hi_doc_jumprope/jumprope.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
// This is an implementation of a Rope (fancy string) based on a skip list. This
// implementation is a rust port of librope:
// https://github.com/josephg/librope
// It does not support wide characters.
// Unlike other rust rope implementations, this implementation should be very
// fast; but it manages that through heavy use of unsafe pointers and C-style
// dynamic arrays.
// use rope::*;
use std::str;
use std::cmp::min;
use std::fmt::{Debug, Display, Formatter};
use std::marker::PhantomData;
use std::ops::Range;
use std::ptr::null_mut;
use rand::prelude::*;
use rand::Rng;
use crate::fast_str_tools::*;
use crate::gapbuffer::GapBuffer;
// use crate::utils::*;
// use crate::params::*;
// Must be <= UINT16_MAX. Benchmarking says this is pretty close to optimal
// (tested on a mac using clang 4.0 and x86_64).
//const NODE_SIZE: usize = 136;
// The likelyhood (out of 256) a node will have height (n+1) instead of n
const BIAS: u8 = 65;
// const BIAS: u8 = XX_BIAS;
// The rope will become less efficient after the string is 2 ^ ROPE_MAX_HEIGHT nodes.
#[cfg(debug_assertions)]
pub(crate) const NODE_STR_SIZE: usize = 10;
#[cfg(not(debug_assertions))]
pub(crate) const NODE_STR_SIZE: usize = 392;
// pub(crate) const NODE_STR_SIZE: usize = XX_SIZE;
const MAX_HEIGHT: usize = 20;//NODE_STR_SIZE / mem::size_of::<SkipEntry>();
const MAX_HEIGHT_U8: u8 = MAX_HEIGHT as u8;
// Using StdRng notably increases wasm code size, providing some tiny extra protection against
// ddos attacks. See main module documentation for details.
#[cfg(feature = "ddos_protection")]
type RopeRng = StdRng;
#[cfg(not(feature = "ddos_protection"))]
type RopeRng = SmallRng;
// The node structure is designed in a very fancy way which would be more at home in C or something
// like that. The basic idea is that the node structure is fixed size in memory, but the proportion
// of that space taken up by characters and by the height are different depentant on a node's
// height.
#[repr(C)]
pub struct JumpRope {
rng: RopeRng,
// The total number of characters in the rope
// num_chars: usize,
// The total number of bytes which the characters in the rope take up
num_bytes: usize,
// The first node is inline. The height is the max height we've ever used in the rope + 1. The
// highest entry points "past the end" of the list, including the entire list length.
// TODO: Get rid of this and just rely on nexts out of here.
pub(super) head: Node,
// This is so dirty. The first node is embedded in JumpRope; but we need to allocate enough room
// for height to get arbitrarily large. I could insist on JumpRope always getting allocated on
// the heap, but for small strings its better that the first string is just on the stack. So
// this struct is repr(C) and I'm just padding out the struct directly.
// nexts: [SkipEntry; MAX_HEIGHT+1],
// The nexts array contains an extra entry at [head.height-1] the which points past the skip
// list. The size is the size of the entire list.
}
/// JumpRope is Send and Sync, because the only way to (safely) mutate the rope is via a &mut
/// reference.
unsafe impl Send for JumpRope {}
unsafe impl Sync for JumpRope {}
pub(super) struct Node {
// The first num_bytes of this store a valid utf8 string.
// str: [u8; NODE_STR_SIZE],
//
// // Number of bytes in str in use
// num_bytes: u8,
pub(super) str: GapBuffer<NODE_STR_SIZE>,
// Height of nexts array.
pub(super) height: u8,
// #[repr(align(std::align_of::<SkipEntry>()))]
// Only the first height items are used in this. Earlier versions made explicit allocator calls
// to reduce memory usage, but that makes miri quite sad, so I'm now just wasting some memory
// in each nexts[] array.
nexts: [SkipEntry; MAX_HEIGHT+1],
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub(super) struct SkipEntry {
pub(super) node: *mut Node,
/// The number of *characters* between the start of the current node and the start of the next
/// node.
pub(super) skip_chars: usize,
#[cfg(feature = "wchar_conversion")]
pub(super) skip_pairs: usize,
}
// Make sure nexts uses correct alignment. This should be guaranteed by repr(C)
// This test will fail if this ever stops being true.
#[test]
fn test_align() {
#[repr(C)] struct Check([SkipEntry; 0]);
assert!(std::mem::align_of::<Check>() >= std::mem::align_of::<SkipEntry>());
}
fn random_height(rng: &mut RopeRng) -> u8 {
let mut h: u8 = 1;
// TODO: This is using the thread_local rng, which is secure (?!). Check
// this is actually fast.
while h < MAX_HEIGHT_U8 && rng.gen::<u8>() < BIAS { h+=1; }
h
}
impl SkipEntry {
fn new() -> Self {
SkipEntry {
node: null_mut(),
skip_chars: 0,
#[cfg(feature = "wchar_conversion")]
skip_pairs: 0
}
}
}
impl Default for SkipEntry {
fn default() -> Self {
Self::new()
}
}
impl Node {
pub(super) fn next_ptr(&self) -> *const Self { // TODO: Pin.
self.first_next().node
}
// Do I need to be explicit about the lifetime of the references being tied
// to the lifetime of the node?
fn nexts(&self) -> &[SkipEntry] {
&self.nexts[..self.height as usize]
// unsafe {
// std::slice::from_raw_parts(self.nexts.as_ptr(), self.height as usize)
// }
}
fn nexts_mut(&mut self) -> &mut [SkipEntry] {
&mut self.nexts[..self.height as usize]
// unsafe {
// std::slice::from_raw_parts_mut(self.nexts.as_mut_ptr(), self.height as usize)
// }
}
fn new_with_height(height: u8, content: &str) -> Self {
Self {
str: GapBuffer::new_from_str(content),
height,
nexts: [SkipEntry::default(); MAX_HEIGHT+1]
}
}
// fn layout_with_height(height: u8) -> Layout {
// Layout::from_size_align(
// mem::size_of::<Node>() + mem::size_of::<SkipEntry>() * (height as usize),
// mem::align_of::<Node>()).unwrap()
// }
// fn alloc_with_height(height: u8, content: &str) -> *mut Node {
// //println!("height {} {}", height, max_height());
// #![allow(clippy::manual_range_contains)]
// assert!(height >= 1 && height <= MAX_HEIGHT_U8);
//
// unsafe {
// let node = alloc(Self::layout_with_height(height)) as *mut Node;
// (*node) = Node {
// str: GapBuffer::new_from_str(content),
// height,
// nexts: [SkipEntry::default(); MAX_HEIGHT+1],
// };
//
// for next in (*node).nexts_mut() {
// *next = SkipEntry::new();
// }
//
// node
// }
// }
// fn alloc(rng: &mut RopeRng, content: &str) -> *mut Node {
// Self::alloc_with_height(random_height(rng), content)
// }
// fn new_random_height(rng: &mut RopeRng, content: &str) -> Node {
// Self::new_with_height(random_height(rng), content)
// }
// unsafe fn free(p: *mut Node) {
// dealloc(p as *mut u8, Self::layout_with_height((*p).height));
// }
fn as_str_1(&self) -> &str {
self.str.start_as_str()
}
fn as_str_2(&self) -> &str {
self.str.end_as_str()
}
// The height is at least 1, so this is always valid.
pub(super) fn first_next(&self) -> &SkipEntry {
unsafe { &*self.nexts.as_ptr() }
}
fn first_next_mut(&mut self) -> &mut SkipEntry {
unsafe { &mut *self.nexts.as_mut_ptr() }
}
pub(super) fn num_chars(&self) -> usize {
self.first_next().skip_chars
}
#[cfg(feature = "wchar_conversion")]
pub(super) fn num_surrogate_pairs(&self) -> usize {
self.first_next().skip_pairs
}
}
/// Cursors are a bit weird, and they deserve an explanation.
///
/// Cursors express the location that an edit will happen. But because this is a skip list, when
/// items are added or removed we need to not just splice in / remove elements, but also update:
///
/// - The next pointers of *previous* items
/// - The index item. Each next pointer in a node names how many items are being "skipped over" by
/// that pointer. Those "skipped over" counts need to be updated based on the change.
///
/// Anyway, to do all of this, a cursor names the item which *points to* the current location.
///
/// A cursor also implicitly references a &mut JumpRope. So we store some "deep pointers" in to
/// the jumprope itself so the jumprope reference can stay unused while the cursor is live.
#[derive(Debug)]
pub(super) struct MutCursor<'a> {
inner: [SkipEntry; MAX_HEIGHT+1],
// head_nexts: &'a mut [SkipEntry; MAX_HEIGHT+1],
// head_height: &'a mut u8,
rng: &'a mut RopeRng,
num_bytes: &'a mut usize,
phantom: PhantomData<&'a mut JumpRope>,
}
impl<'a> MutCursor<'a> {
fn head_height_u8(&self) -> u8 {
unsafe {
(*self.inner[MAX_HEIGHT].node).height
}
}
fn head_height(&self) -> usize {
self.head_height_u8() as usize
}
fn set_height(&mut self, new_height: usize) {
unsafe {
(*self.inner[MAX_HEIGHT].node).height = new_height as u8
}
}
fn is_head(&self, ptr: *const Node) -> bool {
std::ptr::eq(ptr, self.inner[MAX_HEIGHT].node)
}
fn update_offsets(&mut self, height: usize, by_chars: isize, #[cfg(feature = "wchar_conversion")] by_pairs: isize) {
for i in 0..height {
unsafe {
// This is weird but makes sense when you realise the nexts in
// the cursor are pointers into the elements that have the
// actual pointers.
// Also adding a usize + isize is awful in rust :/
let entry = &mut (*self.inner[i].node).nexts[i];
entry.skip_chars = entry.skip_chars.wrapping_add(by_chars as usize);
#[cfg(feature = "wchar_conversion")] {
entry.skip_pairs = entry.skip_pairs.wrapping_add(by_pairs as usize);
}
}
}
}
fn move_within_node(&mut self, height: usize, by_chars: isize, #[cfg(feature = "wchar_conversion")] by_pairs: isize) {
for e in &mut self.inner[..height] {
e.skip_chars = e.skip_chars.wrapping_add(by_chars as usize);
#[cfg(feature = "wchar_conversion")] {
e.skip_pairs = e.skip_pairs.wrapping_add(by_pairs as usize);
}
}
}
pub(crate) fn here_ptr(&self) -> *mut Node {
self.inner[0].node
}
pub(crate) fn here_mut_ptr(&mut self) -> *mut Node {
self.inner[0].node
}
pub(crate) fn global_char_pos(&self) -> usize {
self.inner[self.head_height() - 1].skip_chars
}
#[cfg(feature = "wchar_conversion")]
pub(crate) fn wchar_pos(&self) -> usize {
let entry = &self.inner[self.head_height() - 1];
entry.skip_chars + entry.skip_pairs
}
pub(crate) fn local_char_pos(&self) -> usize {
self.inner[0].skip_chars
}
}
pub(crate) struct ReadCursor<'a> {
pub(super) node: &'a Node,
/// The number of *characters* between the start of the current node and the start of the next
/// node.
pub(super) offset_chars: usize,
// We can populate this, but we aren't using it anywhere.
// #[cfg(feature = "wchar_conversion")]
// pub(super) offset_pairs: usize,
// This is a bit gross, but its useful.
#[cfg(feature = "wchar_conversion")]
global_pairs: usize,
phantom: PhantomData<&'a JumpRope>
}
// impl ReadCursor {
//
// }
/// A rope is a "rich string" data structure for storing fancy strings, like the contents of a
/// text editor. See module level documentation for more information.
impl JumpRope {
fn new_with_rng(rng: RopeRng) -> Self {
JumpRope {
rng,
num_bytes: 0,
// nexts: [SkipEntry::new(); MAX_HEIGHT],
// We don't ever store characters in the head node, but the height
// here is the maximum height of the entire rope.
head: Node::new_with_height(1, ""),
// head: Node {
// str: GapBuffer::new(),
// height: 1,
// nexts: [],
// },
// nexts: [SkipEntry::new(); MAX_HEIGHT+1],
}
}
/// Creates and returns a new, empty rope.
///
/// In release mode this method is an alias for [`new_from_entropy`](Self::new_from_entropy).
/// But when compiled for testing (or in debug mode), we use a fixed seed in order to keep tests
/// fully deterministic.
///
/// Note using this method in wasm significantly increases bundle size. Use
/// [`new_with_seed`](Self::new_from_seed) instead.
pub fn new() -> Self {
if cfg!(test) || cfg!(debug_assertions) || !cfg!(feature = "ddos_protection") {
Self::new_from_seed(123)
} else {
Self::new_from_entropy()
}
}
/// Creates a new, empty rope seeded from an entropy source.
pub fn new_from_entropy() -> Self {
Self::new_with_rng(RopeRng::from_entropy())
}
/// Creates a new, empty rope using an RNG seeded from the passed u64 parameter.
///
/// The performance of this library with any particular data set will vary by a few percent
/// within a range based on the seed provided. It may be useful to fix the seed within tests or
/// benchmarks in order to make the program entirely deterministic, though bear in mind:
///
/// - Jumprope will always use a fixed seed
pub fn new_from_seed(seed: u64) -> Self {
Self::new_with_rng(RopeRng::seed_from_u64(seed))
}
fn new_from_str(s: &str) -> Self {
let mut rope = Self::new();
rope.insert(0, s);
rope
}
/// Return the length of the rope in unicode characters. Note this is not the same as either
/// the number of bytes the characters take, or the number of grapheme clusters in the string.
///
/// This method returns the length in constant-time (*O(1)*).
///
/// # Example
///
/// ```
/// # use hi_doc_jumprope::*;
/// assert_eq!("↯".len(), 3);
///
/// let rope = JumpRope::from("↯");
/// assert_eq!(rope.len_chars(), 1);
///
/// // The unicode snowman grapheme cluster needs 2 unicode characters.
/// let snowman = JumpRope::from("☃️");
/// assert_eq!(snowman.len_chars(), 2);
/// ```
pub fn len_chars(&self) -> usize {
self.head.nexts[self.head.height as usize - 1].skip_chars
}
/// String length in wide characters (as would be reported by javascript / C# / etc).
///
/// The byte length of this string when encoded to UTF16 will be exactly
/// `rope.len_wchars() * 2`.
#[cfg(feature = "wchar_conversion")]
pub fn len_wchars(&self) -> usize {
let SkipEntry {
skip_chars,
skip_pairs,
..
} = self.head.nexts[self.head.height as usize - 1];
skip_pairs + skip_chars
}
/// Does the rope only contain ASCII characters? (Unicode codepoints < 128). There are some
/// optimizations that can be done if this is true.
#[cfg(feature = "wchar_conversion")]
pub fn is_ascii_only(&self) -> bool {
self.head.nexts[self.head.height as usize - 1].skip_pairs == 0
}
/// Returns read cursor and global surrogate pair position.
///
/// Surrogate pairs are only counted if wchar_conversion feature enabled.
pub(crate) fn read_cursor_at_char(&self, char_pos: usize, stick_end: bool) -> ReadCursor<'_> {
assert!(char_pos <= self.len_chars());
let mut e: *const Node = &self.head;
let mut height = self.head.height as usize - 1;
let mut offset_chars = char_pos; // How many more chars to skip
#[cfg(feature = "wchar_conversion")]
let mut global_pairs = 0; // Current wchar pos from the start of the rope
loop { // while height >= 0
let en = unsafe { &*e };
let next = en.nexts[height];
let skip = next.skip_chars;
if offset_chars > skip || (!stick_end && offset_chars == skip && !next.node.is_null()) {
// Go right.
// debug_assert!(e == &self.head || !en.str.is_empty());
offset_chars -= skip;
#[cfg(feature = "wchar_conversion")] {
global_pairs += next.skip_pairs;
}
e = next.node;
assert!(!e.is_null(), "Internal constraint violation: Reached rope end prematurely");
} else {
// Go down.
if height != 0 {
height -= 1;
} else {
#[cfg(feature = "wchar_conversion")]
let offset_pairs = en.str.count_surrogate_pairs(offset_chars);
#[cfg(feature = "wchar_conversion")] {
global_pairs += offset_pairs;
}
return ReadCursor {
node: unsafe { &*e },
offset_chars,
// #[cfg(feature = "wchar_conversion")]
// offset_pairs,
phantom: PhantomData,
#[cfg(feature = "wchar_conversion")]
global_pairs,
}
}
}
};
}
pub(super) fn mut_cursor_at_char(&mut self, char_pos: usize, stick_end: bool) -> MutCursor<'_> {
assert!(char_pos <= self.len_chars());
let mut e: *mut Node = &mut self.head;
let head_height = self.head.height as usize;
let mut height = head_height - 1;
let mut offset = char_pos; // How many more chars to skip
#[cfg(feature = "wchar_conversion")]
let mut surrogate_pairs = 0; // Current wchar pos from the start of the rope
// It would be nice to pop this into a function, but miri gets confused if we pass the node
// pointer out of this method. So I'm keeping this inline.
let mut cursor = MutCursor {
inner: [SkipEntry {
node: e,
skip_chars: 0,
#[cfg(feature = "wchar_conversion")]
skip_pairs: 0
}; MAX_HEIGHT+1],
rng: &mut self.rng,
num_bytes: &mut self.num_bytes,
phantom: PhantomData,
};
loop { // while height >= 0
let en = unsafe { &*e };
let next = en.nexts[height];
let skip = next.skip_chars;
if offset > skip || (!stick_end && offset == skip && !next.node.is_null()) {
// Go right.
// This breaks miri for some reason.
// assert!(e == &mut self.head || !en.str.is_empty());
offset -= skip;
#[cfg(feature = "wchar_conversion")] {
surrogate_pairs += next.skip_pairs;
}
e = next.node;
assert!(!e.is_null(), "Internal constraint violation: Reached rope end prematurely");
} else {
// Record this and go down.
cursor.inner[height] = SkipEntry {
// node: e as *mut Node, // This is pretty gross
node: e,
skip_chars: offset,
#[cfg(feature = "wchar_conversion")]
skip_pairs: surrogate_pairs
};
if height != 0 {
height -= 1;
} else {
#[cfg(feature = "wchar_conversion")] {
// Add on the wchar length at the current node.
surrogate_pairs += en.str.count_surrogate_pairs(offset);
if surrogate_pairs > 0 {
for entry in &mut cursor.inner[0..head_height] {
entry.skip_pairs = surrogate_pairs - entry.skip_pairs;
}
}
}
break;
}
}
};
assert!(offset <= NODE_STR_SIZE);
cursor
}
#[cfg(feature = "wchar_conversion")]
pub(crate) fn count_chars_at_wchar(&self, wchar_pos: usize) -> usize {
assert!(wchar_pos <= self.len_wchars());
let mut height = self.head.height as usize - 1;
let mut e: *const Node = &self.head;
let mut offset = wchar_pos; // How many more chars to skip
let mut char_pos = 0; // Char pos from the start of the rope
loop {
let en = unsafe { &*e };
let next = en.nexts[height];
let skip = next.skip_chars + next.skip_pairs;
if offset > skip {
// Go right.
// assert!(e == &self.head || !en.str.is_empty());
offset -= skip;
char_pos += next.skip_chars;
e = next.node;
assert!(!e.is_null(), "Internal constraint violation: Reached rope end prematurely");
} else {
// Go down.
if height != 0 {
height -= 1;
} else {
char_pos += en.str.count_chars_in_wchars(offset);
return char_pos;
}
}
};
}
/// Create a cursor pointing wchar characters into the rope
#[cfg(feature = "wchar_conversion")]
pub(crate) fn mut_cursor_at_wchar(&mut self, wchar_pos: usize, stick_end: bool) -> MutCursor {
assert!(wchar_pos <= self.len_wchars());
let head_height = self.head.height as usize;
let mut e: *mut Node = &mut self.head;
let mut height = self.head.height as usize - 1;
let mut offset = wchar_pos; // How many more chars to skip
let mut char_pos = 0; // Char pos from the start of the rope
let mut cursor = MutCursor {
inner: [SkipEntry {
node: e,
skip_chars: 0,
#[cfg(feature = "wchar_conversion")]
skip_pairs: 0
}; MAX_HEIGHT+1],
rng: &mut self.rng,
num_bytes: &mut self.num_bytes,
phantom: PhantomData,
};
loop {
let en = unsafe { &*e };
let next = en.nexts[height];
let skip = next.skip_chars + next.skip_pairs;
if offset > skip || (!stick_end && offset == skip && !next.node.is_null()) {
// Go right.
// assert!(e == &self.head || !en.str.is_empty());
offset -= skip;
char_pos += next.skip_chars;
e = next.node;
assert!(!e.is_null(), "Internal constraint violation: Reached rope end prematurely");
} else {
// Record this and go down.
cursor.inner[height] = SkipEntry {
node: e,
skip_chars: char_pos,
skip_pairs: offset
};
if height != 0 {
height -= 1;
} else {
char_pos += en.str.count_chars_in_wchars(offset);
for entry in &mut cursor.inner[0..head_height] {
let skip_chars = char_pos - entry.skip_chars;
entry.skip_chars = skip_chars;
entry.skip_pairs -= skip_chars;
}
break;
}
}
};
assert!(offset <= NODE_STR_SIZE);
cursor
}
fn mut_cursor_at_start(&mut self) -> MutCursor<'_> {
MutCursor {
inner: [SkipEntry {
node: &mut self.head,
skip_chars: 0,
#[cfg(feature = "wchar_conversion")]
skip_pairs: 0
}; MAX_HEIGHT+1],
rng: &mut self.rng,
num_bytes: &mut self.num_bytes,
phantom: PhantomData,
}
}
fn mut_cursor_at_end(&mut self) -> MutCursor {
self.mut_cursor_at_char(self.len_chars(), true)
}
fn insert_node_at(cursor: &mut MutCursor, contents: &str, num_chars: usize, update_cursor: bool, #[cfg(feature = "wchar_conversion")] num_pairs: usize) {
// println!("Insert_node_at {} len {}", contents.len(), self.num_bytes);
// assert!(contents.len() < NODE_STR_SIZE);
debug_assert_eq!(count_chars(contents), num_chars);
#[cfg(feature = "wchar_conversion")] {
debug_assert_eq!(count_utf16_surrogates(contents), num_pairs);
}
debug_assert!(num_chars <= NODE_STR_SIZE);
// TODO: Pin this sucka.
// let new_node = Pin::new(Node::alloc());
// let new_node = Node::alloc(cursor.rng, contents);
let new_height = random_height(cursor.rng);
let new_node = Box::into_raw(Box::new(Node::new_with_height(new_height, contents)));
let new_height = new_height as usize;
// let new_height = unsafe { (*new_node).height as usize };
let mut head_height = cursor.head_height();
while head_height <= new_height {
// TODO: Why do we copy here? Explain it in a comment. This is
// currently lifted from the C code.
// cursor.head_nexts[head_height] = cursor.head_nexts[head_height - 1];
unsafe {
let head = &mut (*cursor.inner[head_height].node);
head.nexts[head_height] = head.nexts[head_height - 1];
}
cursor.inner[head_height] = cursor.inner[head_height - 1];
// *cursor.head_height += 1; // Ends up 1 more than the max node height.
head_height += 1;
cursor.set_height(head_height);
}
for i in 0..new_height {
let prev_skip = unsafe { &mut (*cursor.inner[i].node).nexts[i] };
let nexts = unsafe { &mut (*new_node).nexts };
nexts[i].node = prev_skip.node;
nexts[i].skip_chars = num_chars + prev_skip.skip_chars - cursor.inner[i].skip_chars;
prev_skip.node = new_node;
prev_skip.skip_chars = cursor.inner[i].skip_chars;
#[cfg(feature = "wchar_conversion")] {
nexts[i].skip_pairs = num_pairs + prev_skip.skip_pairs - cursor.inner[i].skip_pairs;
prev_skip.skip_pairs = cursor.inner[i].skip_pairs;
}
// & move the iterator to the end of the newly inserted node.
if update_cursor {
cursor.inner[i].node = new_node;
cursor.inner[i].skip_chars = num_chars;
#[cfg(feature = "wchar_conversion")] {
cursor.inner[i].skip_pairs = num_pairs;
}
}
}
for i in new_height..head_height {
// I don't know why miri needs me to use nexts[] rather than nexts_mut() here but ??.
unsafe {
(*cursor.inner[i].node).nexts[i].skip_chars += num_chars;
#[cfg(feature = "wchar_conversion")] {
(*cursor.inner[i].node).nexts[i].skip_pairs += num_pairs;
}
}
if update_cursor {
cursor.inner[i].skip_chars += num_chars;
#[cfg(feature = "wchar_conversion")] {
cursor.inner[i].skip_pairs += num_pairs;
}
}
}
// self.nexts[self.head.height as usize - 1].skip_chars += num_chars;
*cursor.num_bytes += contents.len();
}
fn insert_at_cursor(cursor: &mut MutCursor, contents: &str) {
if contents.is_empty() { return; }
// iter contains how far (in characters) into the current element to
// skip. Figure out how much that is in bytes.
let mut offset_bytes: usize = 0;
// The insertion offset into the destination node.
let offset_chars: usize = cursor.inner[0].skip_chars;
let head_height = cursor.head_height();
let mut e = cursor.here_mut_ptr();
// We might be able to insert the new data into the current node, depending on
// how big it is. We'll count the bytes, and also check that its valid utf8.
let num_inserted_bytes = contents.len();
let mut num_inserted_chars = count_chars(contents);
#[cfg(feature = "wchar_conversion")]
let mut num_inserted_pairs = if num_inserted_bytes != num_inserted_chars {
count_utf16_surrogates(contents)
} else { 0 };
// Adding this short circuit makes the code about 2% faster for 1% more code
unsafe {
if (*e).str.gap_start_chars as usize == offset_chars && (*e).str.gap_len as usize >= num_inserted_bytes {
// Short circuit. If we can just insert all the content right here in the gap, do so.
(*e).str.insert_in_gap(contents);
#[cfg(feature = "wchar_conversion")] {
cursor.update_offsets(head_height, num_inserted_chars as isize, num_inserted_pairs as isize);
cursor.move_within_node(head_height, num_inserted_chars as isize, num_inserted_pairs as isize);
}
#[cfg(not(feature = "wchar_conversion"))] {
cursor.update_offsets(head_height, num_inserted_chars as isize);
cursor.move_within_node(head_height, num_inserted_chars as isize);
}
*cursor.num_bytes += num_inserted_bytes;
return;
}
if offset_chars > 0 {
// Changing this to debug_assert reduces performance by a few % for some reason.
assert!(offset_chars <= (*e).nexts[0].skip_chars);
// This could be faster, but its not a big deal.
offset_bytes = (*e).str.count_bytes(offset_chars);
}
// Can we insert into the current node?
let current_len_bytes = (*e).str.len_bytes();
let mut insert_here = current_len_bytes + num_inserted_bytes <= NODE_STR_SIZE;
// If we can't insert here, see if we can move the cursor forward and insert into the
// subsequent node.
if !insert_here && offset_bytes == current_len_bytes {
// We can insert into the subsequent node if:
// - We can't insert into the current node
// - There _is_ a next node to insert into
// - The insert would be at the start of the next node
// - There's room in the next node
if let Some(next) = (*e).first_next_mut().node.as_mut() {
if next.str.len_bytes() + num_inserted_bytes <= NODE_STR_SIZE {
offset_bytes = 0;
// Could do this with slice::fill but this seems slightly faster.
for e in &mut cursor.inner[..next.height as usize] {
*e = SkipEntry {
node: next,
skip_chars: 0,
#[cfg(feature = "wchar_conversion")]
skip_pairs: 0
};
}
e = next;
insert_here = true;
}
}
}
if insert_here {
// First move the current bytes later on in the string.
let c = &mut (*e).str;
c.try_insert(offset_bytes, contents).unwrap();
*cursor.num_bytes += num_inserted_bytes;
// .... aaaand update all the offset amounts.
#[cfg(feature = "wchar_conversion")] {
cursor.update_offsets(head_height, num_inserted_chars as isize, num_inserted_pairs as isize);
cursor.move_within_node(head_height, num_inserted_chars as isize, num_inserted_pairs as isize);
}
#[cfg(not(feature = "wchar_conversion"))] {
cursor.update_offsets(head_height, num_inserted_chars as isize);
cursor.move_within_node(head_height, num_inserted_chars as isize);
}
} else {
// There isn't room. We'll need to add at least one new node to the rope.
// If we're not at the end of the current node, we'll need to remove
// the end of the current node's data and reinsert it later.
(*e).str.move_gap(offset_bytes);
let num_end_bytes = (*e).str.len_bytes() - offset_bytes;
let mut num_end_chars: usize = 0;
#[cfg(feature = "wchar_conversion")]
let mut num_end_pairs: usize = 0;
// let end_str = if num_end_bytes > 0 {
if num_end_bytes > 0 {
// We'll truncate the node, but leave the bytes themselves there (for later).
// It would also be correct (and slightly more space efficient) to pack some of the
// new string's characters into this node after trimming it.
num_end_chars = (*e).num_chars() - offset_chars;
#[cfg(feature = "wchar_conversion")] {
num_end_pairs = (*e).num_surrogate_pairs() - (*e).str.gap_start_surrogate_pairs as usize;
debug_assert_eq!(num_end_pairs, count_utf16_surrogates((*e).str.end_as_str()));
cursor.update_offsets(head_height, -(num_end_chars as isize), -(num_end_pairs as isize));
}
#[cfg(not(feature = "wchar_conversion"))]
cursor.update_offsets(head_height, -(num_end_chars as isize));
*cursor.num_bytes -= num_end_bytes;
}
// Now we insert new nodes containing the new character data. The
// data must be broken into pieces of with a maximum size of
// NODE_STR_SIZE. Node boundaries must not occur in the middle of a
// utf8 codepoint.
// let mut str_offset: usize = 0;
let mut remainder = contents;
// while !remainder.is_empty() {
loop {
// println!(". {}", remainder);
// Find the first index after STR_SIZE bytes
if remainder.len() <= NODE_STR_SIZE {
Self::insert_node_at(cursor, remainder, num_inserted_chars, true, #[cfg(feature = "wchar_conversion")] num_inserted_pairs);
break;
} else {
// Find a suitable cut point. We should take as many characters as we can fit in
// the node, without splitting any unicode codepoints.
let mut byte_pos = NODE_STR_SIZE;
loop { // Slide back to a character boundary.
let c = remainder.as_bytes()[byte_pos];
if c & 0b1100_0000 != 0b1000_0000 {
break;
}
byte_pos -= 1;
}
let slice = &remainder.as_bytes()[..byte_pos];
let char_pos = count_chars_in_bytes(slice);
num_inserted_chars -= char_pos;
#[cfg(feature = "wchar_conversion")]
let pairs = count_utf16_surrogates_in_bytes(slice);
#[cfg(feature = "wchar_conversion")] {
num_inserted_pairs -= pairs;
}
let (next, rem) = remainder.split_at(byte_pos);
assert!(!next.is_empty());
Self::insert_node_at(cursor, next, char_pos, true, #[cfg(feature = "wchar_conversion")] pairs);
remainder = rem;
}
}
if num_end_bytes > 0 {
let end_str = (*e).str.take_rest();
Self::insert_node_at(cursor, end_str, num_end_chars, false, #[cfg(feature = "wchar_conversion")] num_end_pairs);
}
// if let Some(end_str) = end_str {
// Self::insert_node_at(cursor, end_str, num_end_chars, false, #[cfg(feature = "wchar_conversion")] num_end_pairs);
// }
}
assert_ne!(cursor.local_char_pos(), 0);
}
}
fn del_at_cursor(cursor: &mut MutCursor, mut length: usize) {
if length == 0 { return; }
let mut offset_chars = cursor.local_char_pos();
let mut node = cursor.here_ptr();
unsafe {
while length > 0 {
{
let s = (*node).first_next();
if offset_chars == s.skip_chars {
// End of current node. Skip to the start of the next one.
node = s.node;
offset_chars = 0;
}
}
let num_chars = (*node).num_chars();
let removed = std::cmp::min(length, num_chars - offset_chars);
assert!(removed > 0);
// TODO: Figure out a better way to calculate this.
#[cfg(feature = "wchar_conversion")]
let removed_pairs = (*node).str.count_surrogate_pairs(offset_chars + removed)
- (*node).str.count_surrogate_pairs(offset_chars);
let height = (*node).height as usize;
if removed < num_chars || cursor.is_head(node) {
// Just trim the node down.
let s = &mut (*node).str;
let removed_bytes = s.remove_chars(offset_chars, removed);
*cursor.num_bytes -= removed_bytes;
for s in (*node).nexts_mut() {
s.skip_chars -= removed;
#[cfg(feature = "wchar_conversion")] {
s.skip_pairs -= removed_pairs;
}
}
} else {
// Remove the node from the skip list. This works because the cursor must be
// pointing from the previous element to the start of this element.
assert_ne!(cursor.inner[0].node, node);
for i in 0..(*node).height as usize {
let s = &mut (*cursor.inner[i].node).nexts_mut()[i];
s.node = (*node).nexts[i].node;
s.skip_chars += (*node).nexts[i].skip_chars - removed;
#[cfg(feature = "wchar_conversion")] {
s.skip_pairs += (*node).nexts[i].skip_pairs - removed_pairs;
}
}
*cursor.num_bytes -= (*node).str.len_bytes();
let next = (*node).first_next().node;
// Node::free(node);
drop(Box::from_raw(node));
node = next;
}
for i in height..cursor.head_height() {
let s = &mut (*cursor.inner[i].node).nexts[i];
s.skip_chars -= removed;
#[cfg(feature = "wchar_conversion")] {
s.skip_pairs -= removed_pairs;
}
}
length -= removed;
}
}
}
fn eq_str(&self, mut other: &str) -> bool {
if self.len_bytes() != other.len() { return false; }
for s in self.substrings() {
let (start, rem) = other.split_at(s.len());
if start != s { return false; }
other = rem;
}
true
}
}
impl Default for JumpRope {
fn default() -> Self {
Self::new()
}
}
impl Drop for JumpRope {
fn drop(&mut self) {
let mut node = self.head.first_next().node;
unsafe {
while !node.is_null() {
let next = (*node).first_next().node;
// Node::free(node);
drop(Box::from_raw(node));
node = next;
}
}
}
}
impl<S: AsRef<str>> From<S> for JumpRope {
fn from(str: S) -> Self {
JumpRope::new_from_str(str.as_ref())
}
}
impl PartialEq for JumpRope {
// This is quite complicated. It would be cleaner to just write a bytes
// iterator, then iterate over the bytes of both strings comparing along the
// way.
// However, this should be faster because it can memcmp().
// Another way to implement this would be to rewrite it as a comparison with
// an iterator over &str. Then the rope vs rope comparison would be trivial,
// but also we could add comparison functions with a single &str and stuff
// very easily.
fn eq(&self, other: &JumpRope) -> bool {
if self.num_bytes != other.num_bytes
|| self.len_chars() != other.len_chars() {
return false
}
let mut other_iter = other.substrings();
// let mut os = other_iter.next();
let mut os = "";
for mut s in self.substrings() {
// Walk s.len() bytes through the other rope
while !s.is_empty() {
if os.is_empty() {
os = other_iter.next().unwrap();
}
debug_assert!(!os.is_empty());
let amt = min(s.len(), os.len());
debug_assert!(amt > 0);
let (s_start, s_rem) = s.split_at(amt);
let (os_start, os_rem) = os.split_at(amt);
if s_start != os_start { return false; }
s = s_rem;
os = os_rem;
}
}
true
}
}
impl Eq for JumpRope {}
impl Debug for JumpRope {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_list()
.entries(self.substrings())
.finish()
}
}
impl Display for JumpRope {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
for s in self.substrings() {
f.write_str(s)?;
}
Ok(())
}
}
// I don't know why I need all three of these, but I do.
impl<T: AsRef<str>> PartialEq<T> for JumpRope {
fn eq(&self, other: &T) -> bool {
self.eq_str(other.as_ref())
}
}
// Needed for assert_eq!(&rope, "Hi there");
impl PartialEq<str> for JumpRope {
fn eq(&self, other: &str) -> bool {
self.eq_str(other)
}
}
// Needed for assert_eq!(&rope, String::from("Hi there"));
impl PartialEq<String> for &JumpRope {
fn eq(&self, other: &String) -> bool {
self.eq_str(other.as_str())
}
}
impl<'a> Extend<&'a str> for JumpRope {
fn extend<T: IntoIterator<Item = &'a str>>(&mut self, iter: T) {
let mut cursor = self.mut_cursor_at_end();
iter.into_iter().for_each(|s| {
Self::insert_at_cursor(&mut cursor, s);
});
}
}
impl Clone for JumpRope {
fn clone(&self) -> Self {
// This method could be a little bit more efficient, but I think improving clone()
// performance isn't worth the extra effort.
let mut r = JumpRope::new();
let mut cursor = r.mut_cursor_at_start();
for node in self.node_iter_at_start() {
JumpRope::insert_at_cursor(&mut cursor, node.as_str_1());
JumpRope::insert_at_cursor(&mut cursor, node.as_str_2());
}
r
}
}
impl JumpRope {
/// Insert new content into the rope. The content is inserted at the specified unicode character
/// offset, which is different from a byte offset for non-ASCII characters.
///
/// # Example
///
/// ```
/// # use hi_doc_jumprope::*;
/// let mut rope = JumpRope::from("--");
/// rope.insert(1, "hi there");
/// assert_eq!(rope.to_string(), "-hi there-");
/// ```
///
/// If the position names a location past the end of the rope, it is truncated.
pub fn insert(&mut self, mut pos: usize, contents: &str) {
// if cfg!(debug_assertions) { self.check(); }
if contents.is_empty() { return; }
pos = std::cmp::min(pos, self.len_chars());
let mut cursor = self.mut_cursor_at_char(pos, true);
Self::insert_at_cursor(&mut cursor, contents);
debug_assert_eq!(cursor.global_char_pos(), pos + count_chars(contents));
// dbg!(&cursor.0[..self.head.height as usize]);
}
/// Delete a span of unicode characters from the rope. The span is specified in unicode
/// characters, not bytes.
///
/// Any attempt to delete past the end of the rope will be silently ignored.
///
/// # Example
///
/// ```
/// # use hi_doc_jumprope::*;
/// let mut rope = JumpRope::from("Whoa dawg!");
/// rope.remove(4..9); // delete " dawg"
/// assert_eq!(rope.to_string(), "Whoa!");
/// ```
pub fn remove(&mut self, mut range: Range<usize>) {
// if cfg!(debug_assertions) { self.check(); }
range.end = range.end.min(self.len_chars());
if range.start >= range.end { return; }
// We need to stick_end so we can delete entries.
let mut cursor = self.mut_cursor_at_char(range.start, true);
Self::del_at_cursor(&mut cursor, range.end - range.start);
debug_assert_eq!(cursor.global_char_pos(), range.start);
}
/// Replace the specified range with new content. This is equivalent to calling
/// [`remove`](Self::remove) followed by [`insert`](Self::insert), but it is simpler and faster.
///
/// # Example
///
/// ```
/// # use hi_doc_jumprope::*;
/// let mut rope = JumpRope::from("Hi Mike!");
/// rope.replace(3..7, "Duane"); // replace "Mike" with "Duane"
/// assert_eq!(rope.to_string(), "Hi Duane!");
/// ```
pub fn replace(&mut self, range: Range<usize>, content: &str) {
let len = self.len_chars();
let pos = usize::min(range.start, len);
let del_len = usize::min(range.end, len) - pos;
let mut cursor = self.mut_cursor_at_char(pos, true);
if del_len > 0 {
Self::del_at_cursor(&mut cursor, del_len);
}
if !content.is_empty() {
Self::insert_at_cursor(&mut cursor, content);
}
debug_assert_eq!(cursor.global_char_pos(), pos + count_chars(content));
}
/// Get the number of bytes used for the UTF8 representation of the rope. This will always match
/// the .len() property of the equivalent String.
///
/// Note: This is only useful in specific situations - like preparing a byte buffer for saving
/// or sending over the internet. In many cases it is preferable to use
/// [`len_chars`](Self::len_chars).
///
/// # Example
///
/// ```
/// # use hi_doc_jumprope::*;
/// let str = "κόσμε"; // "Cosmos" in ancient greek
/// assert_eq!(str.len(), 11); // 11 bytes over the wire
///
/// let rope = JumpRope::from(str);
/// assert_eq!(rope.len_bytes(), str.len());
/// ```
pub fn len_bytes(&self) -> usize { self.num_bytes }
/// Returns `true` if the rope contains no elements.
pub fn is_empty(&self) -> bool { self.num_bytes == 0 }
pub fn check(&self) {
assert!(self.head.height >= 1);
assert!(self.head.height < MAX_HEIGHT_U8 + 1);
let skip_over = &self.head.nexts[self.head.height as usize - 1];
// println!("Skip over skip chars {}, num bytes {}", skip_over.skip_chars, self.num_bytes);
assert!(skip_over.skip_chars <= self.num_bytes as usize);
#[cfg(feature = "wchar_conversion")] {
assert!(skip_over.skip_pairs <= skip_over.skip_chars);
}
assert!(skip_over.node.is_null());
// The offsets store the total distance travelled since the start.
let mut iter = [SkipEntry::new(); MAX_HEIGHT];
for i in 0..self.head.height {
// Bleh.
iter[i as usize].node = &self.head as *const Node as *mut Node;
}
let mut num_bytes: usize = 0;
let mut num_chars = 0;
#[cfg(feature = "wchar_conversion")]
let mut num_pairs = 0;
for n in self.node_iter_at_start() {
// println!("visiting {:?}", n.as_str());
assert!(!n.str.is_empty() || std::ptr::eq(n, &self.head));
assert!(n.height <= MAX_HEIGHT_U8);
assert!(n.height >= 1);
n.str.check();
assert_eq!(count_chars(n.as_str_1()) + count_chars(n.as_str_2()), n.num_chars());
for (i, entry) in iter[0..n.height as usize].iter_mut().enumerate() {
assert_eq!(entry.node as *const Node, n as *const Node);
assert_eq!(entry.skip_chars, num_chars);
#[cfg(feature = "wchar_conversion")] {
assert_eq!(entry.skip_pairs, num_pairs);
}
// println!("replacing entry {:?} with {:?}", entry, n.nexts()[i].node);
entry.node = n.nexts[i].node;
entry.skip_chars += n.nexts[i].skip_chars;
#[cfg(feature = "wchar_conversion")] {
entry.skip_pairs += n.nexts[i].skip_pairs;
}
}
num_bytes += n.str.len_bytes();
num_chars += n.num_chars();
#[cfg(feature = "wchar_conversion")] {
assert_eq!(n.num_surrogate_pairs(), n.str.count_surrogate_pairs(n.num_chars()));
num_pairs += n.num_surrogate_pairs();
}
}
for entry in iter[0..self.head.height as usize].iter() {
// println!("{:?}", entry);
assert!(entry.node.is_null());
assert_eq!(entry.skip_chars, num_chars);
#[cfg(feature = "wchar_conversion")] {
assert_eq!(entry.skip_pairs, num_pairs);
}
}
// println!("self bytes: {}, count bytes {}", self.num_bytes, num_bytes);
assert_eq!(self.num_bytes, num_bytes);
assert_eq!(self.len_chars(), num_chars);
#[cfg(feature = "wchar_conversion")] {
assert_eq!(self.len_wchars(), num_chars + num_pairs);
}
}
/// This method counts the number of bytes of memory allocated in the rope. This is purely for
/// debugging.
///
/// Notes:
///
/// - This method (its existence, its signature and its return value) is not considered part of
/// the stable API provided by jumprope. This may disappear or change in point releases.
/// - This method walks the entire rope. It has time complexity O(n).
/// - If a rope is owned inside another structure, this method will double-count the bytes
/// stored in the rope's head.
pub fn mem_size(&self) -> usize {
let mut nodes = self.node_iter_at_start();
let mut size = 0;
// The first node is the head. Count the actual head size.
size += std::mem::size_of::<Self>();
nodes.next(); // And discard it from the iterator.
for _n in nodes {
// let layout = Node::layout_with_height(n.height);
// size += layout.size();
size += std::mem::size_of::<Node>();
}
size
}
#[allow(unused)]
// pub fn print(&self) {
pub(crate) fn print(&self) {
println!("chars: {}\tbytes: {}\theight: {}", self.len_chars(), self.num_bytes, self.head.height);
print!("HEAD:");
for s in self.head.nexts() {
print!(" |{} ", s.skip_chars);
#[cfg(feature = "wchar_conversion")] {
print!("({}) ", s.skip_pairs);
}
}
println!();
for (i, node) in self.node_iter_at_start().enumerate() {
print!("{}:", i);
for s in node.nexts() {
print!(" |{} ", s.skip_chars);
#[cfg(feature = "wchar_conversion")] {
print!("({}) ", s.skip_pairs);
}
}
println!(" : {:?}(s{}) + {:?}(s{})",
node.as_str_1(), count_utf16_surrogates(node.as_str_1()),
node.as_str_2(), count_utf16_surrogates(node.as_str_2())
);
}
}
}
/// These methods are only available if the `wchar_conversion` feature is enabled.
#[cfg_attr(doc_cfg, doc(cfg(feature = "wchar_conversion")))]
#[cfg(feature = "wchar_conversion")]
impl JumpRope {
/// Convert from a unicode character count to a wchar index, like what you'd use in Javascript,
/// Java or C#.
pub fn chars_to_wchars(&self, chars: usize) -> usize {
// IF the rope is ascii-only then chars_to_wchars is the identity function.
if self.is_ascii_only() {
chars
} else {
let cursor = self.read_cursor_at_char(chars, true);
cursor.global_pairs + chars
}
}
/// Convert a wchar index back to a unicode character count.
///
/// **NOTE:** This method's behaviour is undefined if the wchar offset is invalid. Eg, given a
/// rope with contents `𐆚` (a single character with wchar length 2), `wchars_to_chars(1)` is
/// undefined and may panic / change in future versions of diamond types.
pub fn wchars_to_chars(&self, wchars: usize) -> usize {
if self.is_ascii_only() {
wchars
} else {
self.count_chars_at_wchar(wchars)
}
}
/// Insert the given utf8 string into the rope at the specified wchar position.
/// This is compatible with NSString, Javascript, etc.
///
/// Returns the insertion position in characters.
///
/// **NOTE:** This method's behaviour is undefined if the wchar offset is invalid. Eg, given a
/// rope with contents `𐆚` (a single character with wchar length 2), `insert_at_wchar(1, ...)`
/// is undefined and may panic / change in future versions of diamond types.
pub fn insert_at_wchar(&mut self, mut pos_wchar: usize, contents: &str) -> usize {
pos_wchar = pos_wchar.min(self.len_wchars());
let mut cursor = self.mut_cursor_at_wchar(pos_wchar, true);
// dbg!(pos_wchar, &cursor.0[0..3]);
Self::insert_at_cursor(&mut cursor, contents);
debug_assert_eq!(
cursor.wchar_pos(),
pos_wchar + count_chars(contents) + count_utf16_surrogates(contents)
);
cursor.global_char_pos()
}
/// Remove items from the rope, specified by the passed range. The indexes are interpreted
/// as wchar offsets (like you'd get in javascript / C# / etc).
///
/// **NOTE:** This method's behaviour is undefined if the wchar offset is invalid. Eg, given a
/// rope with contents `𐆚` (a single character with wchar length 2), `remove_at_wchar(1..2)`
/// is undefined and may panic / change in future versions of diamond types.
pub fn remove_at_wchar(&mut self, mut range: Range<usize>) {
range.end = range.end.min(self.len_wchars());
if range.is_empty() { return; }
// Rather than making some fancy custom remove function, I'm just going to convert the
// removed range into a char range and delete that.
let char_end = self.wchars_to_chars(range.end);
// We need to stick_end so we can delete entries.
let mut cursor = self.mut_cursor_at_wchar(range.start, true);
let char_start = cursor.global_char_pos();
Self::del_at_cursor(&mut cursor, char_end - char_start);
debug_assert_eq!(cursor.wchar_pos(), range.start);
}
/// Replace the characters in the specified wchar range with content.
///
/// **NOTE:** This method's behaviour is undefined if the wchar offset is invalid. Eg, given a
/// rope with contents `𐆚` (a single character with wchar length 2),
/// `replace_at_wchar(1..2, ...)` is undefined and may panic / change in future versions of
/// diamond types.
pub fn replace_at_wchar(&mut self, range: Range<usize>, content: &str) {
// TODO: Optimize this. This method should work similarly to replace(), where we create
// a single cursor and use it in both contexts.
if !range.is_empty() {
self.remove_at_wchar(range.clone());
}
if !content.is_empty() {
self.insert_at_wchar(range.start, content);
}
}
}