hax_frontend_exporter/traits.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
use crate::prelude::*;
#[derive(AdtInto)]
#[args(<'tcx, S: UnderOwnerState<'tcx> >, from: rustc::PathChunk<'tcx>, state: S as s)]
#[derive_group(Serializers)]
#[derive(Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, JsonSchema)]
pub enum ImplExprPathChunk {
AssocItem {
item: AssocItem,
predicate: Binder<TraitPredicate>,
#[value(<_ as SInto<_, Clause>>::sinto(predicate, s).id)]
predicate_id: PredicateId,
/// The nth predicate returned by `tcx.item_bounds`.
index: usize,
},
Parent {
predicate: Binder<TraitPredicate>,
#[value(<_ as SInto<_, Clause>>::sinto(predicate, s).id)]
predicate_id: PredicateId,
/// The nth predicate returned by `tcx.predicates_of`.
index: usize,
},
}
/// The source of a particular trait implementation. Most often this is either `Concrete` for a
/// concrete `impl Trait for Type {}` item, or `LocalBound` for a context-bound `where T: Trait`.
#[derive(AdtInto)]
#[args(<'tcx, S: UnderOwnerState<'tcx> >, from: rustc::ImplExprAtom<'tcx>, state: S as s)]
#[derive_group(Serializers)]
#[derive(Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, JsonSchema)]
pub enum ImplExprAtom {
/// A concrete `impl Trait for Type {}` item.
Concrete {
#[from(def_id)]
id: GlobalIdent,
generics: Vec<GenericArg>,
},
/// A context-bound clause like `where T: Trait`.
LocalBound {
#[not_in_source]
#[value({
let Self::LocalBound { predicate, .. } = self else { unreachable!() };
predicate.sinto(s).id
})]
predicate_id: PredicateId,
/// The nth (non-self) predicate found for this item. We use predicates from
/// `tcx.predicates_defined_on` starting from the parentmost item. If the item is an opaque
/// type, we also append the predicates from `explicit_item_bounds` to this list.
index: usize,
r#trait: Binder<TraitRef>,
path: Vec<ImplExprPathChunk>,
},
/// The implicit `Self: Trait` clause present inside a `trait Trait {}` item.
// TODO: should we also get that clause for trait impls?
SelfImpl {
r#trait: Binder<TraitRef>,
path: Vec<ImplExprPathChunk>,
},
/// `dyn Trait` is a wrapped value with a virtual table for trait
/// `Trait`. In other words, a value `dyn Trait` is a dependent
/// triple that gathers a type τ, a value of type τ and an
/// instance of type `Trait`.
/// `dyn Trait` implements `Trait` using a built-in implementation; this refers to that
/// built-in implementation.
Dyn,
/// A built-in trait whose implementation is computed by the compiler, such as `Sync`.
Builtin { r#trait: Binder<TraitRef> },
/// An error happened while resolving traits.
Error(String),
}
/// An `ImplExpr` describes the full data of a trait implementation. Because of generics, this may
/// need to combine several concrete trait implementation items. For example, `((1u8, 2u8),
/// "hello").clone()` combines the generic implementation of `Clone` for `(A, B)` with the
/// concrete implementations for `u8` and `&str`, represented as a tree.
#[derive_group(Serializers)]
#[derive(Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, JsonSchema, AdtInto)]
#[args(<'tcx, S: UnderOwnerState<'tcx> >, from: rustc::ImplExpr<'tcx>, state: S as s)]
pub struct ImplExpr {
/// The trait this is an impl for.
pub r#trait: Binder<TraitRef>,
/// The kind of implemention of the root of the tree.
pub r#impl: ImplExprAtom,
/// A list of `ImplExpr`s required to fully specify the trait references in `impl`.
pub args: Vec<ImplExpr>,
}
#[cfg(feature = "rustc")]
pub mod rustc {
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::*;
/// This is the entrypoint of the solving.
impl<'tcx, S: crate::UnderOwnerState<'tcx>> crate::SInto<S, crate::ImplExpr>
for rustc_middle::ty::PolyTraitRef<'tcx>
{
#[tracing::instrument(level = "trace", skip(s))]
fn sinto(&self, s: &S) -> crate::ImplExpr {
tracing::trace!(
"Enters sinto ({})",
stringify!(rustc_middle::ty::PolyTraitRef<'tcx>)
);
use crate::ParamEnv;
let warn = |msg: &str| {
if !s.base().ty_alias_mode {
crate::warning!(s, "{}", msg)
}
};
match impl_expr(s.base().tcx, s.owner_id(), s.param_env(), self, &warn) {
Ok(x) => x.sinto(s),
Err(e) => crate::fatal!(s, "{}", e),
}
}
}
/// Items have various predicates in scope. `path_to` uses them as a starting point for trait
/// resolution. This tracks where each of them comes from.
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub enum BoundPredicateOrigin {
/// The `Self: Trait` predicate implicitly present within trait declarations (note: we
/// don't add it for trait implementations, should we?).
SelfPred,
/// The nth (non-self) predicate found for this item. We use predicates from
/// `tcx.predicates_defined_on` starting from the parentmost item. If the item is an opaque
/// type, we also append the predicates from `explicit_item_bounds` to this list.
Item(usize),
}
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct AnnotatedTraitPred<'tcx> {
pub origin: BoundPredicateOrigin,
pub clause: PolyTraitPredicate<'tcx>,
}
#[extension_traits::extension(pub trait TyCtxtExtPredOrAbove)]
impl<'tcx> TyCtxt<'tcx> {
/// Just like `TyCtxt::predicates_of`, but in the case of a trait or impl item or closures,
/// also includes the predicates defined on the parents. Also this returns the special
/// `Self` clause separately.
fn predicates_of_or_above(
self,
did: rustc_span::def_id::DefId,
) -> (
Vec<PolyTraitPredicate<'tcx>>,
Option<PolyTraitPredicate<'tcx>>,
) {
use DefKind::*;
let tcx = self;
let def_kind = tcx.def_kind(did);
let (mut predicates, mut self_pred) = match def_kind {
// These inherit some predicates from their parent.
AssocTy | AssocFn | AssocConst | Closure => {
let parent = tcx.parent(did);
self.predicates_of_or_above(parent)
}
_ => (vec![], None),
};
match def_kind {
// Don't list the predicates of traits, we already list the `Self` clause from
// which we can resolve anything needed.
Trait => {}
AssocConst
| AssocFn
| AssocTy
| Const
| Enum
| Fn
| ForeignTy
| Impl { .. }
| OpaqueTy
| Static { .. }
| Struct
| TraitAlias
| TyAlias
| Union => {
// Only these kinds may reasonably have predicates; we have to filter
// otherwise calling `predicates_defined_on` may ICE.
predicates.extend(
tcx.predicates_defined_on(did)
.predicates
.iter()
.filter_map(|(clause, _span)| clause.as_trait_clause()),
);
}
_ => {}
}
// Add some extra predicates that aren't in `predicates_defined_on`.
match def_kind {
OpaqueTy => {
// An opaque type (e.g. `impl Trait`) provides predicates by itself: we need to
// account for them.
// TODO: is this still useful? The test that used to require this doesn't anymore.
predicates.extend(
self.explicit_item_bounds(did)
.skip_binder() // Skips an `EarlyBinder`, likely for GATs
.iter()
.filter_map(|(clause, _span)| clause.as_trait_clause()),
)
}
Trait => {
// Add the special `Self: Trait` clause.
// Copied from the code of `tcx.predicates_of()`.
let self_clause: Clause<'_> = TraitRef::identity(tcx, did).upcast(tcx);
self_pred = Some(self_clause.as_trait_clause().unwrap());
}
_ => {}
}
(predicates, self_pred)
}
/// The predicates to use as a starting point for resolving trait references within this
/// item. This is just like `TyCtxt::predicates_of`, but in the case of a trait or impl
/// item or closures, also includes the predicates defined on the parents.
fn initial_search_predicates(
self,
did: rustc_span::def_id::DefId,
) -> Vec<AnnotatedTraitPred<'tcx>> {
let (predicates, self_pred) = self.predicates_of_or_above(did);
let mut predicates: Vec<_> = predicates
.into_iter()
.enumerate()
.map(|(i, clause)| AnnotatedTraitPred {
origin: BoundPredicateOrigin::Item(i),
clause,
})
.collect();
if let Some(clause) = self_pred {
predicates.push(AnnotatedTraitPred {
origin: BoundPredicateOrigin::SelfPred,
clause,
})
}
predicates
}
}
// FIXME: this has visibility `pub(crate)` only because of https://github.com/rust-lang/rust/issues/83049
pub(crate) mod search_clause {
use super::{AnnotatedTraitPred, Path, PathChunk, TyCtxtExtPredOrAbove};
use rustc_hir::def_id::DefId;
use rustc_middle::ty::*;
/// Custom equality on `Predicate`s.
///
/// Sometimes Rustc inserts extra generic arguments: I noticed
/// some `__H` second argument given to core::hash::Hash for
/// instance. `__H` seems to be inserted in [1]. Such extra
/// arguments seems to be ignored by `default_print_def_path` [2].
///
/// Hence, for now, equality is decided by comparing the debug
/// string representations of `Predicate`s.
///
/// Note there exist also predicates that are different,
/// `Eq`-wise, but whose `sinto` counterpart are equal.
///
/// TODO: figure out how to implement this function in a sane way.
///
/// [1]: https://github.com/rust-lang/rust/blob/b0889cb4ed0e6f3ed9f440180678872b02e7052c/compiler/rustc_builtin_macros/src/deriving/hash.rs#L20
/// [2]: https://github.com/rust-lang/rust/blob/b0889cb4ed0e6f3ed9f440180678872b02e7052c/compiler/rustc_middle/src/ty/print/mod.rs#L141
fn predicate_equality<'tcx>(
tcx: TyCtxt<'tcx>,
x: Predicate<'tcx>,
y: Predicate<'tcx>,
param_env: rustc_middle::ty::ParamEnv<'tcx>,
) -> bool {
let erase_and_norm =
|x| tcx.erase_regions(tcx.try_normalize_erasing_regions(param_env, x).unwrap_or(x));
// Lifetime and constantness are irrelevant when resolving instances
let x = erase_and_norm(x);
let y = erase_and_norm(y);
let sx = format!("{:?}", x.kind().skip_binder());
let sy = format!("{:?}", y.kind().skip_binder());
// const DEBUG: bool = false;
// if DEBUG && result {
// use crate::{Predicate, SInto};
// let xs: Predicate = x.sinto(s);
// let ys: Predicate = y.sinto(s);
// if x != y {
// eprintln!(
// "######################## predicate_equality ########################"
// );
// eprintln!("x={:#?}", x);
// eprintln!("y={:#?}", y);
// eprintln!(
// "######################## sinto ########################"
// );
// eprintln!("sinto(x)={:#?}", xs);
// eprintln!("sinto(y)={:#?}", ys);
// }
// }
sx == sy
}
#[extension_traits::extension(pub trait TraitPredicateExt)]
impl<'tcx> PolyTraitPredicate<'tcx> {
#[tracing::instrument(level = "trace", skip(tcx))]
fn parents_trait_predicates(self, tcx: TyCtxt<'tcx>) -> Vec<PolyTraitPredicate<'tcx>> {
let self_trait_ref = self.to_poly_trait_ref();
tcx.predicates_of(self.def_id())
.predicates
.iter()
// Substitute with the `self` args so that the clause makes sense in the
// outside context.
.map(|(clause, _span)| clause.instantiate_supertrait(tcx, self_trait_ref))
.filter_map(|pred| pred.as_trait_clause())
.collect()
}
#[tracing::instrument(level = "trace", skip(tcx))]
fn associated_items_trait_predicates(
self,
tcx: TyCtxt<'tcx>,
) -> Vec<(AssocItem, EarlyBinder<'tcx, Vec<PolyTraitPredicate<'tcx>>>)> {
let self_trait_ref = self.to_poly_trait_ref();
tcx.associated_items(self.def_id())
.in_definition_order()
.filter(|item| item.kind == AssocKind::Type)
.copied()
.map(|item| {
let bounds = tcx.item_bounds(item.def_id).map_bound(|clauses| {
clauses
.iter()
// Substitute with the `self` args so that the clause makes sense
// in the outside context.
.map(|clause| clause.instantiate_supertrait(tcx, self_trait_ref))
.filter_map(|pred| pred.as_trait_clause())
.collect()
});
(item, bounds)
})
.collect()
}
}
#[tracing::instrument(level = "trace", skip(tcx, param_env))]
pub(super) fn path_to<'tcx>(
tcx: TyCtxt<'tcx>,
owner_id: DefId,
param_env: rustc_middle::ty::ParamEnv<'tcx>,
target: PolyTraitRef<'tcx>,
) -> Option<(Path<'tcx>, AnnotatedTraitPred<'tcx>)> {
/// A candidate projects `self` along a path reaching some
/// predicate. A candidate is selected when its predicate
/// is the one expected, aka `target`.
#[derive(Debug)]
struct Candidate<'tcx> {
path: Path<'tcx>,
pred: PolyTraitPredicate<'tcx>,
origin: AnnotatedTraitPred<'tcx>,
}
use std::collections::VecDeque;
let mut candidates: VecDeque<Candidate<'tcx>> = tcx
.initial_search_predicates(owner_id)
.into_iter()
.map(|initial_clause| Candidate {
path: vec![],
pred: initial_clause.clause,
origin: initial_clause,
})
.collect();
let target_pred = target.upcast(tcx);
let mut seen = std::collections::HashSet::new();
while let Some(candidate) = candidates.pop_front() {
{
// If a predicate was already seen, we know it is
// not the one we are looking for: we skip it.
if seen.iter().any(|seen_pred: &PolyTraitPredicate<'tcx>| {
predicate_equality(
tcx,
candidate.pred.upcast(tcx),
(*seen_pred).upcast(tcx),
param_env,
)
}) {
continue;
}
seen.insert(candidate.pred);
}
// if the candidate equals the target, let's return its path
if predicate_equality(tcx, candidate.pred.upcast(tcx), target_pred, param_env) {
return Some((candidate.path, candidate.origin));
}
// otherwise, we add to the queue all paths reachable from the candidate
for (index, parent_pred) in candidate
.pred
.parents_trait_predicates(tcx)
.into_iter()
.enumerate()
{
let mut path = candidate.path.clone();
path.push(PathChunk::Parent {
predicate: parent_pred,
index,
});
candidates.push_back(Candidate {
pred: parent_pred,
path,
origin: candidate.origin,
});
}
for (item, binder) in candidate.pred.associated_items_trait_predicates(tcx) {
// This `skip_binder` is for an early binder and skips GAT parameters.
for (index, parent_pred) in binder.skip_binder().into_iter().enumerate() {
let mut path = candidate.path.clone();
path.push(PathChunk::AssocItem {
item,
predicate: parent_pred,
index,
});
candidates.push_back(Candidate {
pred: parent_pred,
path,
origin: candidate.origin,
});
}
}
}
None
}
}
#[derive(Debug, Clone)]
pub enum PathChunk<'tcx> {
AssocItem {
item: AssocItem,
predicate: PolyTraitPredicate<'tcx>,
/// The nth predicate returned by `tcx.item_bounds`.
index: usize,
},
Parent {
predicate: PolyTraitPredicate<'tcx>,
/// The nth predicate returned by `tcx.predicates_of`.
index: usize,
},
}
pub type Path<'tcx> = Vec<PathChunk<'tcx>>;
#[derive(Debug, Clone)]
pub enum ImplExprAtom<'tcx> {
/// A concrete `impl Trait for Type {}` item.
Concrete {
def_id: DefId,
generics: GenericArgsRef<'tcx>,
},
/// A context-bound clause like `where T: Trait`.
LocalBound {
predicate: Predicate<'tcx>,
/// The nth (non-self) predicate found for this item. We use predicates from
/// `tcx.predicates_defined_on` starting from the parentmost item. If the item is an
/// opaque type, we also append the predicates from `explicit_item_bounds` to this
/// list.
index: usize,
r#trait: PolyTraitRef<'tcx>,
path: Path<'tcx>,
},
/// The automatic clause `Self: Trait` present inside a `impl Trait for Type {}` item.
SelfImpl {
r#trait: PolyTraitRef<'tcx>,
path: Path<'tcx>,
},
/// `dyn Trait` is a wrapped value with a virtual table for trait
/// `Trait`. In other words, a value `dyn Trait` is a dependent
/// triple that gathers a type τ, a value of type τ and an
/// instance of type `Trait`.
/// `dyn Trait` implements `Trait` using a built-in implementation; this refers to that
/// built-in implementation.
Dyn,
/// A built-in trait whose implementation is computed by the compiler, such as `Sync`.
Builtin { r#trait: PolyTraitRef<'tcx> },
/// An error happened while resolving traits.
Error(String),
}
#[derive(Clone, Debug)]
pub struct ImplExpr<'tcx> {
/// The trait this is an impl for.
pub r#trait: PolyTraitRef<'tcx>,
/// The kind of implemention of the root of the tree.
pub r#impl: ImplExprAtom<'tcx>,
/// A list of `ImplExpr`s required to fully specify the trait references in `impl`.
pub args: Vec<Self>,
}
#[tracing::instrument(level = "trace", skip(tcx, warn))]
fn impl_exprs<'tcx>(
tcx: TyCtxt<'tcx>,
owner_id: DefId,
obligations: &[rustc_trait_selection::traits::Obligation<
'tcx,
rustc_middle::ty::Predicate<'tcx>,
>],
warn: &impl Fn(&str),
) -> Result<Vec<ImplExpr<'tcx>>, String> {
obligations
.iter()
.flat_map(|obligation| {
obligation.predicate.as_trait_clause().map(|trait_ref| {
impl_expr(
tcx,
owner_id,
obligation.param_env,
&trait_ref.map_bound(|p| p.trait_ref),
warn,
)
})
})
.collect()
}
#[tracing::instrument(level = "trace", skip(tcx, param_env, warn))]
fn impl_expr<'tcx>(
tcx: TyCtxt<'tcx>,
owner_id: DefId,
param_env: rustc_middle::ty::ParamEnv<'tcx>,
tref: &rustc_middle::ty::PolyTraitRef<'tcx>,
// Call back into hax-related code to display a nice warning.
warn: &impl Fn(&str),
) -> Result<ImplExpr<'tcx>, String> {
use rustc_trait_selection::traits::{
BuiltinImplSource, ImplSource, ImplSourceUserDefinedData,
};
let impl_source = copy_paste_from_rustc::codegen_select_candidate(tcx, (param_env, *tref));
let atom = match impl_source {
Ok(ImplSource::UserDefined(ImplSourceUserDefinedData {
impl_def_id,
args: generics,
..
})) => ImplExprAtom::Concrete {
def_id: impl_def_id,
generics,
},
Ok(ImplSource::Param(_)) => {
match search_clause::path_to(tcx, owner_id, param_env, *tref) {
Some((path, apred)) => {
let r#trait = apred.clause.to_poly_trait_ref();
match apred.origin {
BoundPredicateOrigin::SelfPred => {
ImplExprAtom::SelfImpl { r#trait, path }
}
BoundPredicateOrigin::Item(index) => ImplExprAtom::LocalBound {
predicate: apred.clause.upcast(tcx),
index,
r#trait,
path,
},
}
}
None => {
let msg = format!(
"Could not find a clause for `{tref:?}` in the item parameters"
);
warn(&msg);
ImplExprAtom::Error(msg)
}
}
}
Ok(ImplSource::Builtin(BuiltinImplSource::Object { .. }, _)) => ImplExprAtom::Dyn,
Ok(ImplSource::Builtin(_, _)) => ImplExprAtom::Builtin { r#trait: *tref },
Err(e) => {
let msg = format!(
"Could not find a clause for `{tref:?}` in the current context: `{e:?}`"
);
warn(&msg);
ImplExprAtom::Error(msg)
}
};
let nested = match &impl_source {
Ok(ImplSource::UserDefined(ImplSourceUserDefinedData { nested, .. })) => {
nested.as_slice()
}
Ok(ImplSource::Param(nested)) => nested.as_slice(),
// We ignore the contained obligations here. For example for `(): Send`, the
// obligations contained would be `[(): Send]`, which leads to an infinite loop. There
// might be important obligations here in other cases; we'll have to see if that comes
// up.
Ok(ImplSource::Builtin(_, _ignored)) => &[],
Err(_) => &[],
};
let nested = impl_exprs(tcx, owner_id, nested, warn)?;
Ok(ImplExpr {
r#impl: atom,
args: nested,
r#trait: *tref,
})
}
mod copy_paste_from_rustc {
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::traits::CodegenObligationError;
use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt};
use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
use rustc_trait_selection::traits::{
Obligation, ObligationCause, ObligationCtxt, ScrubbedTraitError, SelectionContext,
Unimplemented,
};
/// Attempts to resolve an obligation to an `ImplSource`. The result is
/// a shallow `ImplSource` resolution, meaning that we do not
/// (necessarily) resolve all nested obligations on the impl. Note
/// that type check should guarantee to us that all nested
/// obligations *could be* resolved if we wanted to.
///
/// This also expects that `trait_ref` is fully normalized.
pub fn codegen_select_candidate<'tcx>(
tcx: TyCtxt<'tcx>,
(param_env, trait_ref): (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>),
) -> Result<rustc_trait_selection::traits::Selection<'tcx>, CodegenObligationError>
{
let trait_ref = tcx
.try_normalize_erasing_regions(param_env, trait_ref)
.unwrap_or(trait_ref);
// Do the initial selection for the obligation. This yields the
// shallow result we are looking for -- that is, what specific impl.
let infcx = tcx.infer_ctxt().ignoring_regions().build();
let mut selcx = SelectionContext::new(&infcx);
let obligation_cause = ObligationCause::dummy();
let obligation = Obligation::new(tcx, obligation_cause, param_env, trait_ref);
let selection = match selcx.poly_select(&obligation) {
Ok(Some(selection)) => selection,
Ok(None) => return Err(CodegenObligationError::Ambiguity),
Err(Unimplemented) => return Err(CodegenObligationError::Unimplemented),
Err(e) => {
panic!(
"Encountered error `{:?}` selecting `{:?}` during codegen",
e, trait_ref
)
}
};
// Currently, we use a fulfillment context to completely resolve
// all nested obligations. This is because they can inform the
// inference of the impl's type parameters.
// FIXME(-Znext-solver): Doesn't need diagnostics if new solver.
let ocx = ObligationCtxt::new(&infcx);
let impl_source = selection.map(|obligation| {
ocx.register_obligation(obligation.clone());
obligation
});
// In principle, we only need to do this so long as `impl_source`
// contains unbound type parameters. It could be a slight
// optimization to stop iterating early.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
// `rustc_monomorphize::collector` assumes there are no type errors.
// Cycle errors are the only post-monomorphization errors possible; emit them now so
// `rustc_ty_utils::resolve_associated_item` doesn't return `None` post-monomorphization.
for err in errors {
if let ScrubbedTraitError::Cycle(cycle) = err {
infcx.err_ctxt().report_overflow_obligation_cycle(&cycle);
}
}
return Err(CodegenObligationError::FulfillmentError);
}
let impl_source = infcx.resolve_vars_if_possible(impl_source);
let impl_source = infcx.tcx.erase_regions(impl_source);
if impl_source.has_infer() {
// Unused lifetimes on an impl get replaced with inference vars, but never resolved,
// causing the return value of a query to contain inference vars. We do not have a concept
// for this and will in fact ICE in stable hashing of the return value. So bail out instead.
infcx.tcx.dcx().has_errors().unwrap();
return Err(CodegenObligationError::FulfillmentError);
}
Ok(impl_source)
}
}
}
#[cfg(feature = "rustc")]
impl<'tcx, S: UnderOwnerState<'tcx>> SInto<S, ImplExpr>
for rustc_middle::ty::PolyTraitPredicate<'tcx>
{
fn sinto(&self, s: &S) -> ImplExpr {
use rustc_middle::ty::ToPolyTraitRef;
self.to_poly_trait_ref().sinto(s)
}
}
/// Given a clause `clause` in the context of some impl block `impl_did`, susbts correctly `Self`
/// from `clause` and (1) derive a `Clause` and (2) resolve an `ImplExpr`.
#[cfg(feature = "rustc")]
pub fn super_clause_to_clause_and_impl_expr<'tcx, S: UnderOwnerState<'tcx>>(
s: &S,
impl_did: rustc_span::def_id::DefId,
clause: rustc_middle::ty::Clause<'tcx>,
span: rustc_span::Span,
) -> Option<(Clause, ImplExpr, Span)> {
let tcx = s.base().tcx;
let impl_trait_ref = tcx
.impl_trait_ref(impl_did)
.map(|binder| rustc_middle::ty::Binder::dummy(binder.instantiate_identity()))?;
let original_predicate_id = {
// We don't want the id of the substituted clause id, but the
// original clause id (with, i.e., `Self`)
let s = &with_owner_id(s.base(), (), (), impl_trait_ref.def_id());
clause.sinto(s).id
};
let new_clause = clause.instantiate_supertrait(tcx, impl_trait_ref);
let impl_expr = new_clause.as_predicate().as_trait_clause()?.sinto(s);
let mut new_clause_no_binder = new_clause.sinto(s);
new_clause_no_binder.id = original_predicate_id;
Some((new_clause_no_binder, impl_expr, span.sinto(s)))
}