hickory_proto/native_tls/
tls_stream.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Base TlsStream

use std::future::Future;
use std::io;
use std::net::SocketAddr;
use std::pin::Pin;

use futures_util::TryFutureExt;
use native_tls::Protocol::Tlsv12;
use native_tls::{Certificate, Identity, TlsConnector};
use tokio_native_tls::{TlsConnector as TokioTlsConnector, TlsStream as TokioTlsStream};

use crate::runtime::iocompat::{AsyncIoStdAsTokio, AsyncIoTokioAsStd};
use crate::runtime::RuntimeProvider;
use crate::tcp::{DnsTcpStream, TcpStream};
use crate::xfer::{BufDnsStreamHandle, StreamReceiver};

/// A TlsStream counterpart to the TcpStream which embeds a secure TlsStream
pub type TlsStream<S> = TcpStream<AsyncIoTokioAsStd<TokioTlsStream<AsyncIoStdAsTokio<S>>>>;

fn tls_new(certs: Vec<Certificate>, pkcs12: Option<Identity>) -> io::Result<TlsConnector> {
    let mut builder = TlsConnector::builder();
    builder.min_protocol_version(Some(Tlsv12));

    for cert in certs {
        builder.add_root_certificate(cert);
    }

    if let Some(pkcs12) = pkcs12 {
        builder.identity(pkcs12);
    }
    builder
        .build()
        .map_err(|e| io::Error::new(io::ErrorKind::ConnectionRefused, format!("tls error: {e}")))
}

/// Initializes a TlsStream with an existing tokio_tls::TlsStream.
///
/// This is intended for use with a TlsListener and Incoming connections
pub fn tls_from_stream<S: DnsTcpStream>(
    stream: TokioTlsStream<AsyncIoStdAsTokio<S>>,
    peer_addr: SocketAddr,
) -> (TlsStream<S>, BufDnsStreamHandle) {
    let (message_sender, outbound_messages) = BufDnsStreamHandle::new(peer_addr);

    let stream = TcpStream::from_stream_with_receiver(
        AsyncIoTokioAsStd(stream),
        peer_addr,
        outbound_messages,
    );

    (stream, message_sender)
}

/// A builder for the TlsStream
#[derive(Default)]
pub struct TlsStreamBuilder<P> {
    provider: P,
    ca_chain: Vec<Certificate>,
    identity: Option<Identity>,
    bind_addr: Option<SocketAddr>,
}

impl<P: RuntimeProvider> TlsStreamBuilder<P> {
    /// Constructs a new TlsStreamBuilder
    pub fn new(provider: P) -> Self {
        Self {
            provider,
            ca_chain: vec![],
            identity: None,
            bind_addr: None,
        }
    }

    /// Add a custom trusted peer certificate or certificate authority.
    ///
    /// If this is the 'client' then the 'server' must have it associated as it's `identity`, or have had the `identity` signed by this certificate.
    pub fn add_ca(&mut self, ca: Certificate) {
        self.ca_chain.push(ca);
    }

    /// Sets the address to connect from.
    pub fn bind_addr(&mut self, bind_addr: SocketAddr) {
        self.bind_addr = Some(bind_addr);
    }

    /// Similar to `build`, but with customized stream future.
    ///
    /// # Arguments
    ///
    /// * `name_server` - IP and Port for the remote DNS resolver
    /// * `dns_name` - The DNS name, Public Key Info (SPKI) name, as associated to a certificate
    #[allow(clippy::type_complexity)]
    pub fn build_with_future<F>(
        self,
        future: F,
        name_server: SocketAddr,
        dns_name: String,
    ) -> (
        // TODO: change to impl?
        Pin<Box<dyn Future<Output = Result<TlsStream<P::Tcp>, io::Error>> + Send>>,
        BufDnsStreamHandle,
    )
    where
        F: Future<Output = std::io::Result<P::Tcp>> + Send + Unpin + 'static,
    {
        let (message_sender, outbound_messages) = BufDnsStreamHandle::new(name_server);

        let stream = self.inner_build(future, name_server, dns_name, outbound_messages);
        (Box::pin(stream), message_sender)
    }

    async fn inner_build<F>(
        self,
        future: F,
        name_server: SocketAddr,
        dns_name: String,
        outbound_messages: StreamReceiver,
    ) -> Result<TlsStream<P::Tcp>, io::Error>
    where
        F: Future<Output = std::io::Result<P::Tcp>> + Send + Unpin + 'static,
    {
        use crate::native_tls::tls_stream;
        let tcp_stream = future.await;

        let ca_chain = self.ca_chain.clone();
        let identity = self.identity;

        // TODO: for some reason the above wouldn't accept a ?
        let tcp_stream = match tcp_stream {
            Ok(tcp_stream) => AsyncIoStdAsTokio(tcp_stream),
            Err(err) => return Err(err),
        };

        // This set of futures collapses the next tcp socket into a stream which can be used for
        //  sending and receiving tcp packets.
        let tls_connector = tls_stream::tls_new(ca_chain, identity)
            .map(TokioTlsConnector::from)
            .map_err(|e| {
                io::Error::new(io::ErrorKind::ConnectionRefused, format!("tls error: {e}"))
            })?;

        let tls_connected = tls_connector
            .connect(&dns_name, tcp_stream)
            .map_err(|e| {
                io::Error::new(io::ErrorKind::ConnectionRefused, format!("tls error: {e}"))
            })
            .await?;

        Ok(TcpStream::from_stream_with_receiver(
            AsyncIoTokioAsStd(tls_connected),
            name_server,
            outbound_messages,
        ))
    }

    /// Creates a new TlsStream to the specified name_server
    ///
    /// [RFC 7858](https://tools.ietf.org/html/rfc7858), DNS over TLS, May 2016
    ///
    /// ```text
    /// 3.2.  TLS Handshake and Authentication
    ///
    ///   Once the DNS client succeeds in connecting via TCP on the well-known
    ///   port for DNS over TLS, it proceeds with the TLS handshake [RFC5246],
    ///   following the best practices specified in [BCP195].
    ///
    ///   The client will then authenticate the server, if required.  This
    ///   document does not propose new ideas for authentication.  Depending on
    ///   the privacy profile in use (Section 4), the DNS client may choose not
    ///   to require authentication of the server, or it may make use of a
    ///   trusted Subject Public Key Info (SPKI) Fingerprint pin set.
    ///
    ///   After TLS negotiation completes, the connection will be encrypted and
    ///   is now protected from eavesdropping.
    /// ```
    ///
    /// # Arguments
    ///
    /// * `name_server` - IP and Port for the remote DNS resolver
    /// * `dns_name` - The DNS name, Public Key Info (SPKI) name, as associated to a certificate
    #[allow(clippy::type_complexity)]
    pub fn build(
        self,
        name_server: SocketAddr,
        dns_name: String,
    ) -> (
        // TODO: change to impl?
        Pin<Box<dyn Future<Output = Result<TlsStream<P::Tcp>, io::Error>> + Send>>,
        BufDnsStreamHandle,
    ) {
        let (message_sender, outbound_messages) = BufDnsStreamHandle::new(name_server);
        let conn = self.provider.connect_tcp(name_server, self.bind_addr, None);
        let stream = self.inner_build(conn, name_server, dns_name, outbound_messages);
        (Box::pin(stream), message_sender)
    }
}