1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#[cfg(not(feature = "dnssec-openssl"))]
use std::marker::PhantomData;
#[cfg(feature = "dnssec-openssl")]
use openssl::bn::BigNumContext;
#[cfg(feature = "dnssec-openssl")]
use openssl::ec::{EcGroup, EcKey, PointConversionForm};
#[cfg(feature = "dnssec-openssl")]
use openssl::nid::Nid;
#[cfg(feature = "dnssec-openssl")]
use openssl::pkey::PKey;
#[cfg(feature = "dnssec-openssl")]
use openssl::rsa::Rsa as OpenSslRsa;
#[cfg(feature = "dnssec-openssl")]
use openssl::sign::Signer;
#[allow(deprecated)]
use crate::rr::dnssec::rdata::key::{KeyTrust, Protocol, UpdateScope};
#[cfg(feature = "dnssec-ring")]
use ring::{
rand,
signature::{
EcdsaKeyPair, Ed25519KeyPair, KeyPair as RingKeyPair, ECDSA_P256_SHA256_FIXED_SIGNING,
ECDSA_P384_SHA384_FIXED_SIGNING,
},
};
use crate::error::*;
use crate::rr::dnssec::rdata::key::KeyUsage;
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
use crate::rr::dnssec::rdata::DS;
use crate::rr::dnssec::rdata::{DNSKEY, KEY};
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
use crate::rr::dnssec::DigestType;
use crate::rr::dnssec::{Algorithm, PublicKeyBuf};
use crate::rr::dnssec::{HasPrivate, HasPublic, Private, TBS};
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
use crate::rr::Name;
/// A public and private key pair, the private portion is not required.
///
/// This supports all the various public/private keys which Hickory DNS is capable of using. Given
/// differing features, some key types may not be available. The `openssl` feature will enable RSA and EC
/// (P256 and P384). The `ring` feature enables ED25519, in the future, Ring will also be used for other keys.
#[allow(clippy::large_enum_variant)]
pub enum KeyPair<K> {
/// RSA keypair, supported by OpenSSL
#[cfg(feature = "dnssec-openssl")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-openssl")))]
RSA(PKey<K>),
/// Elliptic curve keypair, supported by OpenSSL
#[cfg(feature = "dnssec-openssl")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-openssl")))]
EC(PKey<K>),
#[cfg(not(feature = "dnssec-openssl"))]
#[doc(hidden)]
Phantom(PhantomData<K>),
/// *ring* ECDSA keypair
#[cfg(feature = "dnssec-ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-ring")))]
ECDSA(EcdsaKeyPair),
/// ED25519 encryption and hash defined keypair
#[cfg(feature = "dnssec-ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-ring")))]
ED25519(Ed25519KeyPair),
}
impl<K> KeyPair<K> {
/// Creates an RSA type keypair.
#[cfg(feature = "dnssec-openssl")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-openssl")))]
pub fn from_rsa(rsa: OpenSslRsa<K>) -> DnsSecResult<Self> {
PKey::from_rsa(rsa).map(Self::RSA).map_err(Into::into)
}
/// Given a known pkey of an RSA key, return the wrapped keypair
#[cfg(feature = "dnssec-openssl")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-openssl")))]
pub fn from_rsa_pkey(pkey: PKey<K>) -> Self {
Self::RSA(pkey)
}
/// Creates an EC, elliptic curve, type keypair, only P256 or P384 are supported.
#[cfg(feature = "dnssec-openssl")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-openssl")))]
pub fn from_ec_key(ec_key: EcKey<K>) -> DnsSecResult<Self> {
PKey::from_ec_key(ec_key).map(Self::EC).map_err(Into::into)
}
/// Given a known pkey of an EC key, return the wrapped keypair
#[cfg(feature = "dnssec-openssl")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-openssl")))]
pub fn from_ec_pkey(pkey: PKey<K>) -> Self {
Self::EC(pkey)
}
/// Creates an ECDSA keypair with ring.
#[cfg(feature = "dnssec-ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-ring")))]
pub fn from_ecdsa(ec_key: EcdsaKeyPair) -> Self {
Self::ECDSA(ec_key)
}
/// Creates an ED25519 keypair.
#[cfg(feature = "dnssec-ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-ring")))]
pub fn from_ed25519(ed_key: Ed25519KeyPair) -> Self {
Self::ED25519(ed_key)
}
}
impl<K: HasPublic> KeyPair<K> {
/// Converts this keypair to the DNS binary form of the public_key.
///
/// If there is a private key associated with this keypair, it will not be included in this
/// format. Only the public key material will be included.
pub fn to_public_bytes(&self) -> DnsSecResult<Vec<u8>> {
#[allow(unreachable_patterns)]
match *self {
// see from_vec() RSA sections for reference
#[cfg(feature = "dnssec-openssl")]
Self::RSA(ref pkey) => {
let mut bytes: Vec<u8> = Vec::new();
// TODO: make these expects a try! and Err()
let rsa: OpenSslRsa<K> = pkey
.rsa()
.expect("pkey should have been initialized with RSA");
// this is to get us access to the exponent and the modulus
let e: Vec<u8> = rsa.e().to_vec();
let n: Vec<u8> = rsa.n().to_vec();
if e.len() > 255 {
bytes.push(0);
bytes.push((e.len() >> 8) as u8);
}
bytes.push(e.len() as u8);
bytes.extend_from_slice(&e);
bytes.extend_from_slice(&n);
Ok(bytes)
}
// see from_vec() ECDSA sections for reference
#[cfg(feature = "dnssec-openssl")]
Self::EC(ref pkey) => {
// TODO: make these expects a try! and Err()
let ec_key: EcKey<K> = pkey
.ec_key()
.expect("pkey should have been initialized with EC");
let group = ec_key.group();
let point = ec_key.public_key();
let mut bytes = BigNumContext::new()
.and_then(|mut ctx| {
point.to_bytes(group, PointConversionForm::UNCOMPRESSED, &mut ctx)
})
.map_err(DnsSecError::from)?;
// Remove OpenSSL header byte
bytes.remove(0);
Ok(bytes)
}
#[cfg(feature = "dnssec-ring")]
Self::ECDSA(ref ec_key) => {
let mut bytes: Vec<u8> = ec_key.public_key().as_ref().to_vec();
bytes.remove(0);
Ok(bytes)
}
#[cfg(feature = "dnssec-ring")]
Self::ED25519(ref ed_key) => Ok(ed_key.public_key().as_ref().to_vec()),
#[cfg(not(feature = "dnssec-openssl"))]
Self::Phantom(..) => panic!("Phantom disallowed"),
#[cfg(not(any(feature = "dnssec-openssl", feature = "dnssec-ring")))]
_ => Err(DnsSecErrorKind::Message("openssl or ring feature(s) not enabled").into()),
}
}
/// Returns a PublicKeyBuf of the KeyPair
pub fn to_public_key(&self) -> DnsSecResult<PublicKeyBuf> {
Ok(PublicKeyBuf::new(self.to_public_bytes()?))
}
/// The key tag is calculated as a hash to more quickly lookup a DNSKEY.
///
/// [RFC 1035](https://tools.ietf.org/html/rfc1035), DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION, November 1987
///
/// ```text
/// RFC 2535 DNS Security Extensions March 1999
///
/// 4.1.6 Key Tag Field
///
/// The "key Tag" is a two octet quantity that is used to efficiently
/// select between multiple keys which may be applicable and thus check
/// that a public key about to be used for the computationally expensive
/// effort to check the signature is possibly valid. For algorithm 1
/// (MD5/RSA) as defined in [RFC 2537], it is the next to the bottom two
/// octets of the public key modulus needed to decode the signature
/// field. That is to say, the most significant 16 of the least
/// significant 24 bits of the modulus in network (big endian) order. For
/// all other algorithms, including private algorithms, it is calculated
/// as a simple checksum of the KEY RR as described in Appendix C.
///
/// Appendix C: Key Tag Calculation
///
/// The key tag field in the SIG RR is just a means of more efficiently
/// selecting the correct KEY RR to use when there is more than one KEY
/// RR candidate available, for example, in verifying a signature. It is
/// possible for more than one candidate key to have the same tag, in
/// which case each must be tried until one works or all fail. The
/// following reference implementation of how to calculate the Key Tag,
/// for all algorithms other than algorithm 1, is in ANSI C. It is coded
/// for clarity, not efficiency. (See section 4.1.6 for how to determine
/// the Key Tag of an algorithm 1 key.)
///
/// /* assumes int is at least 16 bits
/// first byte of the key tag is the most significant byte of return
/// value
/// second byte of the key tag is the least significant byte of
/// return value
/// */
///
/// int keytag (
///
/// unsigned char key[], /* the RDATA part of the KEY RR */
/// unsigned int keysize, /* the RDLENGTH */
/// )
/// {
/// long int ac; /* assumed to be 32 bits or larger */
///
/// for ( ac = 0, i = 0; i < keysize; ++i )
/// ac += (i&1) ? key[i] : key[i]<<8;
/// ac += (ac>>16) & 0xFFFF;
/// return ac & 0xFFFF;
/// }
/// ```
pub fn key_tag(&self) -> DnsSecResult<u16> {
let mut ac: usize = 0;
for (i, k) in self.to_public_bytes()?.iter().enumerate() {
ac += if i & 0x0001 == 0x0001 {
*k as usize
} else {
(*k as usize) << 8
};
}
ac += (ac >> 16) & 0xFFFF;
Ok((ac & 0xFFFF) as u16) // this is unnecessary, no?
}
/// Creates a Record that represents the public key for this Signer
///
/// # Arguments
///
/// * `algorithm` - algorithm of the DNSKEY
///
/// # Return
///
/// the DNSKEY record data
pub fn to_dnskey(&self, algorithm: Algorithm) -> DnsSecResult<DNSKEY> {
self.to_public_bytes()
.map(|bytes| DNSKEY::new(true, true, false, algorithm, bytes))
}
/// Convert this keypair into a KEY record type for usage with SIG0
/// with key type entity (`KeyUsage::Entity`).
///
/// # Arguments
///
/// * `algorithm` - algorithm of the KEY
///
/// # Return
///
/// the KEY record data
pub fn to_sig0key(&self, algorithm: Algorithm) -> DnsSecResult<KEY> {
self.to_sig0key_with_usage(algorithm, KeyUsage::default())
}
/// Convert this keypair into a KEY record type for usage with SIG0
/// with a given key (usage) type.
///
/// # Arguments
///
/// * `algorithm` - algorithm of the KEY
/// * `usage` - the key type
///
/// # Return
///
/// the KEY record data
pub fn to_sig0key_with_usage(
&self,
algorithm: Algorithm,
usage: KeyUsage,
) -> DnsSecResult<KEY> {
self.to_public_bytes().map(|bytes| {
KEY::new(
KeyTrust::default(),
usage,
#[allow(deprecated)]
UpdateScope::default(),
Protocol::default(),
algorithm,
bytes,
)
})
}
/// Creates a DS record for this KeyPair associated to the given name
///
/// # Arguments
///
/// * `name` - name of the DNSKEY record covered by the new DS record
/// * `algorithm` - the algorithm of the DNSKEY
/// * `digest_type` - the digest_type used to
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
#[cfg_attr(
docsrs,
doc(cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring")))
)]
pub fn to_ds(
&self,
name: &Name,
algorithm: Algorithm,
digest_type: DigestType,
) -> DnsSecResult<DS> {
self.to_dnskey(algorithm)
.and_then(|dnskey| self.key_tag().map(|key_tag| (key_tag, dnskey)))
.and_then(|(key_tag, dnskey)| {
dnskey
.to_digest(name, digest_type)
.map(|digest| (key_tag, digest))
.map_err(Into::into)
})
.map(|(key_tag, digest)| {
DS::new(key_tag, algorithm, digest_type, digest.as_ref().to_owned())
})
}
}
impl<K: HasPrivate> KeyPair<K> {
/// Signs a hash.
///
/// This will panic if the `key` is not a private key and can be used for signing.
///
/// # Arguments
///
/// * `message` - the message bytes to be signed, see `rrset_tbs`.
///
/// # Return value
///
/// The signature, ready to be stored in an `RData::RRSIG`.
#[allow(unused)]
pub fn sign(&self, algorithm: Algorithm, tbs: &TBS) -> DnsSecResult<Vec<u8>> {
use std::iter;
match *self {
#[cfg(feature = "dnssec-openssl")]
Self::RSA(ref pkey) | Self::EC(ref pkey) => {
let digest_type = DigestType::from(algorithm).to_openssl_digest()?;
let mut signer = Signer::new(digest_type, pkey)?;
signer.update(tbs.as_ref())?;
signer.sign_to_vec().map_err(Into::into).and_then(|bytes| {
if let Self::RSA(_) = *self {
return Ok(bytes);
}
// Convert DER signature to raw signature (see RFC 6605 Section 4)
if bytes.len() < 8 {
return Err("unexpected signature format (length too short)".into());
}
let expect = |pos: usize, expected: u8| -> DnsSecResult<()> {
if bytes[pos] != expected {
return Err(format!(
"unexpected signature format ({pos}, {expected}))"
)
.into());
}
Ok(())
};
// Sanity checks
expect(0, 0x30)?;
expect(1, (bytes.len() - 2) as u8)?;
expect(2, 0x02)?;
let p1_len = bytes[3] as usize;
let p2_pos = 4 + p1_len;
expect(p2_pos, 0x02)?;
let p2_len = bytes[p2_pos + 1] as usize;
if p2_pos + 2 + p2_len > bytes.len() {
return Err("unexpected signature format (invalid length)".into());
}
let p1 = &bytes[4..p2_pos];
let p2 = &bytes[p2_pos + 2..p2_pos + 2 + p2_len];
// For P-256, each integer MUST be encoded as 32 octets;
// for P-384, each integer MUST be encoded as 48 octets.
let part_len = match algorithm {
Algorithm::ECDSAP256SHA256 => 32,
Algorithm::ECDSAP384SHA384 => 48,
_ => return Err("unexpected algorithm".into()),
};
let mut ret = Vec::<u8>::new();
{
let mut write_part = |mut part: &[u8]| -> DnsSecResult<()> {
// We need to pad or trim the octet string to expected length
if part.len() > part_len + 1 {
return Err("invalid signature data".into());
}
if part.len() == part_len + 1 {
// Trim leading zero
if part[0] != 0x00 {
return Err("invalid signature data".into());
}
part = &part[1..];
}
// Pad with zeros. All numbers are big-endian here.
ret.extend(iter::repeat(0x00).take(part_len - part.len()));
ret.extend(part);
Ok(())
};
write_part(p1)?;
write_part(p2)?;
}
assert_eq!(ret.len(), part_len * 2);
Ok(ret)
})
}
#[cfg(feature = "dnssec-ring")]
Self::ECDSA(ref ec_key) => {
let rng = rand::SystemRandom::new();
Ok(ec_key.sign(&rng, tbs.as_ref())?.as_ref().to_vec())
}
#[cfg(feature = "dnssec-ring")]
Self::ED25519(ref ed_key) => Ok(ed_key.sign(tbs.as_ref()).as_ref().to_vec()),
#[cfg(not(feature = "dnssec-openssl"))]
Self::Phantom(..) => panic!("Phantom disallowed"),
#[cfg(not(any(feature = "dnssec-openssl", feature = "dnssec-ring")))]
_ => Err(DnsSecErrorKind::Message("openssl nor ring feature(s) not enabled").into()),
}
}
}
impl KeyPair<Private> {
/// Generates a new private and public key pair for the specified algorithm.
///
/// RSA keys are hardcoded to 2048bits at the moment. Other keys have predefined sizes.
pub fn generate(algorithm: Algorithm) -> DnsSecResult<Self> {
#[allow(deprecated)]
match algorithm {
Algorithm::Unknown(_) => Err(DnsSecErrorKind::Message("unknown algorithm").into()),
#[cfg(feature = "dnssec-openssl")]
Algorithm::RSASHA1
| Algorithm::RSASHA1NSEC3SHA1
| Algorithm::RSASHA256
| Algorithm::RSASHA512 => {
// TODO: the only keysize right now, would be better for people to use other algorithms...
OpenSslRsa::generate(2048)
.map_err(Into::into)
.and_then(Self::from_rsa)
}
#[cfg(feature = "dnssec-openssl")]
Algorithm::ECDSAP256SHA256 => EcGroup::from_curve_name(Nid::X9_62_PRIME256V1)
.and_then(|group| EcKey::generate(&group))
.map_err(Into::into)
.and_then(Self::from_ec_key),
#[cfg(feature = "dnssec-openssl")]
Algorithm::ECDSAP384SHA384 => EcGroup::from_curve_name(Nid::SECP384R1)
.and_then(|group| EcKey::generate(&group))
.map_err(Into::into)
.and_then(Self::from_ec_key),
#[cfg(feature = "dnssec-ring")]
Algorithm::ED25519 => Err(DnsSecErrorKind::Message(
"use generate_pkcs8 for generating private key and encoding",
)
.into()),
_ => Err(DnsSecErrorKind::Message("openssl nor ring feature(s) not enabled").into()),
}
}
/// Generates a key, securing it with pkcs8
#[cfg(feature = "dnssec-ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "dnssec-ring")))]
pub fn generate_pkcs8(algorithm: Algorithm) -> DnsSecResult<Vec<u8>> {
#[allow(deprecated)]
match algorithm {
Algorithm::Unknown(_) => Err(DnsSecErrorKind::Message("unknown algorithm").into()),
#[cfg(feature = "dnssec-openssl")]
Algorithm::RSASHA1
| Algorithm::RSASHA1NSEC3SHA1
| Algorithm::RSASHA256
| Algorithm::RSASHA512 => {
Err(DnsSecErrorKind::Message("openssl does not yet support pkcs8").into())
}
#[cfg(feature = "dnssec-ring")]
Algorithm::ECDSAP256SHA256 => {
let rng = rand::SystemRandom::new();
EcdsaKeyPair::generate_pkcs8(&ECDSA_P256_SHA256_FIXED_SIGNING, &rng)
.map_err(Into::into)
.map(|pkcs8_bytes| pkcs8_bytes.as_ref().to_vec())
}
#[cfg(feature = "dnssec-ring")]
Algorithm::ECDSAP384SHA384 => {
let rng = rand::SystemRandom::new();
EcdsaKeyPair::generate_pkcs8(&ECDSA_P384_SHA384_FIXED_SIGNING, &rng)
.map_err(Into::into)
.map(|pkcs8_bytes| pkcs8_bytes.as_ref().to_vec())
}
#[cfg(feature = "dnssec-ring")]
Algorithm::ED25519 => {
let rng = rand::SystemRandom::new();
Ed25519KeyPair::generate_pkcs8(&rng)
.map_err(Into::into)
.map(|pkcs8_bytes| pkcs8_bytes.as_ref().to_vec())
}
_ => Err(DnsSecErrorKind::Message("openssl nor ring feature(s) not enabled").into()),
}
}
}
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
#[cfg(test)]
mod tests {
use crate::rr::dnssec::TBS;
use crate::rr::dnssec::*;
#[cfg(feature = "dnssec-openssl")]
#[test]
fn test_rsa() {
public_key_test(Algorithm::RSASHA256, KeyFormat::Der);
hash_test(Algorithm::RSASHA256, KeyFormat::Der);
}
#[cfg(feature = "dnssec-openssl")]
#[test]
fn test_ec_p256() {
public_key_test(Algorithm::ECDSAP256SHA256, KeyFormat::Der);
hash_test(Algorithm::ECDSAP256SHA256, KeyFormat::Der);
}
#[cfg(feature = "dnssec-ring")]
#[test]
fn test_ec_p256_pkcs8() {
public_key_test(Algorithm::ECDSAP256SHA256, KeyFormat::Pkcs8);
hash_test(Algorithm::ECDSAP256SHA256, KeyFormat::Pkcs8);
}
#[cfg(feature = "dnssec-openssl")]
#[test]
fn test_ec_p384() {
public_key_test(Algorithm::ECDSAP384SHA384, KeyFormat::Der);
hash_test(Algorithm::ECDSAP384SHA384, KeyFormat::Der);
}
#[cfg(feature = "dnssec-ring")]
#[test]
fn test_ec_p384_pkcs8() {
public_key_test(Algorithm::ECDSAP384SHA384, KeyFormat::Pkcs8);
hash_test(Algorithm::ECDSAP384SHA384, KeyFormat::Pkcs8);
}
#[cfg(feature = "dnssec-ring")]
#[test]
fn test_ed25519() {
public_key_test(Algorithm::ED25519, KeyFormat::Pkcs8);
hash_test(Algorithm::ED25519, KeyFormat::Pkcs8);
}
#[allow(clippy::uninlined_format_args)]
fn public_key_test(algorithm: Algorithm, key_format: KeyFormat) {
let key = key_format
.decode_key(
&key_format.generate_and_encode(algorithm, None).unwrap(),
None,
algorithm,
)
.unwrap();
let pk = key.to_public_key().unwrap();
let tbs = TBS::from(&b"www.example.com"[..]);
let mut sig = key.sign(algorithm, &tbs).unwrap();
assert!(
pk.verify(algorithm, tbs.as_ref(), &sig).is_ok(),
"algorithm: {:?} (public key)",
algorithm
);
sig[10] = !sig[10];
assert!(
pk.verify(algorithm, tbs.as_ref(), &sig).is_err(),
"algorithm: {:?} (public key, neg)",
algorithm
);
}
#[allow(clippy::uninlined_format_args)]
fn hash_test(algorithm: Algorithm, key_format: KeyFormat) {
let tbs = TBS::from(&b"www.example.com"[..]);
// TODO: convert to stored keys...
let key = key_format
.decode_key(
&key_format.generate_and_encode(algorithm, None).unwrap(),
None,
algorithm,
)
.unwrap();
let pub_key = key.to_public_key().unwrap();
let neg = key_format
.decode_key(
&key_format.generate_and_encode(algorithm, None).unwrap(),
None,
algorithm,
)
.unwrap();
let neg_pub_key = neg.to_public_key().unwrap();
let sig = key.sign(algorithm, &tbs).unwrap();
assert!(
pub_key.verify(algorithm, tbs.as_ref(), &sig).is_ok(),
"algorithm: {:?}",
algorithm
);
assert!(
key.to_dnskey(algorithm)
.unwrap()
.verify(tbs.as_ref(), &sig)
.is_ok(),
"algorithm: {:?} (dnskey)",
algorithm
);
assert!(
neg_pub_key.verify(algorithm, tbs.as_ref(), &sig).is_err(),
"algorithm: {:?} (neg)",
algorithm
);
assert!(
neg.to_dnskey(algorithm)
.unwrap()
.verify(tbs.as_ref(), &sig)
.is_err(),
"algorithm: {:?} (dnskey, neg)",
algorithm
);
}
}