hickory_proto/rr/dnssec/public_key.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! Public Key implementations for supported key types
#[cfg(not(any(feature = "dnssec-openssl", feature = "dnssec-ring")))]
use std::marker::PhantomData;
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::bn::BigNum;
#[cfg(feature = "dnssec-openssl")]
use openssl::bn::BigNumContext;
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::ec::{EcGroup, EcPoint};
#[cfg(feature = "dnssec-openssl")]
use openssl::ec::{EcKey, PointConversionForm};
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::nid::Nid;
#[cfg(feature = "dnssec-openssl")]
use openssl::pkey::HasPublic;
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::pkey::{PKey, Public};
#[cfg(feature = "dnssec-openssl")]
use openssl::rsa::Rsa as OpenSslRsa;
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::sign::Verifier;
#[cfg(feature = "dnssec-ring")]
use ring::signature::{self, ED25519_PUBLIC_KEY_LEN};
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
use super::ec_public_key::ECPublicKey;
#[allow(deprecated)]
use super::rdata::key::{KeyTrust, KeyUsage, Protocol, UpdateScope};
use super::rdata::{DNSKEY, DS, KEY};
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
use super::rsa_public_key::RSAPublicKey;
use super::{Algorithm, DigestType};
use crate::error::{DnsSecResult, ProtoResult};
use crate::rr::Name;
/// PublicKeys implement the ability to ideally be zero copy abstractions over public keys for verifying signed content.
///
/// In DNS the KEY and DNSKEY types are generally the RData types which store public key material.
pub trait PublicKey {
/// Convert this keypair into a KEY record type for usage with SIG0
/// with key type entity (`KeyUsage::Entity`).
///
/// # Arguments
///
/// * `algorithm` - algorithm of the KEY
///
/// # Return
///
/// the KEY record data
fn to_sig0key(&self, algorithm: Algorithm) -> KEY {
self.to_sig0key_with_usage(algorithm, KeyUsage::default())
}
/// Convert this keypair into a KEY record type for usage with SIG0
/// with a given key (usage) type.
///
/// # Arguments
///
/// * `algorithm` - algorithm of the KEY
/// * `usage` - the key type
///
/// # Return
///
/// the KEY record data
fn to_sig0key_with_usage(&self, algorithm: Algorithm, usage: KeyUsage) -> KEY {
KEY::new(
KeyTrust::default(),
usage,
#[allow(deprecated)]
UpdateScope::default(),
Protocol::default(),
algorithm,
self.public_bytes().to_vec(),
)
}
/// Creates a DS record for this KeyPair associated to the given name
///
/// # Arguments
///
/// * `name` - name of the DNSKEY record covered by the new DS record
/// * `algorithm` - the algorithm of the DNSKEY
/// * `digest_type` - the digest_type used to
fn to_ds(
&self,
name: &Name,
algorithm: Algorithm,
digest_type: DigestType,
) -> DnsSecResult<DS> {
let dnskey = self.to_dnskey(algorithm);
Ok(DS::new(
self.key_tag(),
algorithm,
digest_type,
dnskey.to_digest(name, digest_type)?.as_ref().to_owned(),
))
}
/// Creates a Record that represents the public key for this Signer
///
/// # Arguments
///
/// * `algorithm` - algorithm of the DNSKEY
///
/// # Return
///
/// the DNSKEY record data
fn to_dnskey(&self, algorithm: Algorithm) -> DNSKEY {
let bytes = self.public_bytes();
DNSKEY::new(true, true, false, algorithm, bytes.to_owned())
}
/// The key tag is calculated as a hash to more quickly lookup a DNSKEY.
///
/// [RFC 1035](https://tools.ietf.org/html/rfc1035), DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION, November 1987
///
/// ```text
/// RFC 2535 DNS Security Extensions March 1999
///
/// 4.1.6 Key Tag Field
///
/// The "key Tag" is a two octet quantity that is used to efficiently
/// select between multiple keys which may be applicable and thus check
/// that a public key about to be used for the computationally expensive
/// effort to check the signature is possibly valid. For algorithm 1
/// (MD5/RSA) as defined in [RFC 2537], it is the next to the bottom two
/// octets of the public key modulus needed to decode the signature
/// field. That is to say, the most significant 16 of the least
/// significant 24 bits of the modulus in network (big endian) order. For
/// all other algorithms, including private algorithms, it is calculated
/// as a simple checksum of the KEY RR as described in Appendix C.
///
/// Appendix C: Key Tag Calculation
///
/// The key tag field in the SIG RR is just a means of more efficiently
/// selecting the correct KEY RR to use when there is more than one KEY
/// RR candidate available, for example, in verifying a signature. It is
/// possible for more than one candidate key to have the same tag, in
/// which case each must be tried until one works or all fail. The
/// following reference implementation of how to calculate the Key Tag,
/// for all algorithms other than algorithm 1, is in ANSI C. It is coded
/// for clarity, not efficiency. (See section 4.1.6 for how to determine
/// the Key Tag of an algorithm 1 key.)
///
/// /* assumes int is at least 16 bits
/// first byte of the key tag is the most significant byte of return
/// value
/// second byte of the key tag is the least significant byte of
/// return value
/// */
///
/// int keytag (
///
/// unsigned char key[], /* the RDATA part of the KEY RR */
/// unsigned int keysize, /* the RDLENGTH */
/// )
/// {
/// long int ac; /* assumed to be 32 bits or larger */
///
/// for ( ac = 0, i = 0; i < keysize; ++i )
/// ac += (i&1) ? key[i] : key[i]<<8;
/// ac += (ac>>16) & 0xFFFF;
/// return ac & 0xFFFF;
/// }
/// ```
fn key_tag(&self) -> u16 {
let mut ac = 0;
for (i, k) in self.public_bytes().iter().enumerate() {
ac += if i & 0x0001 == 0x0001 {
*k as usize
} else {
(*k as usize) << 8
};
}
ac += (ac >> 16) & 0xFFFF;
(ac & 0xFFFF) as u16 // this is unnecessary, no?
}
/// Returns the public bytes of the public key, in DNS format
fn public_bytes(&self) -> &[u8];
/// Verifies the hash matches the signature with the current `key`.
///
/// # Arguments
///
/// * `message` - the message to be validated, see `hash_rrset`
/// * `signature` - the signature to use to verify the hash, extracted from an `RData::RRSIG`
/// for example.
///
/// # Return value
///
/// True if and only if the signature is valid for the hash. This will always return
/// false if the `key`.
#[allow(unused)]
fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()>;
}
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
fn verify_with_pkey(
pkey: &PKey<Public>,
algorithm: Algorithm,
message: &[u8],
signature: &[u8],
) -> ProtoResult<()> {
let digest_type = DigestType::from(algorithm).to_openssl_digest()?;
let mut verifier = Verifier::new(digest_type, pkey)?;
verifier.update(message)?;
verifier
.verify(signature)
.map_err(Into::into)
.and_then(|b| {
if b {
Ok(())
} else {
Err("could not verify".into())
}
})
}
/// Elyptic Curve public key type
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
pub struct Ec<'k> {
raw: &'k [u8],
pkey: PKey<Public>,
}
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
impl<'k> Ec<'k> {
/// ```text
/// RFC 6605 ECDSA for DNSSEC April 2012
///
/// 4. DNSKEY and RRSIG Resource Records for ECDSA
///
/// ECDSA public keys consist of a single value, called "Q" in FIPS
/// 186-3. In DNSSEC keys, Q is a simple bit string that represents the
/// uncompressed form of a curve point, "x | y".
///
/// The ECDSA signature is the combination of two non-negative integers,
/// called "r" and "s" in FIPS 186-3. The two integers, each of which is
/// formatted as a simple octet string, are combined into a single longer
/// octet string for DNSSEC as the concatenation "r | s". (Conversion of
/// the integers to bit strings is described in Section C.2 of FIPS
/// 186-3.) For P-256, each integer MUST be encoded as 32 octets; for
/// P-384, each integer MUST be encoded as 48 octets.
///
/// The algorithm numbers associated with the DNSKEY and RRSIG resource
/// records are fully defined in the IANA Considerations section. They
/// are:
///
/// o DNSKEY and RRSIG RRs signifying ECDSA with the P-256 curve and
/// SHA-256 use the algorithm number 13.
///
/// o DNSKEY and RRSIG RRs signifying ECDSA with the P-384 curve and
/// SHA-384 use the algorithm number 14.
///
/// Conformant implementations that create records to be put into the DNS
/// MUST implement signing and verification for both of the above
/// algorithms. Conformant DNSSEC verifiers MUST implement verification
/// for both of the above algorithms.
/// ```
pub fn from_public_bytes(public_key: &'k [u8], algorithm: Algorithm) -> ProtoResult<Self> {
let curve = match algorithm {
Algorithm::ECDSAP256SHA256 => Nid::X9_62_PRIME256V1,
Algorithm::ECDSAP384SHA384 => Nid::SECP384R1,
_ => return Err("only ECDSAP256SHA256 and ECDSAP384SHA384 are supported by Ec".into()),
};
// Key needs to be converted to OpenSSL format
let k = ECPublicKey::from_unprefixed(public_key, algorithm)?;
EcGroup::from_curve_name(curve)
.and_then(|group| BigNumContext::new().map(|ctx| (group, ctx)))
// FYI: BigNum slices treat all slices as BigEndian, i.e NetworkByteOrder
.and_then(|(group, mut ctx)| {
EcPoint::from_bytes(&group, k.prefixed_bytes(), &mut ctx)
.map(|point| (group, point))
})
.and_then(|(group, point)| EcKey::from_public_key(&group, &point))
.and_then(PKey::from_ec_key)
.map_err(Into::into)
.map(|pkey| Ec {
raw: public_key,
pkey,
})
}
}
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
fn asn1_emit_integer(output: &mut Vec<u8>, int: &[u8]) {
assert!(!int.is_empty());
output.push(0x02); // INTEGER
if int[0] > 0x7f {
output.push((int.len() + 1) as u8);
output.push(0x00); // MSB must be zero
output.extend(int);
return;
}
// Trim leading zeros
let mut pos = 0;
while pos < int.len() {
if int[pos] == 0 {
if pos == int.len() - 1 {
break;
}
pos += 1;
continue;
}
if int[pos] > 0x7f {
// We need to leave one 0x00 to make MSB zero
pos -= 1;
}
break;
}
let int_output = &int[pos..];
output.push(int_output.len() as u8);
output.extend(int_output);
}
/// Convert raw DNSSEC ECDSA signature to ASN.1 DER format
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
pub fn dnssec_ecdsa_signature_to_der(signature: &[u8]) -> ProtoResult<Vec<u8>> {
if signature.is_empty() || signature.len() & 1 != 0 || signature.len() > 127 {
return Err("invalid signature length".into());
}
let part_len = signature.len() / 2;
// ASN.1 SEQUENCE: 0x30 [LENGTH]
let mut signature_asn1 = vec![0x30, 0x00];
asn1_emit_integer(&mut signature_asn1, &signature[..part_len]);
asn1_emit_integer(&mut signature_asn1, &signature[part_len..]);
signature_asn1[1] = (signature_asn1.len() - 2) as u8;
Ok(signature_asn1)
}
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
impl<'k> PublicKey for Ec<'k> {
fn public_bytes(&self) -> &[u8] {
self.raw
}
fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
let signature_asn1 = dnssec_ecdsa_signature_to_der(signature)?;
verify_with_pkey(&self.pkey, algorithm, message, &signature_asn1)
}
}
/// Elyptic Curve public key type
#[cfg(feature = "dnssec-ring")]
pub type Ec = ECPublicKey;
#[cfg(feature = "dnssec-ring")]
impl Ec {
/// ```text
/// RFC 6605 ECDSA for DNSSEC April 2012
///
/// 4. DNSKEY and RRSIG Resource Records for ECDSA
///
/// ECDSA public keys consist of a single value, called "Q" in FIPS
/// 186-3. In DNSSEC keys, Q is a simple bit string that represents the
/// uncompressed form of a curve point, "x | y".
///
/// The ECDSA signature is the combination of two non-negative integers,
/// called "r" and "s" in FIPS 186-3. The two integers, each of which is
/// formatted as a simple octet string, are combined into a single longer
/// octet string for DNSSEC as the concatenation "r | s". (Conversion of
/// the integers to bit strings is described in Section C.2 of FIPS
/// 186-3.) For P-256, each integer MUST be encoded as 32 octets; for
/// P-384, each integer MUST be encoded as 48 octets.
///
/// The algorithm numbers associated with the DNSKEY and RRSIG resource
/// records are fully defined in the IANA Considerations section. They
/// are:
///
/// o DNSKEY and RRSIG RRs signifying ECDSA with the P-256 curve and
/// SHA-256 use the algorithm number 13.
///
/// o DNSKEY and RRSIG RRs signifying ECDSA with the P-384 curve and
/// SHA-384 use the algorithm number 14.
///
/// Conformant implementations that create records to be put into the DNS
/// MUST implement signing and verification for both of the above
/// algorithms. Conformant DNSSEC verifiers MUST implement verification
/// for both of the above algorithms.
/// ```
pub fn from_public_bytes(public_key: &[u8], algorithm: Algorithm) -> ProtoResult<Self> {
Self::from_unprefixed(public_key, algorithm)
}
}
#[cfg(feature = "dnssec-ring")]
impl PublicKey for Ec {
fn public_bytes(&self) -> &[u8] {
self.unprefixed_bytes()
}
fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
// TODO: assert_eq!(algorithm, self.algorithm); once *ring* allows this.
let alg = match algorithm {
Algorithm::ECDSAP256SHA256 => &signature::ECDSA_P256_SHA256_FIXED,
Algorithm::ECDSAP384SHA384 => &signature::ECDSA_P384_SHA384_FIXED,
_ => return Err("only ECDSAP256SHA256 and ECDSAP384SHA384 are supported by Ec".into()),
};
let public_key = signature::UnparsedPublicKey::new(alg, self.prefixed_bytes());
public_key.verify(message, signature).map_err(Into::into)
}
}
/// Ed25519 Public key
#[cfg(feature = "dnssec-ring")]
pub struct Ed25519<'k> {
raw: &'k [u8],
}
#[cfg(feature = "dnssec-ring")]
impl<'k> Ed25519<'k> {
/// ```text
/// Internet-Draft EdDSA for DNSSEC December 2016
///
/// An Ed25519 public key consists of a 32-octet value, which is encoded
/// into the Public Key field of a DNSKEY resource record as a simple bit
/// string. The generation of a public key is defined in Section 5.1.5
/// in [RFC 8032]. Breaking tradition, the keys are encoded in little-
/// endian byte order.
/// ```
pub fn from_public_bytes(public_key: &'k [u8]) -> ProtoResult<Self> {
if public_key.len() != ED25519_PUBLIC_KEY_LEN {
return Err(format!(
"expected {} byte public_key: {}",
ED25519_PUBLIC_KEY_LEN,
public_key.len()
)
.into());
}
Ok(Ed25519 { raw: public_key })
}
}
#[cfg(feature = "dnssec-ring")]
impl<'k> PublicKey for Ed25519<'k> {
// TODO: just store reference to public key bytes in ctor...
fn public_bytes(&self) -> &[u8] {
self.raw
}
fn verify(&self, _: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
let public_key = signature::UnparsedPublicKey::new(&signature::ED25519, self.raw);
public_key.verify(message, signature).map_err(Into::into)
}
}
/// Rsa public key
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
pub struct Rsa<'k> {
raw: &'k [u8],
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
pkey: PKey<Public>,
#[cfg(feature = "dnssec-ring")]
pkey: RSAPublicKey<'k>,
}
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
impl<'k> Rsa<'k> {
/// ```text
/// RFC 3110 RSA SIGs and KEYs in the DNS May 2001
///
/// 2. RSA Public KEY Resource Records
///
/// RSA public keys are stored in the DNS as KEY RRs using algorithm
/// number 5 [RFC2535]. The structure of the algorithm specific portion
/// of the RDATA part of such RRs is as shown below.
///
/// Field Size
/// ----- ----
/// exponent length 1 or 3 octets (see text)
/// exponent as specified by length field
/// modulus remaining space
///
/// For interoperability, the exponent and modulus are each limited to
/// 4096 bits in length. The public key exponent is a variable length
/// unsigned integer. Its length in octets is represented as one octet
/// if it is in the range of 1 to 255 and by a zero octet followed by a
/// two octet unsigned length if it is longer than 255 bytes. The public
/// key modulus field is a multiprecision unsigned integer. The length
/// of the modulus can be determined from the RDLENGTH and the preceding
/// RDATA fields including the exponent. Leading zero octets are
/// prohibited in the exponent and modulus.
///
/// Note: KEY RRs for use with RSA/SHA1 DNS signatures MUST use this
/// algorithm number (rather than the algorithm number specified in the
/// obsoleted RFC 2537).
///
/// Note: This changes the algorithm number for RSA KEY RRs to be the
/// same as the new algorithm number for RSA/SHA1 SIGs.
/// ```
pub fn from_public_bytes(raw: &'k [u8]) -> ProtoResult<Self> {
let parsed = RSAPublicKey::try_from(raw)?;
let pkey = into_pkey(parsed)?;
Ok(Rsa { raw, pkey })
}
}
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
fn into_pkey(parsed: RSAPublicKey<'_>) -> ProtoResult<PKey<Public>> {
// FYI: BigNum slices treat all slices as BigEndian, i.e NetworkByteOrder
let e = BigNum::from_slice(parsed.e())?;
let n = BigNum::from_slice(parsed.n())?;
OpenSslRsa::from_public_components(n, e)
.and_then(PKey::from_rsa)
.map_err(Into::into)
}
#[cfg(feature = "dnssec-ring")]
#[allow(clippy::unnecessary_wraps)]
fn into_pkey(parsed: RSAPublicKey<'_>) -> ProtoResult<RSAPublicKey<'_>> {
Ok(parsed)
}
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
impl<'k> PublicKey for Rsa<'k> {
fn public_bytes(&self) -> &[u8] {
self.raw
}
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
verify_with_pkey(&self.pkey, algorithm, message, signature)
}
#[cfg(feature = "dnssec-ring")]
fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
#[allow(deprecated)]
let alg = match algorithm {
Algorithm::RSASHA256 => &signature::RSA_PKCS1_1024_8192_SHA256_FOR_LEGACY_USE_ONLY,
Algorithm::RSASHA512 => &signature::RSA_PKCS1_1024_8192_SHA512_FOR_LEGACY_USE_ONLY,
Algorithm::RSASHA1 => &signature::RSA_PKCS1_1024_8192_SHA1_FOR_LEGACY_USE_ONLY,
Algorithm::RSASHA1NSEC3SHA1 => {
return Err("*ring* doesn't support RSASHA1NSEC3SHA1 yet".into())
}
_ => unreachable!("non-RSA algorithm passed to RSA verify()"),
};
let public_key = signature::RsaPublicKeyComponents {
n: self.pkey.n(),
e: self.pkey.e(),
};
public_key
.verify(alg, message, signature)
.map_err(Into::into)
}
}
/// Variants of all know public keys
#[non_exhaustive]
pub enum PublicKeyEnum<'k> {
/// RSA keypair, supported by OpenSSL
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
Rsa(Rsa<'k>),
/// Elliptic curve keypair
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
Ec(Ec<'k>),
/// Elliptic curve keypair
#[cfg(feature = "dnssec-ring")]
Ec(Ec),
/// Ed25519 public key for the Algorithm::ED25519
#[cfg(feature = "dnssec-ring")]
Ed25519(Ed25519<'k>),
/// PhatomData for compiler when ring and or openssl not defined, do not use...
#[cfg(not(any(feature = "dnssec-ring", feature = "dnssec-openssl")))]
Phantom(&'k PhantomData<()>),
}
impl<'k> PublicKeyEnum<'k> {
/// Converts the bytes into a PulbicKey of the specified algorithm
#[allow(unused_variables, clippy::match_single_binding)]
pub fn from_public_bytes(public_key: &'k [u8], algorithm: Algorithm) -> ProtoResult<Self> {
// try to keep this and `Algorithm::is_supported` in sync
debug_assert!(algorithm.is_supported());
#[allow(deprecated)]
match algorithm {
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
Algorithm::ECDSAP256SHA256 | Algorithm::ECDSAP384SHA384 => Ok(PublicKeyEnum::Ec(
Ec::from_public_bytes(public_key, algorithm)?,
)),
#[cfg(feature = "dnssec-ring")]
Algorithm::ED25519 => Ok(PublicKeyEnum::Ed25519(Ed25519::from_public_bytes(
public_key,
)?)),
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
Algorithm::RSASHA1
| Algorithm::RSASHA1NSEC3SHA1
| Algorithm::RSASHA256
| Algorithm::RSASHA512 => Ok(PublicKeyEnum::Rsa(Rsa::from_public_bytes(public_key)?)),
_ => Err("public key algorithm not supported".into()),
}
}
}
impl<'k> PublicKey for PublicKeyEnum<'k> {
#[allow(clippy::match_single_binding, clippy::match_single_binding)]
fn public_bytes(&self) -> &[u8] {
match self {
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
PublicKeyEnum::Ec(ec) => ec.public_bytes(),
#[cfg(feature = "dnssec-ring")]
PublicKeyEnum::Ed25519(ed) => ed.public_bytes(),
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
PublicKeyEnum::Rsa(rsa) => rsa.public_bytes(),
#[cfg(not(any(feature = "dnssec-ring", feature = "dnssec-openssl")))]
_ => panic!("no public keys registered, enable ring or openssl features"),
}
}
#[allow(unused_variables, clippy::match_single_binding)]
fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
match self {
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
PublicKeyEnum::Ec(ec) => ec.verify(algorithm, message, signature),
#[cfg(feature = "dnssec-ring")]
PublicKeyEnum::Ed25519(ed) => ed.verify(algorithm, message, signature),
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
PublicKeyEnum::Rsa(rsa) => rsa.verify(algorithm, message, signature),
#[cfg(not(any(feature = "dnssec-ring", feature = "dnssec-openssl")))]
_ => panic!("no public keys registered, enable ring or openssl features"),
}
}
}
/// An owned variant of PublicKey
pub struct PublicKeyBuf {
key_buf: Vec<u8>,
}
impl PublicKeyBuf {
/// Constructs a new PublicKey from the specified bytes, these should be in DNSKEY form.
pub fn new(key_buf: Vec<u8>) -> Self {
Self { key_buf }
}
/// Constructs a new [`PublicKeyBuf`] from an [`OpenSslRsa`] key.
#[cfg(feature = "dnssec-openssl")]
pub fn from_rsa<T: HasPublic>(key: &OpenSslRsa<T>) -> Self {
let mut key_buf = Vec::new();
// this is to get us access to the exponent and the modulus
let e = key.e().to_vec();
let n = key.n().to_vec();
if e.len() > 255 {
key_buf.push(0);
key_buf.push((e.len() >> 8) as u8);
}
key_buf.push(e.len() as u8);
key_buf.extend_from_slice(&e);
key_buf.extend_from_slice(&n);
Self { key_buf }
}
/// Constructs a new [`PublicKeyBuf`] from an openssl [`EcKey`].
#[cfg(feature = "dnssec-openssl")]
pub fn from_ec<T: HasPublic>(ec_key: &EcKey<T>) -> DnsSecResult<Self> {
let group = ec_key.group();
let point = ec_key.public_key();
let mut key_buf = BigNumContext::new().and_then(|mut ctx| {
point.to_bytes(group, PointConversionForm::UNCOMPRESSED, &mut ctx)
})?;
// Remove OpenSSL header byte
key_buf.remove(0);
Ok(Self { key_buf })
}
/// Extract the inner buffer of public key bytes.
pub fn into_inner(self) -> Vec<u8> {
self.key_buf
}
}
impl PublicKey for PublicKeyBuf {
fn public_bytes(&self) -> &[u8] {
&self.key_buf
}
fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
let public_key = PublicKeyEnum::from_public_bytes(&self.key_buf, algorithm)?;
public_key.verify(algorithm, message, signature)
}
}
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
#[cfg(test)]
mod tests {
#[cfg(feature = "dnssec-openssl")]
#[test]
fn test_asn1_emit_integer() {
fn test_case(source: &[u8], expected_data: &[u8]) {
use crate::rr::dnssec::public_key::asn1_emit_integer;
let mut output = Vec::<u8>::new();
asn1_emit_integer(&mut output, source);
assert_eq!(output[0], 0x02);
assert_eq!(output[1], expected_data.len() as u8);
assert_eq!(&output[2..], expected_data);
}
test_case(&[0x00], &[0x00]);
test_case(&[0x00, 0x00], &[0x00]);
test_case(&[0x7f], &[0x7f]);
test_case(&[0x80], &[0x00, 0x80]);
test_case(&[0x00, 0x80], &[0x00, 0x80]);
test_case(&[0x00, 0x00, 0x80], &[0x00, 0x80]);
test_case(&[0x7f, 0x00, 0x80], &[0x7f, 0x00, 0x80]);
test_case(&[0x00, 0x7f, 0x00, 0x80], &[0x7f, 0x00, 0x80]);
test_case(&[0x80, 0x00, 0x80], &[0x00, 0x80, 0x00, 0x80]);
test_case(&[0xff, 0x00, 0x80], &[0x00, 0xff, 0x00, 0x80]);
}
}