1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! NSEC record types
use std::fmt;
#[cfg(feature = "serde-config")]
use serde::{Deserialize, Serialize};
use crate::error::*;
use crate::rr::type_bit_map::{decode_type_bit_maps, encode_type_bit_maps};
use crate::rr::{Name, RData, RecordData, RecordDataDecodable, RecordType};
use crate::serialize::binary::*;
use super::DNSSECRData;
/// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-4), DNSSEC Resource Records, March 2005
///
/// ```text
/// 4.1. NSEC RDATA Wire Format
///
/// The RDATA of the NSEC RR is as shown below:
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / Next Domain Name /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / Type Bit Maps /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// 4.1.3. Inclusion of Wildcard Names in NSEC RDATA
///
/// If a wildcard owner name appears in a zone, the wildcard label ("*")
/// is treated as a literal symbol and is treated the same as any other
/// owner name for the purposes of generating NSEC RRs. Wildcard owner
/// names appear in the Next Domain Name field without any wildcard
/// expansion. [RFC4035] describes the impact of wildcards on
/// authenticated denial of existence.
/// ```
#[cfg_attr(feature = "serde-config", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct NSEC {
next_domain_name: Name,
type_bit_maps: Vec<RecordType>,
}
impl NSEC {
/// Constructs a new NSEC RData, warning this won't guarantee that the NSEC covers itself
/// which it should at it's own name.
///
/// # Arguments
///
/// * `next_domain_name` - the name labels of the next ordered name in the zone
/// * `type_bit_maps` - a bit map of the types that exist at this name
///
/// # Returns
///
/// An NSEC RData for use in a Resource Record
pub fn new(next_domain_name: Name, type_bit_maps: Vec<RecordType>) -> Self {
Self {
next_domain_name,
type_bit_maps,
}
}
/// Constructs a new NSEC RData, this will add the NSEC itself as covered, generally
/// correct for NSEC records generated at their own name
///
/// # Arguments
///
/// * `next_domain_name` - the name labels of the next ordered name in the zone
/// * `type_bit_maps` - a bit map of the types that exist at this name
///
/// # Returns
///
/// An NSEC RData for use in a Resource Record
pub fn new_cover_self(next_domain_name: Name, mut type_bit_maps: Vec<RecordType>) -> Self {
type_bit_maps.push(RecordType::NSEC);
Self::new(next_domain_name, type_bit_maps)
}
/// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-4.1.1), DNSSEC Resource Records, March 2005
///
/// ```text
/// 4.1.1. The Next Domain Name Field
///
/// The Next Domain field contains the next owner name (in the canonical
/// ordering of the zone) that has authoritative data or contains a
/// delegation point NS RRset; see Section 6.1 for an explanation of
/// canonical ordering. The value of the Next Domain Name field in the
/// last NSEC record in the zone is the name of the zone apex (the owner
/// name of the zone's SOA RR). This indicates that the owner name of
/// the NSEC RR is the last name in the canonical ordering of the zone.
///
/// A sender MUST NOT use DNS name compression on the Next Domain Name
/// field when transmitting an NSEC RR.
///
/// Owner names of RRsets for which the given zone is not authoritative
/// (such as glue records) MUST NOT be listed in the Next Domain Name
/// unless at least one authoritative RRset exists at the same owner
/// name.
/// ```
pub fn next_domain_name(&self) -> &Name {
&self.next_domain_name
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-4.1.2)
///
/// ```text
/// 4.1.2. The Type Bit Maps Field
///
/// The Type Bit Maps field identifies the RRset types that exist at the
/// NSEC RR's owner name.
///
/// A zone MUST NOT include an NSEC RR for any domain name that only
/// holds glue records.
/// ```
pub fn type_bit_maps(&self) -> &[RecordType] {
&self.type_bit_maps
}
}
impl BinEncodable for NSEC {
/// [RFC 6840](https://tools.ietf.org/html/rfc6840#section-6)
///
/// ```text
/// 5.1. Errors in Canonical Form Type Code List
///
/// When canonicalizing DNS names (for both ordering and signing), DNS
/// names in the RDATA section of NSEC resource records are not converted
/// to lowercase. DNS names in the RDATA section of RRSIG resource
/// records are converted to lowercase.
/// ```
fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
encoder.with_canonical_names(|encoder| {
self.next_domain_name().emit(encoder)?;
encode_type_bit_maps(encoder, self.type_bit_maps())
})
}
}
impl<'r> RecordDataDecodable<'r> for NSEC {
fn read_data(decoder: &mut BinDecoder<'r>, length: Restrict<u16>) -> ProtoResult<Self> {
let start_idx = decoder.index();
let next_domain_name = Name::read(decoder)?;
let bit_map_len = length
.map(|u| u as usize)
.checked_sub(decoder.index() - start_idx)
.map_err(|_| ProtoError::from("invalid rdata length in NSEC"))?;
let record_types = decode_type_bit_maps(decoder, bit_map_len)?;
Ok(Self::new(next_domain_name, record_types))
}
}
impl RecordData for NSEC {
fn try_from_rdata(data: RData) -> Result<Self, RData> {
match data {
RData::DNSSEC(DNSSECRData::NSEC(csync)) => Ok(csync),
_ => Err(data),
}
}
fn try_borrow(data: &RData) -> Option<&Self> {
match data {
RData::DNSSEC(DNSSECRData::NSEC(csync)) => Some(csync),
_ => None,
}
}
fn record_type(&self) -> RecordType {
RecordType::NSEC
}
fn into_rdata(self) -> RData {
RData::DNSSEC(DNSSECRData::NSEC(self))
}
}
/// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-4.2), DNSSEC Resource Records, March 2005
///
/// ```text
/// 4.2. The NSEC RR Presentation Format
///
/// The presentation format of the RDATA portion is as follows:
///
/// The Next Domain Name field is represented as a domain name.
///
/// The Type Bit Maps field is represented as a sequence of RR type
/// mnemonics. When the mnemonic is not known, the TYPE representation
/// described in [RFC3597], Section 5, MUST be used.
///
/// 4.3. NSEC RR Example
///
/// The following NSEC RR identifies the RRsets associated with
/// alfa.example.com. and identifies the next authoritative name after
/// alfa.example.com.
///
/// alfa.example.com. 86400 IN NSEC host.example.com. (
/// A MX RRSIG NSEC TYPE1234 )
///
/// The first four text fields specify the name, TTL, Class, and RR type
/// (NSEC). The entry host.example.com. is the next authoritative name
/// after alfa.example.com. in canonical order. The A, MX, RRSIG, NSEC,
/// and TYPE1234 mnemonics indicate that there are A, MX, RRSIG, NSEC,
/// and TYPE1234 RRsets associated with the name alfa.example.com.
///
/// Assuming that the validator can authenticate this NSEC record, it
/// could be used to prove that beta.example.com does not exist, or to
/// prove that there is no AAAA record associated with alfa.example.com.
/// Authenticated denial of existence is discussed in [RFC4035].
/// ```
impl fmt::Display for NSEC {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "{}", self.next_domain_name)?;
for ty in &self.type_bit_maps {
write!(f, " {ty}")?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use super::*;
#[test]
fn test() {
use crate::rr::RecordType;
use std::str::FromStr;
let rdata = NSEC::new(
Name::from_str("www.example.com").unwrap(),
vec![
RecordType::A,
RecordType::AAAA,
RecordType::DS,
RecordType::RRSIG,
],
);
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
assert!(rdata.emit(&mut encoder).is_ok());
let bytes = encoder.into_bytes();
println!("bytes: {bytes:?}");
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let restrict = Restrict::new(bytes.len() as u16);
let read_rdata = NSEC::read_data(&mut decoder, restrict).expect("Decoding error");
assert_eq!(rdata, read_rdata);
}
}