" {
841    pub fn Hacl_SHA3_sha3_256(inputByteLen: u32, input: *mut u8, output: *mut u8);
842}
843extern "C" {
844    pub fn Hacl_SHA3_sha3_384(inputByteLen: u32, input: *mut u8, output: *mut u8);
845}
846extern "C" {
847    pub fn Hacl_SHA3_sha3_512(inputByteLen: u32, input: *mut u8, output: *mut u8);
848}
849extern "C" {
850    pub fn Hacl_Blake2s_128_blake2s_init(
851        hash: *mut Lib_IntVector_Intrinsics_vec128,
852        kk: u32,
853        nn: u32,
854    );
855}
856extern "C" {
857    pub fn Hacl_Blake2s_128_blake2s_update_key(
858        wv: *mut Lib_IntVector_Intrinsics_vec128,
859        hash: *mut Lib_IntVector_Intrinsics_vec128,
860        kk: u32,
861        k: *mut u8,
862        ll: u32,
863    );
864}
865extern "C" {
866    pub fn Hacl_Blake2s_128_blake2s_update_multi(
867        len: u32,
868        wv: *mut Lib_IntVector_Intrinsics_vec128,
869        hash: *mut Lib_IntVector_Intrinsics_vec128,
870        prev: u64,
871        blocks: *mut u8,
872        nb: u32,
873    );
874}
875extern "C" {
876    pub fn Hacl_Blake2s_128_blake2s_update_last(
877        len: u32,
878        wv: *mut Lib_IntVector_Intrinsics_vec128,
879        hash: *mut Lib_IntVector_Intrinsics_vec128,
880        prev: u64,
881        rem: u32,
882        d: *mut u8,
883    );
884}
885extern "C" {
886    pub fn Hacl_Blake2s_128_blake2s_finish(
887        nn: u32,
888        output: *mut u8,
889        hash: *mut Lib_IntVector_Intrinsics_vec128,
890    );
891}
892extern "C" {
893    #[doc = "Write the BLAKE2s digest of message `d` using key `k` into `output`.\n\n@param nn Length of to-be-generated digest with 1 <= `nn` <= 32.\n@param output Pointer to `nn` bytes of memory where the digest is written to.\n@param ll Length of the input message.\n@param d Pointer to `ll` bytes of memory where the input message is read from.\n@param kk Length of the key. Can be 0.\n@param k Pointer to `kk` bytes of memory where the key is read from."]
894    pub fn Hacl_Blake2s_128_blake2s(
895        nn: u32,
896        output: *mut u8,
897        ll: u32,
898        d: *mut u8,
899        kk: u32,
900        k: *mut u8,
901    );
902}
903extern "C" {
904    pub fn Hacl_Blake2s_128_store_state128s_to_state32(
905        st32: *mut u32,
906        st: *mut Lib_IntVector_Intrinsics_vec128,
907    );
908}
909extern "C" {
910    pub fn Hacl_Blake2s_128_load_state128s_from_state32(
911        st: *mut Lib_IntVector_Intrinsics_vec128,
912        st32: *mut u32,
913    );
914}
915extern "C" {
916    pub fn Hacl_Blake2s_128_blake2s_malloc() -> *mut Lib_IntVector_Intrinsics_vec128;
917}
918extern "C" {
919    pub fn Hacl_Blake2b_256_blake2b_init(hash: *mut *mut ::std::os::raw::c_void, kk: u32, nn: u32);
920}
921extern "C" {
922    pub fn Hacl_Blake2b_256_blake2b_update_key(
923        wv: *mut *mut ::std::os::raw::c_void,
924        hash: *mut *mut ::std::os::raw::c_void,
925        kk: u32,
926        k: *mut u8,
927        ll: u32,
928    );
929}
930extern "C" {
931    pub fn Hacl_Blake2b_256_blake2b_finish(
932        nn: u32,
933        output: *mut u8,
934        hash: *mut *mut ::std::os::raw::c_void,
935    );
936}
937extern "C" {
938    #[doc = "Write the BLAKE2b digest of message `d` using key `k` into `output`.\n\n@param nn Length of the to-be-generated digest with 1 <= `nn` <= 64.\n@param output Pointer to `nn` bytes of memory where the digest is written to.\n@param ll Length of the input message.\n@param d Pointer to `ll` bytes of memory where the input message is read from.\n@param kk Length of the key. Can be 0.\n@param k Pointer to `kk` bytes of memory where the key is read from."]
939    pub fn Hacl_Blake2b_256_blake2b(
940        nn: u32,
941        output: *mut u8,
942        ll: u32,
943        d: *mut u8,
944        kk: u32,
945        k: *mut u8,
946    );
947}
948extern "C" {
949    pub fn Hacl_Blake2b_256_load_state256b_from_state32(
950        st: *mut *mut ::std::os::raw::c_void,
951        st32: *mut u64,
952    );
953}
954extern "C" {
955    pub fn Hacl_Blake2b_256_store_state256b_to_state32(
956        st32: *mut u64,
957        st: *mut *mut ::std::os::raw::c_void,
958    );
959}
960extern "C" {
961    pub fn Hacl_Blake2b_256_blake2b_malloc() -> *mut *mut ::std::os::raw::c_void;
962}
963#[repr(C)]
964#[derive(Debug, Copy, Clone)]
965pub struct EverCrypt_Hash_state_s_s {
966    _unused: [u8; 0],
967}
968pub type EverCrypt_Hash_state_s = EverCrypt_Hash_state_s_s;
969extern "C" {
970    pub fn EverCrypt_Hash_Incremental_hash_len(a: Spec_Hash_Definitions_hash_alg) -> u32;
971}
972#[repr(C)]
973#[derive(Debug, Copy, Clone)]
974pub struct EverCrypt_Hash_Incremental_hash_state_s {
975    pub block_state: *mut EverCrypt_Hash_state_s,
976    pub buf: *mut u8,
977    pub total_len: u64,
978}
979pub type EverCrypt_Hash_Incremental_hash_state = EverCrypt_Hash_Incremental_hash_state_s;
980extern "C" {
981    #[doc = "Allocate initial state for the agile hash. The argument `a` stands for the\nchoice of algorithm (see Hacl_Spec.h). This API will automatically pick the most\nefficient implementation, provided you have called EverCrypt_AutoConfig2_init()\nbefore. The state is to be freed by calling `free`."]
982    pub fn EverCrypt_Hash_Incremental_create_in(
983        a: Spec_Hash_Definitions_hash_alg,
984    ) -> *mut EverCrypt_Hash_Incremental_hash_state;
985}
986extern "C" {
987    #[doc = "Reset an existing state to the initial hash state with empty data."]
988    pub fn EverCrypt_Hash_Incremental_init(s: *mut EverCrypt_Hash_Incremental_hash_state);
989}
990extern "C" {
991    #[doc = "Feed an arbitrary amount of data into the hash. This function returns\nEverCrypt_Error_Success for success, or EverCrypt_Error_MaximumLengthExceeded if\nthe combined length of all of the data passed to `update` (since the last call\nto `init`) exceeds 2^61-1 bytes or 2^64-1 bytes, depending on the choice of\nalgorithm. Both limits are unlikely to be attained in practice."]
992    pub fn EverCrypt_Hash_Incremental_update(
993        s: *mut EverCrypt_Hash_Incremental_hash_state,
994        data: *mut u8,
995        len: u32,
996    ) -> EverCrypt_Error_error_code;
997}
998extern "C" {
999    #[doc = "Perform a run-time test to determine which algorithm was chosen for the given piece of state."]
1000    pub fn EverCrypt_Hash_Incremental_alg_of_state(
1001        s: *mut EverCrypt_Hash_Incremental_hash_state,
1002    ) -> Spec_Hash_Definitions_hash_alg;
1003}
1004extern "C" {
1005    #[doc = "Write the resulting hash into `dst`, an array whose length is\nalgorithm-specific. You can use the macros defined earlier in this file to\nallocate a destination buffer of the right length. The state remains valid after\na call to `finish`, meaning the user may feed more data into the hash via\n`update`. (The finish function operates on an internal copy of the state and\ntherefore does not invalidate the client-held state.)"]
1006    pub fn EverCrypt_Hash_Incremental_finish(
1007        s: *mut EverCrypt_Hash_Incremental_hash_state,
1008        dst: *mut u8,
1009    );
1010}
1011extern "C" {
1012    #[doc = "Free a state previously allocated with `create_in`."]
1013    pub fn EverCrypt_Hash_Incremental_free(s: *mut EverCrypt_Hash_Incremental_hash_state);
1014}
1015extern "C" {
1016    #[doc = "Hash `input`, of len `len`, into `dst`, an array whose length is determined by\nyour choice of algorithm `a` (see Hacl_Spec.h). You can use the macros defined\nearlier in this file to allocate a destination buffer of the right length. This\nAPI will automatically pick the most efficient implementation, provided you have\ncalled EverCrypt_AutoConfig2_init() before."]
1017    pub fn EverCrypt_Hash_Incremental_hash(
1018        a: Spec_Hash_Definitions_hash_alg,
1019        dst: *mut u8,
1020        input: *mut u8,
1021        len: u32,
1022    );
1023}
1024#[repr(C)]
1025#[derive(Debug, Copy, Clone)]
1026pub struct Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64_s {
1027    pub len: u32,
1028    pub n: *mut u64,
1029    pub mu: u64,
1030    pub r2: *mut u64,
1031}
1032pub type Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64 = Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64_s;
1033extern "C" {
1034    #[doc = "Write `a + b mod 2 ^ (64 * len)` in `res`.\n\nThis functions returns the carry.\n\nThe arguments a, b and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len]"]
1035    pub fn Hacl_Bignum64_add(len: u32, a: *mut u64, b: *mut u64, res: *mut u64) -> u64;
1036}
1037extern "C" {
1038    #[doc = "Write `a - b mod 2 ^ (64 * len)` in `res`.\n\nThis functions returns the carry.\n\nThe arguments a, b and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len]"]
1039    pub fn Hacl_Bignum64_sub(len: u32, a: *mut u64, b: *mut u64, res: *mut u64) -> u64;
1040}
1041extern "C" {
1042    #[doc = "Write `(a + b) mod n` in `res`.\n\nThe arguments a, b, n and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\n\nBefore calling this function, the caller will need to ensure that the following\npreconditions are observed.\n• a < n\n• b < n"]
1043    pub fn Hacl_Bignum64_add_mod(len: u32, n: *mut u64, a: *mut u64, b: *mut u64, res: *mut u64);
1044}
1045extern "C" {
1046    #[doc = "Write `(a - b) mod n` in `res`.\n\nThe arguments a, b, n and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\n\nBefore calling this function, the caller will need to ensure that the following\npreconditions are observed.\n• a < n\n• b < n"]
1047    pub fn Hacl_Bignum64_sub_mod(len: u32, n: *mut u64, a: *mut u64, b: *mut u64, res: *mut u64);
1048}
1049extern "C" {
1050    #[doc = "Write `a * b` in `res`.\n\nThe arguments a and b are meant to be `len` limbs in size, i.e. uint64_t[len].\nThe outparam res is meant to be `2*len` limbs in size, i.e. uint64_t[2*len]."]
1051    pub fn Hacl_Bignum64_mul(len: u32, a: *mut u64, b: *mut u64, res: *mut u64);
1052}
1053extern "C" {
1054    #[doc = "Write `a * a` in `res`.\n\nThe argument a is meant to be `len` limbs in size, i.e. uint64_t[len].\nThe outparam res is meant to be `2*len` limbs in size, i.e. uint64_t[2*len]."]
1055    pub fn Hacl_Bignum64_sqr(len: u32, a: *mut u64, res: *mut u64);
1056}
1057extern "C" {
1058    #[doc = "Write `a mod n` in `res`.\n\nThe argument a is meant to be `2*len` limbs in size, i.e. uint64_t[2*len].\nThe argument n and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\n\nThe function returns false if any of the following preconditions are violated,\ntrue otherwise.\n• 1 < n\n• n % 2 = 1"]
1059    pub fn Hacl_Bignum64_mod(len: u32, n: *mut u64, a: *mut u64, res: *mut u64) -> bool;
1060}
1061extern "C" {
1062    #[doc = "Write `a ^ b mod n` in `res`.\n\nThe arguments a, n and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\n\nThe argument b is a bignum of any size, and bBits is an upper bound on the\nnumber of significant bits of b. A tighter bound results in faster execution\ntime. When in doubt, the number of bits for the bignum size is always a safe\ndefault, e.g. if b is a 4096-bit bignum, bBits should be 4096.\n\nThe function is *NOT* constant-time on the argument b. See the\nmod_exp_consttime_* functions for constant-time variants.\n\nThe function returns false if any of the following preconditions are violated,\ntrue otherwise.\n• n % 2 = 1\n• 1 < n\n• b < pow2 bBits\n• a < n"]
1063    pub fn Hacl_Bignum64_mod_exp_vartime(
1064        len: u32,
1065        n: *mut u64,
1066        a: *mut u64,
1067        bBits: u32,
1068        b: *mut u64,
1069        res: *mut u64,
1070    ) -> bool;
1071}
1072extern "C" {
1073    #[doc = "Write `a ^ b mod n` in `res`.\n\nThe arguments a, n and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\n\nThe argument b is a bignum of any size, and bBits is an upper bound on the\nnumber of significant bits of b. A tighter bound results in faster execution\ntime. When in doubt, the number of bits for the bignum size is always a safe\ndefault, e.g. if b is a 4096-bit bignum, bBits should be 4096.\n\nThis function is constant-time over its argument b, at the cost of a slower\nexecution time than mod_exp_vartime.\n\nThe function returns false if any of the following preconditions are violated,\ntrue otherwise.\n• n % 2 = 1\n• 1 < n\n• b < pow2 bBits\n• a < n"]
1074    pub fn Hacl_Bignum64_mod_exp_consttime(
1075        len: u32,
1076        n: *mut u64,
1077        a: *mut u64,
1078        bBits: u32,
1079        b: *mut u64,
1080        res: *mut u64,
1081    ) -> bool;
1082}
1083extern "C" {
1084    #[doc = "Write `a ^ (-1) mod n` in `res`.\n\nThe arguments a, n and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\n\nBefore calling this function, the caller will need to ensure that the following\npreconditions are observed.\n• n is a prime\n\nThe function returns false if any of the following preconditions are violated,\ntrue otherwise.\n• n % 2 = 1\n• 1 < n\n• 0 < a\n• a < n"]
1085    pub fn Hacl_Bignum64_mod_inv_prime_vartime(
1086        len: u32,
1087        n: *mut u64,
1088        a: *mut u64,
1089        res: *mut u64,
1090    ) -> bool;
1091}
1092extern "C" {
1093    #[doc = "Heap-allocate and initialize a montgomery context.\n\nThe argument n is meant to be `len` limbs in size, i.e. uint64_t[len].\n\nBefore calling this function, the caller will need to ensure that the following\npreconditions are observed.\n• n % 2 = 1\n• 1 < n\n\nThe caller will need to call Hacl_Bignum64_mont_ctx_free on the return value\nto avoid memory leaks."]
1094    pub fn Hacl_Bignum64_mont_ctx_init(
1095        len: u32,
1096        n: *mut u64,
1097    ) -> *mut Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64;
1098}
1099extern "C" {
1100    #[doc = "Deallocate the memory previously allocated by Hacl_Bignum64_mont_ctx_init.\n\nThe argument k is a montgomery context obtained through Hacl_Bignum64_mont_ctx_init."]
1101    pub fn Hacl_Bignum64_mont_ctx_free(k: *mut Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64);
1102}
1103extern "C" {
1104    #[doc = "Write `a mod n` in `res`.\n\nThe argument a is meant to be `2*len` limbs in size, i.e. uint64_t[2*len].\nThe outparam res is meant to be `len` limbs in size, i.e. uint64_t[len].\nThe argument k is a montgomery context obtained through Hacl_Bignum64_mont_ctx_init."]
1105    pub fn Hacl_Bignum64_mod_precomp(
1106        k: *mut Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64,
1107        a: *mut u64,
1108        res: *mut u64,
1109    );
1110}
1111extern "C" {
1112    #[doc = "Write `a ^ b mod n` in `res`.\n\nThe arguments a and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\nThe argument k is a montgomery context obtained through Hacl_Bignum64_mont_ctx_init.\n\nThe argument b is a bignum of any size, and bBits is an upper bound on the\nnumber of significant bits of b. A tighter bound results in faster execution\ntime. When in doubt, the number of bits for the bignum size is always a safe\ndefault, e.g. if b is a 4096-bit bignum, bBits should be 4096.\n\nThe function is *NOT* constant-time on the argument b. See the\nmod_exp_consttime_* functions for constant-time variants.\n\nBefore calling this function, the caller will need to ensure that the following\npreconditions are observed.\n• b < pow2 bBits\n• a < n"]
1113    pub fn Hacl_Bignum64_mod_exp_vartime_precomp(
1114        k: *mut Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64,
1115        a: *mut u64,
1116        bBits: u32,
1117        b: *mut u64,
1118        res: *mut u64,
1119    );
1120}
1121extern "C" {
1122    #[doc = "Write `a ^ b mod n` in `res`.\n\nThe arguments a and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\nThe argument k is a montgomery context obtained through Hacl_Bignum64_mont_ctx_init.\n\nThe argument b is a bignum of any size, and bBits is an upper bound on the\nnumber of significant bits of b. A tighter bound results in faster execution\ntime. When in doubt, the number of bits for the bignum size is always a safe\ndefault, e.g. if b is a 4096-bit bignum, bBits should be 4096.\n\nThis function is constant-time over its argument b, at the cost of a slower\nexecution time than mod_exp_vartime_*.\n\nBefore calling this function, the caller will need to ensure that the following\npreconditions are observed.\n• b < pow2 bBits\n• a < n"]
1123    pub fn Hacl_Bignum64_mod_exp_consttime_precomp(
1124        k: *mut Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64,
1125        a: *mut u64,
1126        bBits: u32,
1127        b: *mut u64,
1128        res: *mut u64,
1129    );
1130}
1131extern "C" {
1132    #[doc = "Write `a ^ (-1) mod n` in `res`.\n\nThe argument a and the outparam res are meant to be `len` limbs in size, i.e. uint64_t[len].\nThe argument k is a montgomery context obtained through Hacl_Bignum64_mont_ctx_init.\n\nBefore calling this function, the caller will need to ensure that the following\npreconditions are observed.\n• n is a prime\n• 0 < a\n• a < n"]
1133    pub fn Hacl_Bignum64_mod_inv_prime_vartime_precomp(
1134        k: *mut Hacl_Bignum_MontArithmetic_bn_mont_ctx_u64,
1135        a: *mut u64,
1136        res: *mut u64,
1137    );
1138}
1139extern "C" {
1140    #[doc = "Load a bid-endian bignum from memory.\n\nThe argument b points to `len` bytes of valid memory.\nThe function returns a heap-allocated bignum of size sufficient to hold the\nresult of loading b, or NULL if either the allocation failed, or the amount of\nrequired memory would exceed 4GB.\n\nIf the return value is non-null, clients must eventually call free(3) on it to\navoid memory leaks."]
1141    pub fn Hacl_Bignum64_new_bn_from_bytes_be(len: u32, b: *mut u8) -> *mut u64;
1142}
1143extern "C" {
1144    #[doc = "Load a little-endian bignum from memory.\n\nThe argument b points to `len` bytes of valid memory.\nThe function returns a heap-allocated bignum of size sufficient to hold the\nresult of loading b, or NULL if either the allocation failed, or the amount of\nrequired memory would exceed 4GB.\n\nIf the return value is non-null, clients must eventually call free(3) on it to\navoid memory leaks."]
1145    pub fn Hacl_Bignum64_new_bn_from_bytes_le(len: u32, b: *mut u8) -> *mut u64;
1146}
1147extern "C" {
1148    #[doc = "Serialize a bignum into big-endian memory.\n\nThe argument b points to a bignum of ⌈len / 8⌉ size.\nThe outparam res points to `len` bytes of valid memory."]
1149    pub fn Hacl_Bignum64_bn_to_bytes_be(len: u32, b: *mut u64, res: *mut u8);
1150}
1151extern "C" {
1152    #[doc = "Serialize a bignum into little-endian memory.\n\nThe argument b points to a bignum of ⌈len / 8⌉ size.\nThe outparam res points to `len` bytes of valid memory."]
1153    pub fn Hacl_Bignum64_bn_to_bytes_le(len: u32, b: *mut u64, res: *mut u8);
1154}
1155extern "C" {
1156    #[doc = "Returns 2^64 - 1 if a < b, otherwise returns 0.\n\nThe arguments a and b are meant to be `len` limbs in size, i.e. uint64_t[len]."]
1157    pub fn Hacl_Bignum64_lt_mask(len: u32, a: *mut u64, b: *mut u64) -> u64;
1158}
1159extern "C" {
1160    #[doc = "Returns 2^64 - 1 if a = b, otherwise returns 0.\n\nThe arguments a and b are meant to be `len` limbs in size, i.e. uint64_t[len]."]
1161    pub fn Hacl_Bignum64_eq_mask(len: u32, a: *mut u64, b: *mut u64) -> u64;
1162}
1163extern "C" {
1164    #[doc = "Write the HMAC-SHA-1 MAC of a message (`data`) by using a key (`key`) into `dst`.\n\nThe key can be any length and will be hashed if it is longer and padded if it is shorter than 64 byte.\n`dst` must point to 20 bytes of memory."]
1165    pub fn Hacl_HMAC_legacy_compute_sha1(
1166        dst: *mut u8,
1167        key: *mut u8,
1168        key_len: u32,
1169        data: *mut u8,
1170        data_len: u32,
1171    );
1172}
1173extern "C" {
1174    #[doc = "Write the HMAC-SHA-2-256 MAC of a message (`data`) by using a key (`key`) into `dst`.\n\nThe key can be any length and will be hashed if it is longer and padded if it is shorter than 64 bytes.\n`dst` must point to 32 bytes of memory."]
1175    pub fn Hacl_HMAC_compute_sha2_256(
1176        dst: *mut u8,
1177        key: *mut u8,
1178        key_len: u32,
1179        data: *mut u8,
1180        data_len: u32,
1181    );
1182}
1183extern "C" {
1184    #[doc = "Write the HMAC-SHA-2-384 MAC of a message (`data`) by using a key (`key`) into `dst`.\n\nThe key can be any length and will be hashed if it is longer and padded if it is shorter than 128 bytes.\n`dst` must point to 48 bytes of memory."]
1185    pub fn Hacl_HMAC_compute_sha2_384(
1186        dst: *mut u8,
1187        key: *mut u8,
1188        key_len: u32,
1189        data: *mut u8,
1190        data_len: u32,
1191    );
1192}
1193extern "C" {
1194    #[doc = "Write the HMAC-SHA-2-512 MAC of a message (`data`) by using a key (`key`) into `dst`.\n\nThe key can be any length and will be hashed if it is longer and padded if it is shorter than 128 bytes.\n`dst` must point to 64 bytes of memory."]
1195    pub fn Hacl_HMAC_compute_sha2_512(
1196        dst: *mut u8,
1197        key: *mut u8,
1198        key_len: u32,
1199        data: *mut u8,
1200        data_len: u32,
1201    );
1202}
1203extern "C" {
1204    #[doc = "Write the HMAC-BLAKE2s MAC of a message (`data`) by using a key (`key`) into `dst`.\n\nThe key can be any length and will be hashed if it is longer and padded if it is shorter than 64 bytes.\n`dst` must point to 32 bytes of memory."]
1205    pub fn Hacl_HMAC_compute_blake2s_32(
1206        dst: *mut u8,
1207        key: *mut u8,
1208        key_len: u32,
1209        data: *mut u8,
1210        data_len: u32,
1211    );
1212}
1213extern "C" {
1214    #[doc = "Write the HMAC-BLAKE2b MAC of a message (`data`) by using a key (`key`) into `dst`.\n\nThe key can be any length and will be hashed if it is longer and padded if it is shorter than 128 bytes.\n`dst` must point to 64 bytes of memory."]
1215    pub fn Hacl_HMAC_compute_blake2b_32(
1216        dst: *mut u8,
1217        key: *mut u8,
1218        key_len: u32,
1219        data: *mut u8,
1220        data_len: u32,
1221    );
1222}
1223extern "C" {
1224    #[doc = "Expand pseudorandom key to desired length.\n\n@param okm Pointer to `len` bytes of memory where output keying material is written to.\n@param prk Pointer to at least `HashLen` bytes of memory where pseudorandom key is read from. Usually, this points to the output from the extract step.\n@param prklen Length of pseudorandom key.\n@param info Pointer to `infolen` bytes of memory where context and application specific information is read from. Can be a zero-length string.\n@param infolen Length of context and application specific information.\n@param len Length of output keying material."]
1225    pub fn Hacl_HKDF_expand_sha2_256(
1226        okm: *mut u8,
1227        prk: *mut u8,
1228        prklen: u32,
1229        info: *mut u8,
1230        infolen: u32,
1231        len: u32,
1232    );
1233}
1234extern "C" {
1235    #[doc = "Extract a fixed-length pseudorandom key from input keying material.\n\n@param prk Pointer to `HashLen` bytes of memory where pseudorandom key is written to.\n@param salt Pointer to `saltlen` bytes of memory where salt value is read from.\n@param saltlen Length of salt value.\n@param ikm Pointer to `ikmlen` bytes of memory where input keying material is read from.\n@param ikmlen Length of input keying material."]
1236    pub fn Hacl_HKDF_extract_sha2_256(
1237        prk: *mut u8,
1238        salt: *mut u8,
1239        saltlen: u32,
1240        ikm: *mut u8,
1241        ikmlen: u32,
1242    );
1243}
1244extern "C" {
1245    #[doc = "Expand pseudorandom key to desired length.\n\n@param okm Pointer to `len` bytes of memory where output keying material is written to.\n@param prk Pointer to at least `HashLen` bytes of memory where pseudorandom key is read from. Usually, this points to the output from the extract step.\n@param prklen Length of pseudorandom key.\n@param info Pointer to `infolen` bytes of memory where context and application specific information is read from. Can be a zero-length string.\n@param infolen Length of context and application specific information.\n@param len Length of output keying material."]
1246    pub fn Hacl_HKDF_expand_sha2_384(
1247        okm: *mut u8,
1248        prk: *mut u8,
1249        prklen: u32,
1250        info: *mut u8,
1251        infolen: u32,
1252        len: u32,
1253    );
1254}
1255extern "C" {
1256    #[doc = "Extract a fixed-length pseudorandom key from input keying material.\n\n@param prk Pointer to `HashLen` bytes of memory where pseudorandom key is written to.\n@param salt Pointer to `saltlen` bytes of memory where salt value is read from.\n@param saltlen Length of salt value.\n@param ikm Pointer to `ikmlen` bytes of memory where input keying material is read from.\n@param ikmlen Length of input keying material."]
1257    pub fn Hacl_HKDF_extract_sha2_384(
1258        prk: *mut u8,
1259        salt: *mut u8,
1260        saltlen: u32,
1261        ikm: *mut u8,
1262        ikmlen: u32,
1263    );
1264}
1265extern "C" {
1266    #[doc = "Expand pseudorandom key to desired length.\n\n@param okm Pointer to `len` bytes of memory where output keying material is written to.\n@param prk Pointer to at least `HashLen` bytes of memory where pseudorandom key is read from. Usually, this points to the output from the extract step.\n@param prklen Length of pseudorandom key.\n@param info Pointer to `infolen` bytes of memory where context and application specific information is read from. Can be a zero-length string.\n@param infolen Length of context and application specific information.\n@param len Length of output keying material."]
1267    pub fn Hacl_HKDF_expand_sha2_512(
1268        okm: *mut u8,
1269        prk: *mut u8,
1270        prklen: u32,
1271        info: *mut u8,
1272        infolen: u32,
1273        len: u32,
1274    );
1275}
1276extern "C" {
1277    #[doc = "Extract a fixed-length pseudorandom key from input keying material.\n\n@param prk Pointer to `HashLen` bytes of memory where pseudorandom key is written to.\n@param salt Pointer to `saltlen` bytes of memory where salt value is read from.\n@param saltlen Length of salt value.\n@param ikm Pointer to `ikmlen` bytes of memory where input keying material is read from.\n@param ikmlen Length of input keying material."]
1278    pub fn Hacl_HKDF_extract_sha2_512(
1279        prk: *mut u8,
1280        salt: *mut u8,
1281        saltlen: u32,
1282        ikm: *mut u8,
1283        ikmlen: u32,
1284    );
1285}
1286extern "C" {
1287    #[doc = "Expand pseudorandom key to desired length.\n\n@param okm Pointer to `len` bytes of memory where output keying material is written to.\n@param prk Pointer to at least `HashLen` bytes of memory where pseudorandom key is read from. Usually, this points to the output from the extract step.\n@param prklen Length of pseudorandom key.\n@param info Pointer to `infolen` bytes of memory where context and application specific information is read from. Can be a zero-length string.\n@param infolen Length of context and application specific information.\n@param len Length of output keying material."]
1288    pub fn Hacl_HKDF_expand_blake2s_32(
1289        okm: *mut u8,
1290        prk: *mut u8,
1291        prklen: u32,
1292        info: *mut u8,
1293        infolen: u32,
1294        len: u32,
1295    );
1296}
1297extern "C" {
1298    #[doc = "Extract a fixed-length pseudorandom key from input keying material.\n\n@param prk Pointer to `HashLen` bytes of memory where pseudorandom key is written to.\n@param salt Pointer to `saltlen` bytes of memory where salt value is read from.\n@param saltlen Length of salt value.\n@param ikm Pointer to `ikmlen` bytes of memory where input keying material is read from.\n@param ikmlen Length of input keying material."]
1299    pub fn Hacl_HKDF_extract_blake2s_32(
1300        prk: *mut u8,
1301        salt: *mut u8,
1302        saltlen: u32,
1303        ikm: *mut u8,
1304        ikmlen: u32,
1305    );
1306}
1307extern "C" {
1308    #[doc = "Expand pseudorandom key to desired length.\n\n@param okm Pointer to `len` bytes of memory where output keying material is written to.\n@param prk Pointer to at least `HashLen` bytes of memory where pseudorandom key is read from. Usually, this points to the output from the extract step.\n@param prklen Length of pseudorandom key.\n@param info Pointer to `infolen` bytes of memory where context and application specific information is read from. Can be a zero-length string.\n@param infolen Length of context and application specific information.\n@param len Length of output keying material."]
1309    pub fn Hacl_HKDF_expand_blake2b_32(
1310        okm: *mut u8,
1311        prk: *mut u8,
1312        prklen: u32,
1313        info: *mut u8,
1314        infolen: u32,
1315        len: u32,
1316    );
1317}
1318extern "C" {
1319    #[doc = "Extract a fixed-length pseudorandom key from input keying material.\n\n@param prk Pointer to `HashLen` bytes of memory where pseudorandom key is written to.\n@param salt Pointer to `saltlen` bytes of memory where salt value is read from.\n@param saltlen Length of salt value.\n@param ikm Pointer to `ikmlen` bytes of memory where input keying material is read from.\n@param ikmlen Length of input keying material."]
1320    pub fn Hacl_HKDF_extract_blake2b_32(
1321        prk: *mut u8,
1322        salt: *mut u8,
1323        saltlen: u32,
1324        ikm: *mut u8,
1325        ikmlen: u32,
1326    );
1327}
1328pub type Hacl_HMAC_DRBG_supported_alg = Spec_Hash_Definitions_hash_alg;
1329extern "C" {
1330    #[doc = "Return the minimal entropy input length of the desired hash function.\n\n@param a Hash algorithm to use."]
1331    pub fn Hacl_HMAC_DRBG_min_length(a: Spec_Hash_Definitions_hash_alg) -> u32;
1332}
1333#[repr(C)]
1334#[derive(Debug, Copy, Clone)]
1335pub struct Hacl_HMAC_DRBG_state_s {
1336    pub k: *mut u8,
1337    pub v: *mut u8,
1338    pub reseed_counter: *mut u32,
1339}
1340pub type Hacl_HMAC_DRBG_state = Hacl_HMAC_DRBG_state_s;
1341extern "C" {
1342    pub fn Hacl_HMAC_DRBG_uu___is_State(
1343        a: Spec_Hash_Definitions_hash_alg,
1344        projectee: Hacl_HMAC_DRBG_state,
1345    ) -> bool;
1346}
1347extern "C" {
1348    #[doc = "Create a DRBG state.\n\n@param a Hash algorithm to use. The possible instantiations are ...\n `Spec_Hash_Definitions_SHA2_256`,\n `Spec_Hash_Definitions_SHA2_384`,\n `Spec_Hash_Definitions_SHA2_512`, and\n `Spec_Hash_Definitions_SHA1`."]
1349    pub fn Hacl_HMAC_DRBG_create_in(a: Spec_Hash_Definitions_hash_alg) -> Hacl_HMAC_DRBG_state;
1350}
1351extern "C" {
1352    #[doc = "Instantiate the DRBG.\n\n@param a Hash algorithm to use. (Value must match the value used in `Hacl_HMAC_DRBG_create_in`.)\n@param st Pointer to DRBG state.\n@param entropy_input_len Length of entropy input.\n@param entropy_input Pointer to `entropy_input_len` bytes of memory where entropy input is read from.\n@param nonce_len Length of nonce.\n@param nonce Pointer to `nonce_len` bytes of memory where nonce is read from.\n@param personalization_string_len length of personalization string.\n@param personalization_string Pointer to `personalization_string_len` bytes of memory where personalization string is read from."]
1353    pub fn Hacl_HMAC_DRBG_instantiate(
1354        a: Spec_Hash_Definitions_hash_alg,
1355        st: Hacl_HMAC_DRBG_state,
1356        entropy_input_len: u32,
1357        entropy_input: *mut u8,
1358        nonce_len: u32,
1359        nonce: *mut u8,
1360        personalization_string_len: u32,
1361        personalization_string: *mut u8,
1362    );
1363}
1364extern "C" {
1365    #[doc = "Reseed the DRBG.\n\n@param a Hash algorithm to use. (Value must match the value used in `Hacl_HMAC_DRBG_create_in`.)\n@param st Pointer to DRBG state.\n@param entropy_input_len Length of entropy input.\n@param entropy_input Pointer to `entropy_input_len` bytes of memory where entropy input is read from.\n@param additional_input_input_len Length of additional input.\n@param additional_input_input Pointer to `additional_input_input_len` bytes of memory where additional input is read from."]
1366    pub fn Hacl_HMAC_DRBG_reseed(
1367        a: Spec_Hash_Definitions_hash_alg,
1368        st: Hacl_HMAC_DRBG_state,
1369        entropy_input_len: u32,
1370        entropy_input: *mut u8,
1371        additional_input_input_len: u32,
1372        additional_input_input: *mut u8,
1373    );
1374}
1375extern "C" {
1376    #[doc = "Generate output.\n\n@param a Hash algorithm to use. (Value must match the value used in `create_in`.)\n@param output Pointer to `n` bytes of memory where random output is written to.\n@param st Pointer to DRBG state.\n@param n Length of desired output.\n@param additional_input_input_len Length of additional input.\n@param additional_input_input Pointer to `additional_input_input_len` bytes of memory where additional input is read from."]
1377    pub fn Hacl_HMAC_DRBG_generate(
1378        a: Spec_Hash_Definitions_hash_alg,
1379        output: *mut u8,
1380        st: Hacl_HMAC_DRBG_state,
1381        n: u32,
1382        additional_input_len: u32,
1383        additional_input: *mut u8,
1384    ) -> bool;
1385}
1386extern "C" {
1387    pub fn Hacl_HMAC_DRBG_free(uu___: Spec_Hash_Definitions_hash_alg, s: Hacl_HMAC_DRBG_state);
1388}
1389extern "C" {
1390    #[doc = "Create an ECDSA signature using SHA2-256.\n\nThe function returns `true` for successful creation of an ECDSA signature and `false` otherwise.\n\nThe outparam `signature` (R || S) points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe arguments `private_key` and `nonce` point to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `private_key` and `nonce` are valid:\n• 0 < `private_key` < the order of the curve\n• 0 < `nonce` < the order of the curve"]
1391    pub fn Hacl_P256_ecdsa_sign_p256_sha2(
1392        signature: *mut u8,
1393        msg_len: u32,
1394        msg: *mut u8,
1395        private_key: *mut u8,
1396        nonce: *mut u8,
1397    ) -> bool;
1398}
1399extern "C" {
1400    #[doc = "Create an ECDSA signature using SHA2-384.\n\nThe function returns `true` for successful creation of an ECDSA signature and `false` otherwise.\n\nThe outparam `signature` (R || S) points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe arguments `private_key` and `nonce` point to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `private_key` and `nonce` are valid:\n• 0 < `private_key` < the order of the curve\n• 0 < `nonce` < the order of the curve"]
1401    pub fn Hacl_P256_ecdsa_sign_p256_sha384(
1402        signature: *mut u8,
1403        msg_len: u32,
1404        msg: *mut u8,
1405        private_key: *mut u8,
1406        nonce: *mut u8,
1407    ) -> bool;
1408}
1409extern "C" {
1410    #[doc = "Create an ECDSA signature using SHA2-512.\n\nThe function returns `true` for successful creation of an ECDSA signature and `false` otherwise.\n\nThe outparam `signature` (R || S) points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe arguments `private_key` and `nonce` point to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `private_key` and `nonce` are valid:\n• 0 < `private_key` < the order of the curve\n• 0 < `nonce` < the order of the curve"]
1411    pub fn Hacl_P256_ecdsa_sign_p256_sha512(
1412        signature: *mut u8,
1413        msg_len: u32,
1414        msg: *mut u8,
1415        private_key: *mut u8,
1416        nonce: *mut u8,
1417    ) -> bool;
1418}
1419extern "C" {
1420    #[doc = "Create an ECDSA signature WITHOUT hashing first.\n\nThis function is intended to receive a hash of the input.\nFor convenience, we recommend using one of the hash-and-sign combined functions above.\n\nThe argument `msg` MUST be at least 32 bytes (i.e. `msg_len >= 32`).\n\nNOTE: The equivalent functions in OpenSSL and Fiat-Crypto both accept inputs\nsmaller than 32 bytes. These libraries left-pad the input with enough zeroes to\nreach the minimum 32 byte size. Clients who need behavior identical to OpenSSL\nneed to perform the left-padding themselves.\n\nThe function returns `true` for successful creation of an ECDSA signature and `false` otherwise.\n\nThe outparam `signature` (R || S) points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe arguments `private_key` and `nonce` point to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `private_key` and `nonce` are valid values:\n• 0 < `private_key` < the order of the curve\n• 0 < `nonce` < the order of the curve"]
1421    pub fn Hacl_P256_ecdsa_sign_p256_without_hash(
1422        signature: *mut u8,
1423        msg_len: u32,
1424        msg: *mut u8,
1425        private_key: *mut u8,
1426        nonce: *mut u8,
1427    ) -> bool;
1428}
1429extern "C" {
1430    #[doc = "Verify an ECDSA signature using SHA2-256.\n\nThe function returns `true` if the signature is valid and `false` otherwise.\n\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe argument `public_key` (x || y) points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe arguments `signature_r` and `signature_s` point to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `public_key` is valid"]
1431    pub fn Hacl_P256_ecdsa_verif_p256_sha2(
1432        msg_len: u32,
1433        msg: *mut u8,
1434        public_key: *mut u8,
1435        signature_r: *mut u8,
1436        signature_s: *mut u8,
1437    ) -> bool;
1438}
1439extern "C" {
1440    #[doc = "Verify an ECDSA signature using SHA2-384.\n\nThe function returns `true` if the signature is valid and `false` otherwise.\n\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe argument `public_key` (x || y) points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe arguments `signature_r` and `signature_s` point to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `public_key` is valid"]
1441    pub fn Hacl_P256_ecdsa_verif_p256_sha384(
1442        msg_len: u32,
1443        msg: *mut u8,
1444        public_key: *mut u8,
1445        signature_r: *mut u8,
1446        signature_s: *mut u8,
1447    ) -> bool;
1448}
1449extern "C" {
1450    #[doc = "Verify an ECDSA signature using SHA2-512.\n\nThe function returns `true` if the signature is valid and `false` otherwise.\n\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe argument `public_key` (x || y) points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe arguments `signature_r` and `signature_s` point to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `public_key` is valid"]
1451    pub fn Hacl_P256_ecdsa_verif_p256_sha512(
1452        msg_len: u32,
1453        msg: *mut u8,
1454        public_key: *mut u8,
1455        signature_r: *mut u8,
1456        signature_s: *mut u8,
1457    ) -> bool;
1458}
1459extern "C" {
1460    #[doc = "Verify an ECDSA signature WITHOUT hashing first.\n\nThis function is intended to receive a hash of the input.\nFor convenience, we recommend using one of the hash-and-verify combined functions above.\n\nThe argument `msg` MUST be at least 32 bytes (i.e. `msg_len >= 32`).\n\nThe function returns `true` if the signature is valid and `false` otherwise.\n\nThe argument `msg` points to `msg_len` bytes of valid memory, i.e., uint8_t[msg_len].\nThe argument `public_key` (x || y) points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe arguments `signature_r` and `signature_s` point to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `public_key` is valid"]
1461    pub fn Hacl_P256_ecdsa_verif_without_hash(
1462        msg_len: u32,
1463        msg: *mut u8,
1464        public_key: *mut u8,
1465        signature_r: *mut u8,
1466        signature_s: *mut u8,
1467    ) -> bool;
1468}
1469extern "C" {
1470    #[doc = "Public key validation.\n\nThe function returns `true` if a public key is valid and `false` otherwise.\n\nThe argument `public_key` points to 64 bytes of valid memory, i.e., uint8_t[64].\n\nThe public key (x || y) is valid (with respect to SP 800-56A):\n• the public key is not the “point at infinity”, represented as O.\n• the affine x and y coordinates of the point represented by the public key are\nin the range [0, p – 1] where p is the prime defining the finite field.\n• y^2 = x^3 + ax + b where a and b are the coefficients of the curve equation.\nThe last extract is taken from: https://neilmadden.blog/2017/05/17/so-how-do-you-validate-nist-ecdh-public-keys/"]
1471    pub fn Hacl_P256_validate_public_key(public_key: *mut u8) -> bool;
1472}
1473extern "C" {
1474    #[doc = "Private key validation.\n\nThe function returns `true` if a private key is valid and `false` otherwise.\n\nThe argument `private_key` points to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe private key is valid:\n• 0 < `private_key` < the order of the curve"]
1475    pub fn Hacl_P256_validate_private_key(private_key: *mut u8) -> bool;
1476}
1477extern "C" {
1478    #[doc = "Convert a public key from uncompressed to its raw form.\n\nThe function returns `true` for successful conversion of a public key and `false` otherwise.\n\nThe outparam `pk_raw` points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `pk` points to 65 bytes of valid memory, i.e., uint8_t[65].\n\nThe function DOESN'T check whether (x, y) is a valid point."]
1479    pub fn Hacl_P256_uncompressed_to_raw(pk: *mut u8, pk_raw: *mut u8) -> bool;
1480}
1481extern "C" {
1482    #[doc = "Convert a public key from compressed to its raw form.\n\nThe function returns `true` for successful conversion of a public key and `false` otherwise.\n\nThe outparam `pk_raw` points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `pk` points to 33 bytes of valid memory, i.e., uint8_t[33].\n\nThe function also checks whether (x, y) is a valid point."]
1483    pub fn Hacl_P256_compressed_to_raw(pk: *mut u8, pk_raw: *mut u8) -> bool;
1484}
1485extern "C" {
1486    #[doc = "Convert a public key from raw to its uncompressed form.\n\nThe outparam `pk` points to 65 bytes of valid memory, i.e., uint8_t[65].\nThe argument `pk_raw` points to 64 bytes of valid memory, i.e., uint8_t[64].\n\nThe function DOESN'T check whether (x, y) is a valid point."]
1487    pub fn Hacl_P256_raw_to_uncompressed(pk_raw: *mut u8, pk: *mut u8);
1488}
1489extern "C" {
1490    #[doc = "Convert a public key from raw to its compressed form.\n\nThe outparam `pk` points to 33 bytes of valid memory, i.e., uint8_t[33].\nThe argument `pk_raw` points to 64 bytes of valid memory, i.e., uint8_t[64].\n\nThe function DOESN'T check whether (x, y) is a valid point."]
1491    pub fn Hacl_P256_raw_to_compressed(pk_raw: *mut u8, pk: *mut u8);
1492}
1493extern "C" {
1494    #[doc = "Compute the public key from the private key.\n\nThe function returns `true` if a private key is valid and `false` otherwise.\n\nThe outparam `public_key`  points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `private_key` points to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe private key is valid:\n• 0 < `private_key` < the order of the curve."]
1495    pub fn Hacl_P256_dh_initiator(public_key: *mut u8, private_key: *mut u8) -> bool;
1496}
1497extern "C" {
1498    #[doc = "Execute the diffie-hellmann key exchange.\n\nThe function returns `true` for successful creation of an ECDH shared secret and\n`false` otherwise.\n\nThe outparam `shared_secret` points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `their_pubkey` points to 64 bytes of valid memory, i.e., uint8_t[64].\nThe argument `private_key` points to 32 bytes of valid memory, i.e., uint8_t[32].\n\nThe function also checks whether `private_key` and `their_pubkey` are valid."]
1499    pub fn Hacl_P256_dh_responder(
1500        shared_secret: *mut u8,
1501        their_pubkey: *mut u8,
1502        private_key: *mut u8,
1503    ) -> bool;
1504}
1505extern "C" {
1506    #[doc = "Sign a message `msg` and write the signature to `sgnt`.\n\n@param a Hash algorithm to use. Allowed values for `a` are ...\n Spec_Hash_Definitions_SHA2_256,\n Spec_Hash_Definitions_SHA2_384, and\n Spec_Hash_Definitions_SHA2_512.\n@param modBits Count of bits in the modulus (`n`).\n@param eBits Count of bits in `e` value.\n@param dBits Count of bits in `d` value.\n@param skey Pointer to secret key created by `Hacl_RSAPSS_new_rsapss_load_skey`.\n@param saltLen Length of salt.\n@param salt Pointer to `saltLen` bytes where the salt is read from.\n@param msgLen Length of message.\n@param msg Pointer to `msgLen` bytes where the message is read from.\n@param sgnt Pointer to `ceil(modBits / 8)` bytes where the signature is written to.\n\n@return Returns true if and only if signing was successful."]
1507    pub fn Hacl_RSAPSS_rsapss_sign(
1508        a: Spec_Hash_Definitions_hash_alg,
1509        modBits: u32,
1510        eBits: u32,
1511        dBits: u32,
1512        skey: *mut u64,
1513        saltLen: u32,
1514        salt: *mut u8,
1515        msgLen: u32,
1516        msg: *mut u8,
1517        sgnt: *mut u8,
1518    ) -> bool;
1519}
1520extern "C" {
1521    #[doc = "Verify the signature `sgnt` of a message `msg`.\n\n@param a Hash algorithm to use.\n@param modBits Count of bits in the modulus (`n`).\n@param eBits Count of bits in `e` value.\n@param pkey Pointer to public key created by `Hacl_RSAPSS_new_rsapss_load_pkey`.\n@param saltLen Length of salt.\n@param sgntLen Length of signature.\n@param sgnt Pointer to `sgntLen` bytes where the signature is read from.\n@param msgLen Length of message.\n@param msg Pointer to `msgLen` bytes where the message is read from.\n\n@return Returns true if and only if the signature is valid."]
1522    pub fn Hacl_RSAPSS_rsapss_verify(
1523        a: Spec_Hash_Definitions_hash_alg,
1524        modBits: u32,
1525        eBits: u32,
1526        pkey: *mut u64,
1527        saltLen: u32,
1528        sgntLen: u32,
1529        sgnt: *mut u8,
1530        msgLen: u32,
1531        msg: *mut u8,
1532    ) -> bool;
1533}
1534extern "C" {
1535    #[doc = "Load a public key from key parts.\n\n@param modBits Count of bits in modulus (`n`).\n@param eBits Count of bits in `e` value.\n@param nb Pointer to `ceil(modBits / 8)` bytes where the modulus (`n`) is read from.\n@param eb Pointer to `ceil(modBits / 8)` bytes where the `e` value is read from.\n\n@return Returns an allocated public key. Note: caller must take care to `free()` the created key."]
1536    pub fn Hacl_RSAPSS_new_rsapss_load_pkey(
1537        modBits: u32,
1538        eBits: u32,
1539        nb: *mut u8,
1540        eb: *mut u8,
1541    ) -> *mut u64;
1542}
1543extern "C" {
1544    #[doc = "Load a secret key from key parts.\n\n@param modBits Count of bits in modulus (`n`).\n@param eBits Count of bits in `e` value.\n@param dBits Count of bits in `d` value.\n@param nb Pointer to `ceil(modBits / 8)` bytes where the modulus (`n`) is read from.\n@param eb Pointer to `ceil(modBits / 8)` bytes where the `e` value is read from.\n@param db Pointer to `ceil(modBits / 8)` bytes where the `d` value is read from.\n\n@return Returns an allocated secret key. Note: caller must take care to `free()` the created key."]
1545    pub fn Hacl_RSAPSS_new_rsapss_load_skey(
1546        modBits: u32,
1547        eBits: u32,
1548        dBits: u32,
1549        nb: *mut u8,
1550        eb: *mut u8,
1551        db: *mut u8,
1552    ) -> *mut u64;
1553}
1554extern "C" {
1555    #[doc = "Sign a message `msg` and write the signature to `sgnt`.\n\n@param a Hash algorithm to use.\n@param modBits Count of bits in the modulus (`n`).\n@param eBits Count of bits in `e` value.\n@param dBits Count of bits in `d` value.\n@param nb Pointer to `ceil(modBits / 8)` bytes where the modulus (`n`) is read from.\n@param eb Pointer to `ceil(modBits / 8)` bytes where the `e` value is read from.\n@param db Pointer to `ceil(modBits / 8)` bytes where the `d` value is read from.\n@param saltLen Length of salt.\n@param salt Pointer to `saltLen` bytes where the salt is read from.\n@param msgLen Length of message.\n@param msg Pointer to `msgLen` bytes where the message is read from.\n@param sgnt Pointer to `ceil(modBits / 8)` bytes where the signature is written to.\n\n@return Returns true if and only if signing was successful."]
1556    pub fn Hacl_RSAPSS_rsapss_skey_sign(
1557        a: Spec_Hash_Definitions_hash_alg,
1558        modBits: u32,
1559        eBits: u32,
1560        dBits: u32,
1561        nb: *mut u8,
1562        eb: *mut u8,
1563        db: *mut u8,
1564        saltLen: u32,
1565        salt: *mut u8,
1566        msgLen: u32,
1567        msg: *mut u8,
1568        sgnt: *mut u8,
1569    ) -> bool;
1570}
1571extern "C" {
1572    #[doc = "Verify the signature `sgnt` of a message `msg`.\n\n@param a Hash algorithm to use.\n@param modBits Count of bits in the modulus (`n`).\n@param eBits Count of bits in `e` value.\n@param nb Pointer to `ceil(modBits / 8)` bytes where the modulus (`n`) is read from.\n@param eb Pointer to `ceil(modBits / 8)` bytes where the `e` value is read from.\n@param saltLen Length of salt.\n@param sgntLen Length of signature.\n@param sgnt Pointer to `sgntLen` bytes where the signature is read from.\n@param msgLen Length of message.\n@param msg Pointer to `msgLen` bytes where the message is read from.\n\n@return Returns true if and only if the signature is valid."]
1573    pub fn Hacl_RSAPSS_rsapss_pkey_verify(
1574        a: Spec_Hash_Definitions_hash_alg,
1575        modBits: u32,
1576        eBits: u32,
1577        nb: *mut u8,
1578        eb: *mut u8,
1579        saltLen: u32,
1580        sgntLen: u32,
1581        sgnt: *mut u8,
1582        msgLen: u32,
1583        msg: *mut u8,
1584    ) -> bool;
1585}
1586extern "C" {
1587    #[doc = "The mask generation function defined in the Public Key Cryptography Standard #1\n(https://www.ietf.org/rfc/rfc2437.txt Section 10.2.1)"]
1588    pub fn Hacl_RSAPSS_mgf_hash(
1589        a: Spec_Hash_Definitions_hash_alg,
1590        len: u32,
1591        mgfseed: *mut u8,
1592        maskLen: u32,
1593        res: *mut u8,
1594    );
1595}