1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// Copyright 2015-2019 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Trust dns implementation of Secret Key Transaction Authentication for DNS (TSIG)
//! [RFC 8945](https://www.rfc-editor.org/rfc/rfc8945) November 2020
//!
//! Current deviation from RFC in implementation as of 2022-10-28
//!
//! - Mac checking don't support HMAC truncation with TSIG (pedantic constant time verification)
//! - Time checking not in TSIG implementation but in caller

use std::ops::Range;
use std::sync::Arc;

use tracing::debug;

use crate::error::ProtoErrorKind;
use crate::error::{ProtoError, ProtoResult};
use crate::op::{Message, MessageFinalizer, MessageVerifier};
use crate::rr::dnssec::rdata::tsig::{
    make_tsig_record, message_tbs, signed_bitmessage_to_buf, TsigAlgorithm, TSIG,
};
use crate::rr::dnssec::rdata::DNSSECRData;
use crate::rr::{Name, RData, Record};
use crate::xfer::DnsResponse;

/// Struct to pass to a client for it to authenticate requests using TSIG.
#[derive(Clone)]
pub struct TSigner(Arc<TSignerInner>);

struct TSignerInner {
    key: Vec<u8>, // TODO this might want to be some sort of auto-zeroing on drop buffer, as it's cryptographic material
    algorithm: TsigAlgorithm,
    signer_name: Name,
    fudge: u16,
}

impl TSigner {
    /// Create a new Tsigner from its parts
    ///
    /// # Arguments
    ///
    /// * `key` - cryptographic key used to authenticate exchanges
    /// * `algorithm` - algorithm used to authenticate exchanges
    /// * `signer_name` - name of the key. Must match the name known to the server
    /// * `fudge` - maximum difference between client and server time, in seconds, see [fudge](TSigner::fudge) for details
    pub fn new(
        key: Vec<u8>,
        algorithm: TsigAlgorithm,
        signer_name: Name,
        fudge: u16,
    ) -> ProtoResult<Self> {
        if algorithm.supported() {
            Ok(Self(Arc::new(TSignerInner {
                key,
                algorithm,
                signer_name,
                fudge,
            })))
        } else {
            Err(ProtoErrorKind::TsigUnsupportedMacAlgorithm(algorithm).into())
        }
    }

    /// Return the key used for message authentication
    pub fn key(&self) -> &[u8] {
        &self.0.key
    }

    /// Return the algorithm used for message authentication
    pub fn algorithm(&self) -> &TsigAlgorithm {
        &self.0.algorithm
    }

    /// Name of the key used by this signer
    pub fn signer_name(&self) -> &Name {
        &self.0.signer_name
    }

    /// Maximum time difference between client time when issuing a message, and server time when
    /// receiving it, in second. If time is out, the server will consider the request invalid.
    /// Longer values means more room for replay by an attacker. A few minutes are usually a good
    /// value.
    pub fn fudge(&self) -> u16 {
        self.0.fudge
    }

    /// Compute authentication tag for a buffer
    pub fn sign(&self, tbs: &[u8]) -> ProtoResult<Vec<u8>> {
        self.0.algorithm.mac_data(&self.0.key, tbs)
    }

    /// Compute authentication tag for a message
    pub fn sign_message(&self, message: &Message, pre_tsig: &TSIG) -> ProtoResult<Vec<u8>> {
        message_tbs(None, message, pre_tsig, &self.0.signer_name).and_then(|tbs| self.sign(&tbs))
    }

    /// Verify hmac in constant time to prevent timing attacks
    pub fn verify(&self, tbv: &[u8], tag: &[u8]) -> ProtoResult<()> {
        self.0.algorithm.verify_mac(&self.0.key, tbv, tag)
    }

    /// Verify the message is correctly signed
    /// This does not perform time verification on its own, instead one should verify current time
    /// lie in returned Range
    ///
    /// # Arguments
    /// * `previous_hash` - Hash of the last message received before this one, or of the query for
    ///   the first message
    /// * `message` - byte buffer containing current message
    /// * `first_message` - is this the first response message
    ///
    /// # Returns
    /// Return Ok(_) on valid signature. Inner tuple contain the following values, in order:
    /// * a byte buffer containing the hash of this message. Need to be passed back when
    ///   authenticating next message
    /// * a Range of time that is acceptable
    /// * the time the signature was emitted. It must be greater or equal to the time of previous
    ///   messages, if any
    pub fn verify_message_byte(
        &self,
        previous_hash: Option<&[u8]>,
        message: &[u8],
        first_message: bool,
    ) -> ProtoResult<(Vec<u8>, Range<u64>, u64)> {
        let (tbv, record) = signed_bitmessage_to_buf(previous_hash, message, first_message)?;
        let tsig = if let RData::DNSSEC(DNSSECRData::TSIG(tsig)) = record.data() {
            tsig
        } else {
            unreachable!("tsig::signed_message_to_buff always returns a TSIG record")
        };

        // https://tools.ietf.org/html/rfc8945#section-5.2
        // 1.  Check key
        if record.name() != &self.0.signer_name || tsig.algorithm() != &self.0.algorithm {
            return Err(ProtoErrorKind::TsigWrongKey.into());
        }

        // 2.  Check MAC
        //  note: that this verification does not allow for truncation of the HMAC, which technically the RFC suggests.
        //    this is to be pedantic about constant time HMAC validation (prevent timing attacks) as well as any security
        //    concerns about MAC truncation and collisions.
        if tsig.mac().len() < tsig.algorithm().output_len()? {
            return Err(ProtoError::from("Please file an issue with https://github.com/hickory-dns/hickory-dns to support truncated HMACs with TSIG"));
        }

        // verify the MAC
        let mac = tsig.mac();
        self.verify(&tbv, mac)
            .map_err(|_e| ProtoError::from("tsig validation error: invalid signature"))?;

        // 3.  Check time values
        // we don't actually have time here so we will let upper level decide
        // this is technically in violation of the RFC, in case both time and
        // truncation policy are bad, time should be reported and this code will report
        // truncation issue instead

        // 4.  Check truncation policy
        //   see not above in regards to not supporting verification of truncated HMACs.
        // if tsig.mac().len() < std::cmp::max(10, self.0.algorithm.output_len()? / 2) {
        //     return Err(ProtoError::from(
        //         "tsig validation error: truncated signature",
        //     ));
        // }

        Ok((
            tsig.mac().to_vec(),
            Range {
                start: tsig.time() - tsig.fudge() as u64,
                end: tsig.time() + tsig.fudge() as u64,
            },
            tsig.time(),
        ))
    }
}

impl MessageFinalizer for TSigner {
    fn finalize_message(
        &self,
        message: &Message,
        current_time: u32,
    ) -> ProtoResult<(Vec<Record>, Option<MessageVerifier>)> {
        debug!("signing message: {:?}", message);
        let current_time = current_time as u64;

        let pre_tsig = TSIG::new(
            self.0.algorithm.clone(),
            current_time,
            self.0.fudge,
            Vec::new(),
            message.id(),
            0,
            Vec::new(),
        );
        let mut signature: Vec<u8> = self.sign_message(message, &pre_tsig)?;
        let tsig = make_tsig_record(
            self.0.signer_name.clone(),
            pre_tsig.set_mac(signature.clone()),
        );
        let self2 = self.clone();
        let mut remote_time = 0;
        let verifier = move |dns_response: &[u8]| {
            let (last_sig, range, rt) = self2.verify_message_byte(
                Some(signature.as_ref()),
                dns_response,
                remote_time == 0,
            )?;
            if rt >= remote_time && range.contains(&current_time)
            // this assumes a no-latency answer
            {
                signature = last_sig;
                remote_time = rt;
                Ok(DnsResponse::new(
                    Message::from_vec(dns_response)?,
                    dns_response.to_vec(),
                ))
            } else {
                Err(ProtoError::from("tsig validation error: outdated response"))
            }
        };
        Ok((vec![tsig], Some(Box::new(verifier))))
    }
}

#[cfg(test)]
#[cfg(any(feature = "dnssec-ring", feature = "dnssec-openssl"))]

mod tests {
    #![allow(clippy::dbg_macro, clippy::print_stdout)]

    use crate::op::{Message, Query};
    use crate::rr::Name;
    use crate::serialize::binary::BinEncodable;

    use super::*;
    fn assert_send_and_sync<T: Send + Sync>() {}

    #[test]
    fn test_send_and_sync() {
        assert_send_and_sync::<TSigner>();
    }

    #[test]
    fn test_sign_and_verify_message_tsig() {
        let time_begin = 1609459200u64;
        let fudge = 300u64;
        let origin: Name = Name::parse("example.com.", None).unwrap();
        let key_name: Name = Name::from_ascii("key_name").unwrap();
        let mut question: Message = Message::new();
        let mut query: Query = Query::new();
        query.set_name(origin);
        question.add_query(query);

        let sig_key = b"some_key".to_vec();
        let signer =
            TSigner::new(sig_key, TsigAlgorithm::HmacSha512, key_name, fudge as u16).unwrap();

        assert!(question.signature().is_empty());
        question
            .finalize(&signer, time_begin as u32)
            .expect("should have signed");
        assert!(!question.signature().is_empty());

        let (_, validity_range, _) = signer
            .verify_message_byte(None, &question.to_bytes().unwrap(), true)
            .unwrap();
        assert!(validity_range.contains(&(time_begin + fudge / 2))); // slightly outdated, but still to be acceptable
        assert!(validity_range.contains(&(time_begin - fudge / 2))); // sooner than our time, but still acceptable
        assert!(!validity_range.contains(&(time_begin + fudge * 2))); // too late to be accepted
        assert!(!validity_range.contains(&(time_begin - fudge * 2))); // too soon to be accepted
    }

    // make rejection tests shorter by centralizing common setup code
    fn get_message_and_signer() -> (Message, TSigner) {
        let time_begin = 1609459200u64;
        let fudge = 300u64;
        let origin: Name = Name::parse("example.com.", None).unwrap();
        let key_name: Name = Name::from_ascii("key_name").unwrap();
        let mut question: Message = Message::new();
        let mut query: Query = Query::new();
        query.set_name(origin);
        question.add_query(query);

        let sig_key = b"some_key".to_vec();
        let signer =
            TSigner::new(sig_key, TsigAlgorithm::HmacSha512, key_name, fudge as u16).unwrap();

        assert!(question.signature().is_empty());
        question
            .finalize(&signer, time_begin as u32)
            .expect("should have signed");
        assert!(!question.signature().is_empty());

        // this should be ok, it has not been tampered with
        assert!(signer
            .verify_message_byte(None, &question.to_bytes().unwrap(), true)
            .is_ok());

        (question, signer)
    }

    #[test]
    fn test_sign_and_verify_message_tsig_reject_keyname() {
        let (mut question, signer) = get_message_and_signer();

        let other_name: Name = Name::from_ascii("other_name").unwrap();
        let mut signature = question.take_signature().remove(0);
        signature.set_name(other_name);
        question.add_tsig(signature);

        assert!(signer
            .verify_message_byte(None, &question.to_bytes().unwrap(), true)
            .is_err());
    }

    #[test]
    fn test_sign_and_verify_message_tsig_reject_invalid_mac() {
        let (mut question, signer) = get_message_and_signer();

        let mut query: Query = Query::new();
        let origin: Name = Name::parse("example.net.", None).unwrap();
        query.set_name(origin);
        question.add_query(query);

        assert!(signer
            .verify_message_byte(None, &question.to_bytes().unwrap(), true)
            .is_err());
    }
}