1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! hash functions for DNSSEC operations
use crate::{
error::*,
rr::{dnssec::Algorithm, DNSClass, Name, Record, RecordType},
serialize::binary::{BinEncodable, BinEncoder, EncodeMode},
};
use super::rdata::{sig, RRSIG, SIG};
/// Data To Be Signed.
pub struct TBS(Vec<u8>);
impl<'a> From<&'a [u8]> for TBS {
fn from(slice: &'a [u8]) -> Self {
Self(slice.to_owned())
}
}
impl AsRef<[u8]> for TBS {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
/// Returns the to-be-signed serialization of the given message.
pub fn message_tbs<M: BinEncodable>(message: &M, pre_sig0: &SIG) -> ProtoResult<TBS> {
// TODO: should perform the serialization and sign block by block to reduce the max memory
// usage, though at 4k max, this is probably unnecessary... For AXFR and large zones, it's
// more important
let mut buf: Vec<u8> = Vec::with_capacity(512);
let mut buf2: Vec<u8> = Vec::with_capacity(512);
{
let mut encoder: BinEncoder<'_> = BinEncoder::with_mode(&mut buf, EncodeMode::Normal);
assert!(sig::emit_pre_sig(
&mut encoder,
pre_sig0.type_covered(),
pre_sig0.algorithm(),
pre_sig0.num_labels(),
pre_sig0.original_ttl(),
pre_sig0.sig_expiration(),
pre_sig0.sig_inception(),
pre_sig0.key_tag(),
pre_sig0.signer_name(),
)
.is_ok());
// need a separate encoder here, as the encoding references absolute positions
// inside the buffer. If the buffer already contains the sig0 RDATA, offsets
// are wrong and the signature won't match.
let mut encoder2: BinEncoder<'_> = BinEncoder::with_mode(&mut buf2, EncodeMode::Signing);
message.emit(&mut encoder2).unwrap(); // coding error if this panics (i think?)
}
buf.append(&mut buf2);
Ok(TBS(buf))
}
/// Returns the to-be-signed serialization of the given record set.
///
/// # Arguments
///
/// * `name` - RRset record name
/// * `dns_class` - DNSClass, i.e. IN, of the records
/// * `num_labels` - number of labels in the name, needed to deal with `*.example.com`
/// * `type_covered` - RecordType of the RRSet being hashed
/// * `algorithm` - The Algorithm type used for the hashing
/// * `original_ttl` - Original TTL is the TTL as specified in the SOA zones RRSet associated record
/// * `sig_expiration` - the epoch seconds of when this hashed signature will expire
/// * `key_inception` - the epoch seconds of when this hashed signature will be valid
/// * `signer_name` - label of the entity responsible for signing this hash
/// * `records` - RRSet to hash
///
/// # Returns
///
/// the binary hash of the specified RRSet and associated information
// FIXME: OMG, there are a ton of asserts in here...
#[allow(clippy::too_many_arguments)]
pub fn rrset_tbs(
name: &Name,
dns_class: DNSClass,
num_labels: u8,
type_covered: RecordType,
algorithm: Algorithm,
original_ttl: u32,
sig_expiration: u32,
sig_inception: u32,
key_tag: u16,
signer_name: &Name,
records: &[Record],
) -> ProtoResult<TBS> {
// TODO: change this to a BTreeSet so that it's preordered, no sort necessary
let mut rrset: Vec<&Record> = Vec::new();
// collect only the records for this rrset
for record in records {
if dns_class == record.dns_class()
&& type_covered == record.record_type()
&& name == record.name()
{
rrset.push(record);
}
}
// put records in canonical order
rrset.sort();
let name = determine_name(name, num_labels)?;
// TODO: rather than buffering here, use the Signer/Verifier? might mean fewer allocations...
let mut buf: Vec<u8> = Vec::new();
{
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut buf);
encoder.set_canonical_names(true);
// signed_data = RRSIG_RDATA | RR(1) | RR(2)... where
//
// "|" denotes concatenation
//
// RRSIG_RDATA is the wire format of the RRSIG RDATA fields
// with the Signature field excluded and the Signer's Name
// in canonical form.
assert!(sig::emit_pre_sig(
&mut encoder,
type_covered,
algorithm,
name.num_labels(),
original_ttl,
sig_expiration,
sig_inception,
key_tag,
signer_name,
)
.is_ok());
// construct the rrset signing data
for record in rrset {
// RR(i) = name | type | class | OrigTTL | RDATA length | RDATA
//
// name is calculated according to the function in the RFC 4035
assert!(name
.to_lowercase()
.emit_as_canonical(&mut encoder, true)
.is_ok());
//
// type is the RRset type and all RRs in the class
assert!(type_covered.emit(&mut encoder).is_ok());
//
// class is the RRset's class
assert!(dns_class.emit(&mut encoder).is_ok());
//
// OrigTTL is the value from the RRSIG Original TTL field
assert!(encoder.emit_u32(original_ttl).is_ok());
//
// RDATA length
// TODO: add support to the encoder to set a marker to go back and write the length
let mut rdata_buf = Vec::new();
{
let mut rdata_encoder = BinEncoder::new(&mut rdata_buf);
rdata_encoder.set_canonical_names(true);
if let Some(rdata) = record.data() {
assert!(rdata.emit(&mut rdata_encoder).is_ok());
}
}
assert!(encoder.emit_u16(rdata_buf.len() as u16).is_ok());
//
// All names in the RDATA field are in canonical form (set above)
assert!(encoder.emit_vec(&rdata_buf).is_ok());
}
}
Ok(TBS(buf))
}
/// Returns the to-be-signed serialization of the given record set using the information
/// provided from the RRSIG record.
///
/// # Arguments
///
/// * `rrsig` - SIG or RRSIG record, which was produced from the RRSet
/// * `records` - RRSet records to sign with the information in the `rrsig`
///
/// # Return
///
/// binary hash of the RRSet with the information from the RRSIG record
pub fn rrset_tbs_with_rrsig(rrsig: &Record<RRSIG>, records: &[Record]) -> ProtoResult<TBS> {
if let Some(sig) = rrsig.data() {
rrset_tbs_with_sig(rrsig.name(), rrsig.dns_class(), sig, records)
} else {
Err(format!("could not determine name from {}", rrsig.name()).into())
}
}
/// Returns the to-be-signed serialization of the given record set using the information
/// provided from the SIG record.
///
/// # Arguments
///
/// * `name` - labels of the record to sign
/// * `dns_class` - DNSClass of the RRSet, i.e. IN
/// * `sig` - SIG or RRSIG record, which was produced from the RRSet
/// * `records` - RRSet records to sign with the information in the `rrsig`
///
/// # Return
///
/// binary hash of the RRSet with the information from the RRSIG record
pub fn rrset_tbs_with_sig(
name: &Name,
dns_class: DNSClass,
sig: &SIG,
records: &[Record],
) -> ProtoResult<TBS> {
rrset_tbs(
name,
dns_class,
sig.num_labels(),
sig.type_covered(),
sig.algorithm(),
sig.original_ttl(),
sig.sig_expiration(),
sig.sig_inception(),
sig.key_tag(),
sig.signer_name(),
records,
)
}
/// [RFC 4035](https://tools.ietf.org/html/rfc4035), DNSSEC Protocol Modifications, March 2005
///
/// ```text
///
/// 5.3.2. Reconstructing the Signed Data
/// ...
/// To calculate the name:
/// let rrsig_labels = the value of the RRSIG Labels field
///
/// let fqdn = RRset's fully qualified domain name in
/// canonical form
///
/// let fqdn_labels = Label count of the fqdn above.
///
/// if rrsig_labels = fqdn_labels,
/// name = fqdn
///
/// if rrsig_labels < fqdn_labels,
/// name = "*." | the rightmost rrsig_label labels of the
/// fqdn
///
/// if rrsig_labels > fqdn_labels
/// the RRSIG RR did not pass the necessary validation
/// checks and MUST NOT be used to authenticate this
/// RRset.
///
/// The canonical forms for names and RRsets are defined in [RFC4034].
/// ```
pub fn determine_name(name: &Name, num_labels: u8) -> Result<Name, ProtoError> {
// To calculate the name:
// let rrsig_labels = the value of the RRSIG Labels field
//
// let fqdn = RRset's fully qualified domain name in
// canonical form
//
// let fqdn_labels = Label count of the fqdn above.
let fqdn_labels = name.num_labels();
// if rrsig_labels = fqdn_labels,
// name = fqdn
if fqdn_labels == num_labels {
return Ok(name.clone());
}
// if rrsig_labels < fqdn_labels,
// name = "*." | the rightmost rrsig_label labels of the
// fqdn
if num_labels < fqdn_labels {
let mut star_name: Name = Name::from_labels(vec![b"*" as &[u8]]).unwrap();
let rightmost = name.trim_to(num_labels as usize);
if !rightmost.is_root() {
star_name = star_name.append_name(&rightmost)?;
return Ok(star_name);
}
return Ok(star_name);
}
//
// if rrsig_labels > fqdn_labels
// the RRSIG RR did not pass the necessary validation
// checks and MUST NOT be used to authenticate this
// RRset.
Err(format!("could not determine name from {name}").into())
}