1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// Copyright 2015-2019 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! Trust dns implementation of Secret Key Transaction Authentication for DNS (TSIG)
//! [RFC 8945](https://www.rfc-editor.org/rfc/rfc8945) November 2020
//!
//! Current deviation from RFC in implementation as of 2022-10-28
//!
//! - Mac checking don't support HMAC truncation with TSIG (pedantic constant time verification)
//! - Time checking not in TSIG implementation but in caller
use std::ops::Range;
use std::sync::Arc;
use tracing::debug;
use crate::error::ProtoErrorKind;
use crate::error::{ProtoError, ProtoResult};
use crate::op::{Message, MessageFinalizer, MessageVerifier};
use crate::rr::dnssec::rdata::tsig::{
make_tsig_record, message_tbs, signed_bitmessage_to_buf, TsigAlgorithm, TSIG,
};
use crate::rr::dnssec::rdata::DNSSECRData;
use crate::rr::{Name, RData, Record};
use crate::xfer::DnsResponse;
/// Struct to pass to a client for it to authenticate requests using TSIG.
#[derive(Clone)]
pub struct TSigner(Arc<TSignerInner>);
struct TSignerInner {
key: Vec<u8>, // TODO this might want to be some sort of auto-zeroing on drop buffer, as it's cryptographic material
algorithm: TsigAlgorithm,
signer_name: Name,
fudge: u16,
}
impl TSigner {
/// Create a new Tsigner from its parts
///
/// # Arguments
///
/// * `key` - cryptographic key used to authenticate exchanges
/// * `algorithm` - algorithm used to authenticate exchanges
/// * `signer_name` - name of the key. Must match the name known to the server
/// * `fudge` - maximum difference between client and server time, in seconds, see [fudge](TSigner::fudge) for details
pub fn new(
key: Vec<u8>,
algorithm: TsigAlgorithm,
signer_name: Name,
fudge: u16,
) -> ProtoResult<Self> {
if algorithm.supported() {
Ok(Self(Arc::new(TSignerInner {
key,
algorithm,
signer_name,
fudge,
})))
} else {
Err(ProtoErrorKind::TsigUnsupportedMacAlgorithm(algorithm).into())
}
}
/// Return the key used for message authentication
pub fn key(&self) -> &[u8] {
&self.0.key
}
/// Return the algorithm used for message authentication
pub fn algorithm(&self) -> &TsigAlgorithm {
&self.0.algorithm
}
/// Name of the key used by this signer
pub fn signer_name(&self) -> &Name {
&self.0.signer_name
}
/// Maximum time difference between client time when issuing a message, and server time when
/// receiving it, in second. If time is out, the server will consider the request invalid.
/// Longer values means more room for replay by an attacker. A few minutes are usually a good
/// value.
pub fn fudge(&self) -> u16 {
self.0.fudge
}
/// Compute authentication tag for a buffer
pub fn sign(&self, tbs: &[u8]) -> ProtoResult<Vec<u8>> {
self.0.algorithm.mac_data(&self.0.key, tbs)
}
/// Compute authentication tag for a message
pub fn sign_message(&self, message: &Message, pre_tsig: &TSIG) -> ProtoResult<Vec<u8>> {
message_tbs(None, message, pre_tsig, &self.0.signer_name).and_then(|tbs| self.sign(&tbs))
}
/// Verify hmac in constant time to prevent timing attacks
pub fn verify(&self, tbv: &[u8], tag: &[u8]) -> ProtoResult<()> {
self.0.algorithm.verify_mac(&self.0.key, tbv, tag)
}
/// Verify the message is correctly signed
/// This does not perform time verification on its own, instead one should verify current time
/// lie in returned Range
///
/// # Arguments
/// * `previous_hash` - Hash of the last message received before this one, or of the query for
/// the first message
/// * `message` - byte buffer containing current message
/// * `first_message` - is this the first response message
///
/// # Returns
/// Return Ok(_) on valid signature. Inner tuple contain the following values, in order:
/// * a byte buffer containing the hash of this message. Need to be passed back when
/// authenticating next message
/// * a Range of time that is acceptable
/// * the time the signature was emitted. It must be greater or equal to the time of previous
/// messages, if any
pub fn verify_message_byte(
&self,
previous_hash: Option<&[u8]>,
message: &[u8],
first_message: bool,
) -> ProtoResult<(Vec<u8>, Range<u64>, u64)> {
let (tbv, record) = signed_bitmessage_to_buf(previous_hash, message, first_message)?;
let tsig = if let RData::DNSSEC(DNSSECRData::TSIG(tsig)) = record.data() {
tsig
} else {
unreachable!("tsig::signed_message_to_buff always returns a TSIG record")
};
// https://tools.ietf.org/html/rfc8945#section-5.2
// 1. Check key
if record.name() != &self.0.signer_name || tsig.algorithm() != &self.0.algorithm {
return Err(ProtoErrorKind::TsigWrongKey.into());
}
// 2. Check MAC
// note: that this verification does not allow for truncation of the HMAC, which technically the RFC suggests.
// this is to be pedantic about constant time HMAC validation (prevent timing attacks) as well as any security
// concerns about MAC truncation and collisions.
if tsig.mac().len() < tsig.algorithm().output_len()? {
return Err(ProtoError::from("Please file an issue with https://github.com/hickory-dns/hickory-dns to support truncated HMACs with TSIG"));
}
// verify the MAC
let mac = tsig.mac();
self.verify(&tbv, mac)
.map_err(|_e| ProtoError::from("tsig validation error: invalid signature"))?;
// 3. Check time values
// we don't actually have time here so we will let upper level decide
// this is technically in violation of the RFC, in case both time and
// truncation policy are bad, time should be reported and this code will report
// truncation issue instead
// 4. Check truncation policy
// see not above in regards to not supporting verification of truncated HMACs.
// if tsig.mac().len() < std::cmp::max(10, self.0.algorithm.output_len()? / 2) {
// return Err(ProtoError::from(
// "tsig validation error: truncated signature",
// ));
// }
Ok((
tsig.mac().to_vec(),
Range {
start: tsig.time() - tsig.fudge() as u64,
end: tsig.time() + tsig.fudge() as u64,
},
tsig.time(),
))
}
}
impl MessageFinalizer for TSigner {
fn finalize_message(
&self,
message: &Message,
current_time: u32,
) -> ProtoResult<(Vec<Record>, Option<MessageVerifier>)> {
debug!("signing message: {:?}", message);
let current_time = current_time as u64;
let pre_tsig = TSIG::new(
self.0.algorithm.clone(),
current_time,
self.0.fudge,
Vec::new(),
message.id(),
0,
Vec::new(),
);
let mut signature: Vec<u8> = self.sign_message(message, &pre_tsig)?;
let tsig = make_tsig_record(
self.0.signer_name.clone(),
pre_tsig.set_mac(signature.clone()),
);
let self2 = self.clone();
let mut remote_time = 0;
let verifier = move |dns_response: &[u8]| {
let (last_sig, range, rt) = self2.verify_message_byte(
Some(signature.as_ref()),
dns_response,
remote_time == 0,
)?;
if rt >= remote_time && range.contains(¤t_time)
// this assumes a no-latency answer
{
signature = last_sig;
remote_time = rt;
Ok(DnsResponse::new(
Message::from_vec(dns_response)?,
dns_response.to_vec(),
))
} else {
Err(ProtoError::from("tsig validation error: outdated response"))
}
};
Ok((vec![tsig], Some(Box::new(verifier))))
}
}
#[cfg(test)]
#[cfg(any(feature = "dnssec-ring", feature = "dnssec-openssl"))]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use crate::op::{Message, Query};
use crate::rr::Name;
use crate::serialize::binary::BinEncodable;
use super::*;
fn assert_send_and_sync<T: Send + Sync>() {}
#[test]
fn test_send_and_sync() {
assert_send_and_sync::<TSigner>();
}
#[test]
fn test_sign_and_verify_message_tsig() {
let time_begin = 1609459200u64;
let fudge = 300u64;
let origin: Name = Name::parse("example.com.", None).unwrap();
let key_name: Name = Name::from_ascii("key_name").unwrap();
let mut question: Message = Message::new();
let mut query: Query = Query::new();
query.set_name(origin);
question.add_query(query);
let sig_key = b"some_key".to_vec();
let signer =
TSigner::new(sig_key, TsigAlgorithm::HmacSha512, key_name, fudge as u16).unwrap();
assert!(question.signature().is_empty());
question
.finalize(&signer, time_begin as u32)
.expect("should have signed");
assert!(!question.signature().is_empty());
let (_, validity_range, _) = signer
.verify_message_byte(None, &question.to_bytes().unwrap(), true)
.unwrap();
assert!(validity_range.contains(&(time_begin + fudge / 2))); // slightly outdated, but still to be acceptable
assert!(validity_range.contains(&(time_begin - fudge / 2))); // sooner than our time, but still acceptable
assert!(!validity_range.contains(&(time_begin + fudge * 2))); // too late to be accepted
assert!(!validity_range.contains(&(time_begin - fudge * 2))); // too soon to be accepted
}
// make rejection tests shorter by centralizing common setup code
fn get_message_and_signer() -> (Message, TSigner) {
let time_begin = 1609459200u64;
let fudge = 300u64;
let origin: Name = Name::parse("example.com.", None).unwrap();
let key_name: Name = Name::from_ascii("key_name").unwrap();
let mut question: Message = Message::new();
let mut query: Query = Query::new();
query.set_name(origin);
question.add_query(query);
let sig_key = b"some_key".to_vec();
let signer =
TSigner::new(sig_key, TsigAlgorithm::HmacSha512, key_name, fudge as u16).unwrap();
assert!(question.signature().is_empty());
question
.finalize(&signer, time_begin as u32)
.expect("should have signed");
assert!(!question.signature().is_empty());
// this should be ok, it has not been tampered with
assert!(signer
.verify_message_byte(None, &question.to_bytes().unwrap(), true)
.is_ok());
(question, signer)
}
#[test]
fn test_sign_and_verify_message_tsig_reject_keyname() {
let (mut question, signer) = get_message_and_signer();
let other_name: Name = Name::from_ascii("other_name").unwrap();
let mut signature = question.take_signature().remove(0);
signature.set_name(other_name);
question.add_tsig(signature);
assert!(signer
.verify_message_byte(None, &question.to_bytes().unwrap(), true)
.is_err());
}
#[test]
fn test_sign_and_verify_message_tsig_reject_invalid_mac() {
let (mut question, signer) = get_message_and_signer();
let mut query: Query = Query::new();
let origin: Name = Name::parse("example.net.", None).unwrap();
query.set_name(origin);
question.add_query(query);
assert!(signer
.verify_message_byte(None, &question.to_bytes().unwrap(), true)
.is_err());
}
}