1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! The `DnssecDnsHandle` is used to validate all DNS responses for correct DNSSEC signatures.
use std::{clone::Clone, collections::HashSet, error::Error, pin::Pin, sync::Arc};
use futures_util::{
future::{self, Future, FutureExt, TryFutureExt},
stream::{self, Stream, TryStreamExt},
};
use tracing::{debug, trace};
use crate::{
error::{ProtoError, ProtoErrorKind, ProtoResult},
op::{Edns, OpCode, Query},
rr::{
dnssec::{
rdata::{DNSSECRData, DNSKEY, RRSIG},
Algorithm, SupportedAlgorithms, TrustAnchor,
},
rdata::opt::EdnsOption,
DNSClass, Name, RData, Record, RecordData, RecordType,
},
xfer::{dns_handle::DnsHandle, DnsRequest, DnsRequestOptions, DnsResponse, FirstAnswer},
};
#[cfg(feature = "dnssec")]
use crate::rr::dnssec::Verifier;
#[derive(Debug)]
struct Rrset {
pub(crate) name: Name,
pub(crate) record_type: RecordType,
pub(crate) record_class: DNSClass,
pub(crate) records: Vec<Record>,
}
/// Performs DNSSEC validation of all DNS responses from the wrapped DnsHandle
///
/// This wraps a DnsHandle, changing the implementation `send()` to validate all
/// message responses for Query operations. Update operation responses are not validated by
/// this process.
#[derive(Clone)]
#[must_use = "queries can only be sent through a DnsHandle"]
pub struct DnssecDnsHandle<H>
where
H: DnsHandle + Unpin + 'static,
{
handle: H,
trust_anchor: Arc<TrustAnchor>,
request_depth: usize,
minimum_key_len: usize,
minimum_algorithm: Algorithm, // used to prevent down grade attacks...
}
impl<H> DnssecDnsHandle<H>
where
H: DnsHandle + Unpin + 'static,
{
/// Create a new DnssecDnsHandle wrapping the specified handle.
///
/// This uses the compiled in TrustAnchor default trusted keys.
///
/// # Arguments
/// * `handle` - handle to use for all connections to a remote server.
pub fn new(handle: H) -> Self {
Self::with_trust_anchor(handle, TrustAnchor::default())
}
/// Create a new DnssecDnsHandle wrapping the specified handle.
///
/// This allows a custom TrustAnchor to be define.
///
/// # Arguments
/// * `handle` - handle to use for all connections to a remote server.
/// * `trust_anchor` - custom DNSKEYs that will be trusted, can be used to pin trusted keys.
pub fn with_trust_anchor(handle: H, trust_anchor: TrustAnchor) -> Self {
Self {
handle,
trust_anchor: Arc::new(trust_anchor),
request_depth: 0,
minimum_key_len: 0,
minimum_algorithm: Algorithm::RSASHA256,
}
}
/// An internal function used to clone the handle, but maintain some information back to the
/// original handle, such as the request_depth such that infinite recursion does
/// not occur.
fn clone_with_context(&self) -> Self {
Self {
handle: self.handle.clone(),
trust_anchor: Arc::clone(&self.trust_anchor),
request_depth: self.request_depth + 1,
minimum_key_len: self.minimum_key_len,
minimum_algorithm: self.minimum_algorithm,
}
}
}
impl<H> DnsHandle for DnssecDnsHandle<H>
where
H: DnsHandle + Sync + Unpin,
{
type Response = Pin<Box<dyn Stream<Item = Result<DnsResponse, Self::Error>> + Send>>;
type Error = <H as DnsHandle>::Error;
fn is_verifying_dnssec(&self) -> bool {
// This handler is always verifying...
true
}
fn send<R: Into<DnsRequest>>(&self, request: R) -> Self::Response {
let mut request = request.into();
// backstop
if self.request_depth > request.options().max_request_depth {
return Box::pin(stream::once(future::err(Self::Error::from(
ProtoError::from("exceeded max validation depth"),
))));
}
// dnssec only matters on queries.
if let OpCode::Query = request.op_code() {
// This will panic on no queries, that is a very odd type of request, isn't it?
// TODO: with mDNS there can be multiple queries
let query = request
.queries()
.first()
.cloned()
.expect("no queries in request");
let handle: Self = self.clone_with_context();
// TODO: cache response of the server about understood algorithms
#[cfg(feature = "dnssec")]
{
let edns = request.extensions_mut().get_or_insert_with(Edns::new);
edns.set_dnssec_ok(true);
// send along the algorithms which are supported by this handle
let mut algorithms = SupportedAlgorithms::new();
#[cfg(feature = "ring")]
{
algorithms.set(Algorithm::ED25519);
}
algorithms.set(Algorithm::ECDSAP256SHA256);
algorithms.set(Algorithm::ECDSAP384SHA384);
algorithms.set(Algorithm::RSASHA256);
let dau = EdnsOption::DAU(algorithms);
let dhu = EdnsOption::DHU(algorithms);
edns.options_mut().insert(dau);
edns.options_mut().insert(dhu);
}
request.set_authentic_data(true);
request.set_checking_disabled(false);
let dns_class = request
.queries()
.first()
.map_or(DNSClass::IN, Query::query_class);
let options = *request.options();
return Box::pin(
self.handle
.send(request)
.and_then(move |message_response| {
// group the record sets by name and type
// each rrset type needs to validated independently
debug!(
"validating message_response: {}, with {} trust_anchors",
message_response.id(),
handle.trust_anchor.len(),
);
verify_rrsets(handle.clone(), message_response, dns_class, options)
})
.and_then(move |verified_message| {
// at this point all of the message is verified.
// This is where NSEC (and possibly NSEC3) validation occurs
// As of now, only NSEC is supported.
if verified_message.answers().is_empty() {
// get SOA name
let soa_name = if let Some(soa_name) = verified_message
.name_servers()
.iter()
// there should only be one
.find(|rr| rr.record_type() == RecordType::SOA)
.map(Record::name)
{
soa_name
} else {
return future::err(Self::Error::from(ProtoError::from(
"could not validate negative response missing SOA",
)));
};
let nsecs = verified_message
.name_servers()
.iter()
.filter(|rr| is_dnssec(rr, RecordType::NSEC))
.collect::<Vec<_>>();
if !verify_nsec(&query, soa_name, nsecs.as_slice()) {
// TODO change this to remove the NSECs, like we do for the others?
return future::err(Self::Error::from(ProtoError::from(
"could not validate negative response with NSEC",
)));
}
}
future::ok(verified_message)
}),
);
}
Box::pin(self.handle.send(request))
}
}
/// this pulls all records returned in a Message response and returns a future which will
/// validate all of them.
#[allow(clippy::type_complexity)]
async fn verify_rrsets<H, E>(
handle: DnssecDnsHandle<H>,
message_result: DnsResponse,
dns_class: DNSClass,
options: DnsRequestOptions,
) -> Result<DnsResponse, E>
where
H: DnsHandle<Error = E> + Sync + Unpin,
E: From<ProtoError> + Error + Clone + Send + Unpin + 'static,
{
let mut rrset_types: HashSet<(Name, RecordType)> = HashSet::new();
for rrset in message_result
.answers()
.iter()
.chain(message_result.name_servers())
.filter(|rr| {
!is_dnssec(rr, RecordType::RRSIG) &&
// if we are at a depth greater than 1, we are only interested in proving evaluation chains
// this means that only DNSKEY and DS are interesting at that point.
// this protects against looping over things like NS records and DNSKEYs in responses.
// TODO: is there a cleaner way to prevent cycles in the evaluations?
(handle.request_depth <= 1 ||
is_dnssec(rr, RecordType::DNSKEY) ||
is_dnssec(rr, RecordType::DS))
})
.map(|rr| (rr.name().clone(), rr.record_type()))
{
rrset_types.insert(rrset);
}
// there was no data returned in that message
if rrset_types.is_empty() {
let mut message_result = message_result.into_message();
// there were no returned results, double check by dropping all the results
message_result.take_answers();
message_result.take_name_servers();
message_result.take_additionals();
return Err(E::from(ProtoError::from(ProtoErrorKind::Message(
"no results to verify",
))));
}
// collect all the rrsets to verify
// TODO: is there a way to get rid of this clone() safely?
let mut rrsets_to_verify = Vec::with_capacity(rrset_types.len());
for (name, record_type) in rrset_types {
// TODO: should we evaluate the different sections (answers and name_servers) separately?
let records: Vec<Record> = message_result
.answers()
.iter()
.chain(message_result.name_servers())
.chain(message_result.additionals())
.filter(|rr| rr.record_type() == record_type && rr.name() == &name)
.cloned()
.collect();
let rrsigs: Vec<Record<RRSIG>> = message_result
.answers()
.iter()
.chain(message_result.name_servers())
.chain(message_result.additionals())
.filter(|rr| is_dnssec(rr, RecordType::RRSIG))
.filter(|rr| {
if let Some(RData::DNSSEC(DNSSECRData::RRSIG(ref rrsig))) = rr.data() {
rrsig.type_covered() == record_type
} else {
false
}
})
.cloned()
.map(|rr| Record::<RRSIG>::try_from(rr).expect("the record type was checked above"))
.collect();
// if there is already an active validation going on, assume the other validation will
// complete properly or error if it is invalid
let rrset = Rrset {
name,
record_type,
record_class: dns_class,
records,
};
// TODO: support non-IN classes?
debug!(
"verifying: {}, record_type: {:?}, rrsigs: {}",
rrset.name,
record_type,
rrsigs.len()
);
rrsets_to_verify
.push(verify_rrset(handle.clone_with_context(), rrset, rrsigs, options).boxed());
}
// spawn a select_all over this vec, these are the individual RRSet validators
verify_all_rrsets(message_result, rrsets_to_verify).await
}
// TODO: is this method useful/necessary?
fn is_dnssec<D: RecordData>(rr: &Record<D>, dnssec_type: RecordType) -> bool {
rr.record_type().is_dnssec() && dnssec_type.is_dnssec() && rr.record_type() == dnssec_type
}
async fn verify_all_rrsets<F, E>(
message_result: DnsResponse,
rrsets: Vec<F>,
) -> Result<DnsResponse, E>
where
F: Future<Output = Result<Rrset, E>> + Send + Unpin,
E: From<ProtoError> + Error + Clone + Send + Unpin + 'static,
{
let mut verified_rrsets: HashSet<(Name, RecordType)> = HashSet::new();
let mut rrsets = future::select_all(rrsets);
let mut last_validation_err: Option<E> = None;
// loop through all the rrset evaluations, filter all the rrsets in the Message
// down to just the ones that were able to be validated
loop {
let (rrset, _, remaining) = rrsets.await;
match rrset {
Ok(rrset) => {
debug!(
"an rrset was verified: {}, {:?}",
rrset.name, rrset.record_type
);
verified_rrsets.insert((rrset.name, rrset.record_type));
}
// TODO: should we return the Message on errors? Allow the consumer to decide what to do
// on a validation failure?
// any error, is an error for all
Err(e) => {
if tracing::enabled!(tracing::Level::DEBUG) {
let mut query = message_result
.queries()
.iter()
.map(|q| q.to_string())
.fold(String::new(), |s, q| format!("{q},{s}"));
query.truncate(query.len() - 1);
debug!("an rrset failed to verify ({}): {:?}", query, e);
}
last_validation_err = Some(e);
}
};
if !remaining.is_empty() {
// continue the evaluation
rrsets = future::select_all(remaining);
} else {
break;
}
}
// check if any are valid, otherwise return whatever error caused it to fail
if verified_rrsets.is_empty() {
if let Some(last_validation_err) = last_validation_err {
return Err(last_validation_err);
}
}
// validated not none above...
let (mut message_result, message_buffer) = message_result.into_parts();
// take all the rrsets from the Message, filter down each set to the validated rrsets
// TODO: does the section in the message matter here?
// we could probably end up with record_types in any section.
// track the section in the rrset evaluation?
let answers = message_result
.take_answers()
.into_iter()
.chain(message_result.take_additionals().into_iter())
.filter(|record| verified_rrsets.contains(&(record.name().clone(), record.record_type())))
.collect::<Vec<Record>>();
let name_servers = message_result
.take_name_servers()
.into_iter()
.filter(|record| verified_rrsets.contains(&(record.name().clone(), record.record_type())))
.collect::<Vec<Record>>();
let additionals = message_result
.take_additionals()
.into_iter()
.filter(|record| verified_rrsets.contains(&(record.name().clone(), record.record_type())))
.collect::<Vec<Record>>();
// add the filtered records back to the message
message_result.insert_answers(answers);
message_result.insert_name_servers(name_servers);
message_result.insert_additionals(additionals);
// breaks out of the loop... and returns the filtered Message.
Ok(DnsResponse::new(message_result, message_buffer))
}
/// Generic entrypoint to verify any RRSET against the provided signatures.
///
/// Generally, the RRSET will be validated by `verify_default_rrset()`. There are additional
/// checks that happen after the RRSET is successfully validated. In the case of DNSKEYs this
/// triggers `verify_dnskey_rrset()`. If it's an NSEC record, then the NSEC record will be
/// validated to prove it's correctness. There is a special case for DNSKEY, where if the RRSET
/// is unsigned, `rrsigs` is empty, then an immediate `verify_dnskey_rrset()` is triggered. In
/// this case, it's possible the DNSKEY is a trust_anchor and is not self-signed.
async fn verify_rrset<H, E>(
handle: DnssecDnsHandle<H>,
rrset: Rrset,
rrsigs: Vec<Record<RRSIG>>,
options: DnsRequestOptions,
) -> Result<Rrset, E>
where
H: DnsHandle<Error = E> + Sync + Unpin,
E: From<ProtoError> + Error + Clone + Send + Unpin + 'static,
{
// Special case for unsigned DNSKEYs, it's valid for a DNSKEY to be bare in the zone if
// it's a trust_anchor, though some DNS servers choose to self-sign in this case,
// for self-signed KEYS they will drop through to the standard validation logic.
if let RecordType::DNSKEY = rrset.record_type {
if rrsigs.is_empty() {
debug!("unsigned key: {}, {:?}", rrset.name, rrset.record_type);
// TODO: validate that this DNSKEY is stronger than the one lower in the chain,
// also, set the min algorithm to this algorithm to prevent downgrade attacks.
return verify_dnskey_rrset(handle.clone_with_context(), rrset, options).await;
}
}
// standard validation path
let rrset = verify_default_rrset(&handle.clone_with_context(), rrset, rrsigs, options).await?;
// validation of DNSKEY records
match rrset.record_type {
RecordType::DNSKEY => verify_dnskey_rrset(handle, rrset, options).await,
_ => Ok(rrset),
}
}
/// Verifies a dnskey rrset
///
/// This first checks to see if the key is in the set of trust_anchors. If so then it's returned
/// as a success. Otherwise, a query is sent to get the DS record, and the DNSKEY is validated
/// against the DS record.
async fn verify_dnskey_rrset<H, E>(
handle: DnssecDnsHandle<H>,
rrset: Rrset,
options: DnsRequestOptions,
) -> Result<Rrset, E>
where
H: DnsHandle<Error = E> + Sync + Unpin,
E: From<ProtoError> + Error + Clone + Send + Unpin + 'static,
{
trace!(
"dnskey validation {}, record_type: {:?}",
rrset.name,
rrset.record_type
);
// check the DNSKEYS against the trust_anchor, if it's approved allow it.
{
let anchored_keys = rrset
.records
.iter()
.enumerate()
.filter(|&(_, rr)| is_dnssec(rr, RecordType::DNSKEY))
.filter_map(|(i, rr)| rr.data().map(|rr| (i, rr)))
.filter_map(|(i, rr)| DNSKEY::try_borrow(rr).map(|rr| (i, rr)))
.filter_map(|(i, rdata)| {
if handle
.trust_anchor
.contains_dnskey_bytes(rdata.public_key())
{
debug!(
"validated dnskey with trust_anchor: {}, {}",
rrset.name, rdata
);
Some(i)
} else {
None
}
})
.collect::<Vec<usize>>();
if !anchored_keys.is_empty() {
let mut rrset = rrset;
preserve(&mut rrset.records, anchored_keys);
return Ok(rrset);
}
}
// need to get DS records for each DNSKEY
let ds_message = handle
.lookup(Query::query(rrset.name.clone(), RecordType::DS), options)
.first_answer()
.await?;
let valid_keys = rrset
.records
.iter()
.enumerate()
.filter(|&(_, rr)| is_dnssec(rr, RecordType::DNSKEY))
.filter_map(|(i, rr)| {
if let Some(RData::DNSSEC(DNSSECRData::DNSKEY(ref rdata))) = rr.data() {
Some((i, rdata))
} else {
None
}
})
.filter(|&(_, key_rdata)| {
ds_message
.answers()
.iter()
.filter(|ds| is_dnssec(ds, RecordType::DS))
.filter_map(|ds| {
if let Some(RData::DNSSEC(DNSSECRData::DS(ref ds_rdata))) = ds.data() {
Some((ds.name(), ds_rdata))
} else {
None
}
})
// must be covered by at least one DS record
.any(|(ds_name, ds_rdata)| {
if ds_rdata.covers(&rrset.name, key_rdata).unwrap_or(false) {
debug!(
"validated dnskey ({}, {}) with {} {}",
rrset.name, key_rdata, ds_name, ds_rdata
);
true
} else {
false
}
})
})
.map(|(i, _)| i)
.collect::<Vec<usize>>();
if !valid_keys.is_empty() {
let mut rrset = rrset;
preserve(&mut rrset.records, valid_keys);
trace!("validated dnskey: {}", rrset.name);
Ok(rrset)
} else {
Err(E::from(ProtoError::from(ProtoErrorKind::Message(
"Could not validate all DNSKEYs",
))))
}
}
/// Preserves the specified indexes in vec, all others will be removed
///
/// # Arguments
///
/// * `vec` - vec to mutate
/// * `indexes` - ordered list of indexes to remove
fn preserve<T, I>(vec: &mut Vec<T>, indexes: I)
where
I: IntoIterator<Item = usize>,
<I as IntoIterator>::IntoIter: DoubleEndedIterator,
{
// this removes all indexes that were not part of the anchored keys
let mut indexes_iter = indexes.into_iter().rev();
let mut i = indexes_iter.next();
for j in (0..vec.len()).rev() {
// check the next index to preserve
if i.map_or(false, |i| i > j) {
i = indexes_iter.next();
}
// if the key is not in the set of anchored_keys, remove it
if i.map_or(true, |i| i != j) {
vec.remove(j);
}
}
}
#[test]
fn test_preserve() {
let mut vec = vec![1, 2, 3];
let indexes = vec![];
preserve(&mut vec, indexes);
assert_eq!(vec, vec![]);
let mut vec = vec![1, 2, 3];
let indexes = vec![0];
preserve(&mut vec, indexes);
assert_eq!(vec, vec![1]);
let mut vec = vec![1, 2, 3];
let indexes = vec![1];
preserve(&mut vec, indexes);
assert_eq!(vec, vec![2]);
let mut vec = vec![1, 2, 3];
let indexes = vec![2];
preserve(&mut vec, indexes);
assert_eq!(vec, vec![3]);
let mut vec = vec![1, 2, 3];
let indexes = vec![0, 2];
preserve(&mut vec, indexes);
assert_eq!(vec, vec![1, 3]);
let mut vec = vec![1, 2, 3];
let indexes = vec![0, 1, 2];
preserve(&mut vec, indexes);
assert_eq!(vec, vec![1, 2, 3]);
}
/// Verifies that a given RRSET is validly signed by any of the specified RRSIGs.
///
/// Invalid RRSIGs will be ignored. RRSIGs will only be validated against DNSKEYs which can
/// be validated through a chain back to the `trust_anchor`. As long as one RRSIG is valid,
/// then the RRSET will be valid.
#[allow(clippy::blocks_in_conditions)]
async fn verify_default_rrset<H, E>(
handle: &DnssecDnsHandle<H>,
rrset: Rrset,
rrsigs: Vec<Record<RRSIG>>,
options: DnsRequestOptions,
) -> Result<Rrset, E>
where
H: DnsHandle<Error = E> + Sync + Unpin,
E: From<ProtoError> + Error + Clone + Send + Unpin + 'static,
{
// the record set is going to be shared across a bunch of futures, Arc for that.
let rrset = Arc::new(rrset);
trace!(
"default validation {}, record_type: {:?}",
rrset.name,
rrset.record_type
);
// Special case for self-signed DNSKEYS, validate with itself...
if rrsigs
.iter()
.filter(|rrsig| is_dnssec(rrsig, RecordType::RRSIG))
.filter_map(|rrsig| rrsig.data())
.any(|rrsig| RecordType::DNSKEY == rrset.record_type && rrsig.signer_name() == &rrset.name)
{
// in this case it was looks like a self-signed key, first validate the signature
// then return rrset. Like the standard case below, the DNSKEY is validated
// after this function. This function is only responsible for validating the signature
// the DNSKey validation should come after, see verify_rrset().
return future::ready(
rrsigs
.into_iter()
// this filter is technically unnecessary, can probably remove it...
.filter(|rrsig| is_dnssec(rrsig, RecordType::RRSIG))
.filter_map(|rrsig| rrsig.into_data())
.filter_map(|sig| {
let rrset = Arc::clone(&rrset);
if rrset.records.iter().any(|r| {
if let Some(RData::DNSSEC(DNSSECRData::DNSKEY(ref dnskey))) = r.data() {
let dnskey_name = r.name();
verify_rrset_with_dnskey(dnskey_name, dnskey, &sig, &rrset).is_ok()
} else {
panic!("expected a DNSKEY here: {:?}", r.data());
}
}) {
Some(())
} else {
None
}
})
.next()
.ok_or_else(|| {
E::from(ProtoError::from(ProtoErrorKind::Message(
"self-signed dnskey is invalid",
)))
}),
)
.map_ok(move |_| Arc::try_unwrap(rrset).expect("unable to unwrap Arc"))
.await;
}
// we can validate with any of the rrsigs...
// i.e. the first that validates is good enough
// TODO: could there be a cert downgrade attack here with a MITM stripping stronger RRSIGs?
// we could check for the strongest RRSIG and only use that...
// though, since the entire package isn't signed any RRSIG could have been injected,
// right? meaning if there is an attack on any of the acceptable algorithms, we'd be
// susceptible until that algorithm is removed as an option.
// dns over TLS will mitigate this.
// TODO: strip RRSIGS to accepted algorithms and make algorithms configurable.
let verifications = rrsigs.into_iter()
// this filter is technically unnecessary, can probably remove it...
.filter(|rrsig| is_dnssec(rrsig, RecordType::RRSIG))
.filter_map(|rrsig|rrsig.into_data())
.map(|sig| {
let rrset = Arc::clone(&rrset);
let handle = handle.clone_with_context();
handle
.lookup(
Query::query(sig.signer_name().clone(), RecordType::DNSKEY),
options,
)
.first_answer()
.and_then(move |message|
// DNSKEYs are validated by the inner query
future::ready(message
.answers()
.iter()
.filter(|r| is_dnssec(r, RecordType::DNSKEY))
.filter_map(|r| r.data().map(|data| (r.name(), data)))
.filter_map(|(dnskey_name, data)|
DNSKEY::try_borrow(data).map(|data| (dnskey_name, data)))
.find(|(dnskey_name, dnskey)|
verify_rrset_with_dnskey(dnskey_name, dnskey, &sig, &rrset).is_ok()
)
.map(|_| ())
.ok_or_else(|| E::from(ProtoError::from(ProtoErrorKind::Message("validation failed")))))
)
})
.collect::<Vec<_>>();
// if there are no available verifications, then we are in a failed state.
if verifications.is_empty() {
return Err(E::from(ProtoError::from(
ProtoErrorKind::RrsigsNotPresent {
name: rrset.name.clone(),
record_type: rrset.record_type,
},
)));
}
// as long as any of the verifications is good, then the RRSET is valid.
let select = future::select_ok(verifications)
// getting here means at least one of the rrsigs succeeded...
.map_ok(move |((), rest)| {
drop(rest); // drop all others, should free up Arc
Arc::try_unwrap(rrset).expect("unable to unwrap Arc")
});
select.await
}
/// Verifies the given SIG of the RRSET with the DNSKEY.
#[cfg(feature = "dnssec")]
fn verify_rrset_with_dnskey(
dnskey_name: &Name,
dnskey: &DNSKEY,
sig: &RRSIG,
rrset: &Rrset,
) -> ProtoResult<()> {
if dnskey.revoke() {
debug!("revoked");
return Err(ProtoErrorKind::Message("revoked").into());
} // TODO: does this need to be validated? RFC 5011
if !dnskey.zone_key() {
return Err(ProtoErrorKind::Message("is not a zone key").into());
}
if dnskey.algorithm() != sig.algorithm() {
return Err(ProtoErrorKind::Message("mismatched algorithm").into());
}
dnskey
.verify_rrsig(&rrset.name, rrset.record_class, sig, &rrset.records)
.map(|r| {
debug!(
"validated ({}, {:?}) with ({}, {})",
rrset.name, rrset.record_type, dnskey_name, dnskey
);
r
})
.map_err(Into::into)
.map_err(|e| {
debug!(
"failed validation of ({}, {:?}) with ({}, {})",
rrset.name, rrset.record_type, dnskey_name, dnskey
);
e
})
}
/// Will always return an error. To enable record verification compile with the openssl feature.
#[cfg(not(feature = "dnssec"))]
fn verify_rrset_with_dnskey(_: &DNSKEY, _: &RRSIG, _: &Rrset) -> ProtoResult<()> {
Err(ProtoErrorKind::Message("openssl or ring feature(s) not enabled").into())
}
/// Verifies NSEC records
///
/// ```text
/// RFC 4035 DNSSEC Protocol Modifications March 2005
///
/// 5.4. Authenticated Denial of Existence
///
/// A resolver can use authenticated NSEC RRs to prove that an RRset is
/// not present in a signed zone. Security-aware name servers should
/// automatically include any necessary NSEC RRs for signed zones in
/// their responses to security-aware resolvers.
///
/// Denial of existence is determined by the following rules:
///
/// o If the requested RR name matches the owner name of an
/// authenticated NSEC RR, then the NSEC RR's type bit map field lists
/// all RR types present at that owner name, and a resolver can prove
/// that the requested RR type does not exist by checking for the RR
/// type in the bit map. If the number of labels in an authenticated
/// NSEC RR's owner name equals the Labels field of the covering RRSIG
/// RR, then the existence of the NSEC RR proves that wildcard
/// expansion could not have been used to match the request.
///
/// o If the requested RR name would appear after an authenticated NSEC
/// RR's owner name and before the name listed in that NSEC RR's Next
/// Domain Name field according to the canonical DNS name order
/// defined in [RFC4034], then no RRsets with the requested name exist
/// in the zone. However, it is possible that a wildcard could be
/// used to match the requested RR owner name and type, so proving
/// that the requested RRset does not exist also requires proving that
/// no possible wildcard RRset exists that could have been used to
/// generate a positive response.
///
/// In addition, security-aware resolvers MUST authenticate the NSEC
/// RRsets that comprise the non-existence proof as described in Section
/// 5.3.
///
/// To prove the non-existence of an RRset, the resolver must be able to
/// verify both that the queried RRset does not exist and that no
/// relevant wildcard RRset exists. Proving this may require more than
/// one NSEC RRset from the zone. If the complete set of necessary NSEC
/// RRsets is not present in a response (perhaps due to message
/// truncation), then a security-aware resolver MUST resend the query in
/// order to attempt to obtain the full collection of NSEC RRs necessary
/// to verify the non-existence of the requested RRset. As with all DNS
/// operations, however, the resolver MUST bound the work it puts into
/// answering any particular query.
///
/// Since a validated NSEC RR proves the existence of both itself and its
/// corresponding RRSIG RR, a validator MUST ignore the settings of the
/// NSEC and RRSIG bits in an NSEC RR.
/// ```
#[allow(clippy::blocks_in_conditions)]
#[doc(hidden)]
pub fn verify_nsec(query: &Query, soa_name: &Name, nsecs: &[&Record]) -> bool {
// TODO: consider converting this to Result, and giving explicit reason for the failure
// first look for a record with the same name
// if they are, then the query_type should not exist in the NSEC record.
// if we got an NSEC record of the same name, but it is listed in the NSEC types,
// WTF? is that bad server, bad record
if let Some(nsec) = nsecs.iter().find(|nsec| query.name() == nsec.name()) {
return nsec
.data()
.and_then(RData::as_dnssec)
.and_then(DNSSECRData::as_nsec)
.map_or(false, |rdata| {
// this should not be in the covered list
!rdata.type_bit_maps().contains(&query.query_type())
});
}
let verify_nsec_coverage = |name: &Name| -> bool {
nsecs.iter().any(|nsec| {
// the query name must be greater than nsec's label (or equal in the case of wildcard)
name >= nsec.name() && {
nsec.data()
.and_then(RData::as_dnssec)
.and_then(DNSSECRData::as_nsec)
.map_or(false, |rdata| {
// the query name is less than the next name
// or this record wraps the end, i.e. is the last record
name < rdata.next_domain_name() || rdata.next_domain_name() < nsec.name()
})
}
})
};
if !verify_nsec_coverage(query.name()) {
// continue to validate there is no wildcard
return false;
}
// validate ANY or *.domain record existence
// we need the wildcard proof, but make sure that it's still part of the zone.
let wildcard = query.name().base_name();
let wildcard = if soa_name.zone_of(&wildcard) {
wildcard
} else {
soa_name.clone()
};
// don't need to validate the same name again
if wildcard == *query.name() {
// this was validated by the nsec coverage over the query.name()
true
} else {
// this is the final check, return it's value
// if there is wildcard coverage, we're good.
verify_nsec_coverage(&wildcard)
}
}