hickory_proto/rr/dnssec/
public_key.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Public Key implementations for supported key types
#[cfg(not(any(feature = "dnssec-openssl", feature = "dnssec-ring")))]
use std::marker::PhantomData;

#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::bn::BigNum;
#[cfg(feature = "dnssec-openssl")]
use openssl::bn::BigNumContext;
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::ec::{EcGroup, EcPoint};
#[cfg(feature = "dnssec-openssl")]
use openssl::ec::{EcKey, PointConversionForm};
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::nid::Nid;
#[cfg(feature = "dnssec-openssl")]
use openssl::pkey::HasPublic;
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::pkey::{PKey, Public};
#[cfg(feature = "dnssec-openssl")]
use openssl::rsa::Rsa as OpenSslRsa;
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
use openssl::sign::Verifier;
#[cfg(feature = "dnssec-ring")]
use ring::signature::{self, ED25519_PUBLIC_KEY_LEN};

#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
use super::ec_public_key::ECPublicKey;
#[allow(deprecated)]
use super::rdata::key::{KeyTrust, KeyUsage, Protocol, UpdateScope};
use super::rdata::{DNSKEY, DS, KEY};
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
use super::rsa_public_key::RSAPublicKey;
use super::{Algorithm, DigestType};
use crate::error::{DnsSecResult, ProtoResult};
use crate::rr::Name;

/// PublicKeys implement the ability to ideally be zero copy abstractions over public keys for verifying signed content.
///
/// In DNS the KEY and DNSKEY types are generally the RData types which store public key material.
pub trait PublicKey {
    /// Convert this keypair into a KEY record type for usage with SIG0
    /// with key type entity (`KeyUsage::Entity`).
    ///
    /// # Arguments
    ///
    /// * `algorithm` - algorithm of the KEY
    ///
    /// # Return
    ///
    /// the KEY record data
    fn to_sig0key(&self, algorithm: Algorithm) -> KEY {
        self.to_sig0key_with_usage(algorithm, KeyUsage::default())
    }

    /// Convert this keypair into a KEY record type for usage with SIG0
    /// with a given key (usage) type.
    ///
    /// # Arguments
    ///
    /// * `algorithm` - algorithm of the KEY
    /// * `usage`     - the key type
    ///
    /// # Return
    ///
    /// the KEY record data
    fn to_sig0key_with_usage(&self, algorithm: Algorithm, usage: KeyUsage) -> KEY {
        KEY::new(
            KeyTrust::default(),
            usage,
            #[allow(deprecated)]
            UpdateScope::default(),
            Protocol::default(),
            algorithm,
            self.public_bytes().to_vec(),
        )
    }

    /// Creates a DS record for this KeyPair associated to the given name
    ///
    /// # Arguments
    ///
    /// * `name` - name of the DNSKEY record covered by the new DS record
    /// * `algorithm` - the algorithm of the DNSKEY
    /// * `digest_type` - the digest_type used to
    fn to_ds(
        &self,
        name: &Name,
        algorithm: Algorithm,
        digest_type: DigestType,
    ) -> DnsSecResult<DS> {
        let dnskey = self.to_dnskey(algorithm);
        Ok(DS::new(
            self.key_tag(),
            algorithm,
            digest_type,
            dnskey.to_digest(name, digest_type)?.as_ref().to_owned(),
        ))
    }

    /// Creates a Record that represents the public key for this Signer
    ///
    /// # Arguments
    ///
    /// * `algorithm` - algorithm of the DNSKEY
    ///
    /// # Return
    ///
    /// the DNSKEY record data
    fn to_dnskey(&self, algorithm: Algorithm) -> DNSKEY {
        let bytes = self.public_bytes();
        DNSKEY::new(true, true, false, algorithm, bytes.to_owned())
    }

    /// The key tag is calculated as a hash to more quickly lookup a DNSKEY.
    ///
    /// [RFC 1035](https://tools.ietf.org/html/rfc1035), DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION, November 1987
    ///
    /// ```text
    /// RFC 2535                DNS Security Extensions               March 1999
    ///
    /// 4.1.6 Key Tag Field
    ///
    ///  The "key Tag" is a two octet quantity that is used to efficiently
    ///  select between multiple keys which may be applicable and thus check
    ///  that a public key about to be used for the computationally expensive
    ///  effort to check the signature is possibly valid.  For algorithm 1
    ///  (MD5/RSA) as defined in [RFC 2537], it is the next to the bottom two
    ///  octets of the public key modulus needed to decode the signature
    ///  field.  That is to say, the most significant 16 of the least
    ///  significant 24 bits of the modulus in network (big endian) order. For
    ///  all other algorithms, including private algorithms, it is calculated
    ///  as a simple checksum of the KEY RR as described in Appendix C.
    ///
    /// Appendix C: Key Tag Calculation
    ///
    ///  The key tag field in the SIG RR is just a means of more efficiently
    ///  selecting the correct KEY RR to use when there is more than one KEY
    ///  RR candidate available, for example, in verifying a signature.  It is
    ///  possible for more than one candidate key to have the same tag, in
    ///  which case each must be tried until one works or all fail.  The
    ///  following reference implementation of how to calculate the Key Tag,
    ///  for all algorithms other than algorithm 1, is in ANSI C.  It is coded
    ///  for clarity, not efficiency.  (See section 4.1.6 for how to determine
    ///  the Key Tag of an algorithm 1 key.)
    ///
    ///  /* assumes int is at least 16 bits
    ///     first byte of the key tag is the most significant byte of return
    ///     value
    ///     second byte of the key tag is the least significant byte of
    ///     return value
    ///     */
    ///
    ///  int keytag (
    ///
    ///          unsigned char key[],  /* the RDATA part of the KEY RR */
    ///          unsigned int keysize, /* the RDLENGTH */
    ///          )
    ///  {
    ///  long int    ac;    /* assumed to be 32 bits or larger */
    ///
    ///  for ( ac = 0, i = 0; i < keysize; ++i )
    ///      ac += (i&1) ? key[i] : key[i]<<8;
    ///  ac += (ac>>16) & 0xFFFF;
    ///  return ac & 0xFFFF;
    ///  }
    /// ```
    fn key_tag(&self) -> u16 {
        let mut ac = 0;

        for (i, k) in self.public_bytes().iter().enumerate() {
            ac += if i & 0x0001 == 0x0001 {
                *k as usize
            } else {
                (*k as usize) << 8
            };
        }

        ac += (ac >> 16) & 0xFFFF;
        (ac & 0xFFFF) as u16 // this is unnecessary, no?
    }

    /// Returns the public bytes of the public key, in DNS format
    fn public_bytes(&self) -> &[u8];

    /// Verifies the hash matches the signature with the current `key`.
    ///
    /// # Arguments
    ///
    /// * `message` - the message to be validated, see `hash_rrset`
    /// * `signature` - the signature to use to verify the hash, extracted from an `RData::RRSIG`
    ///                 for example.
    ///
    /// # Return value
    ///
    /// True if and only if the signature is valid for the hash. This will always return
    /// false if the `key`.
    #[allow(unused)]
    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()>;
}

#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
fn verify_with_pkey(
    pkey: &PKey<Public>,
    algorithm: Algorithm,
    message: &[u8],
    signature: &[u8],
) -> ProtoResult<()> {
    let digest_type = DigestType::from(algorithm).to_openssl_digest()?;
    let mut verifier = Verifier::new(digest_type, pkey)?;
    verifier.update(message)?;
    verifier
        .verify(signature)
        .map_err(Into::into)
        .and_then(|b| {
            if b {
                Ok(())
            } else {
                Err("could not verify".into())
            }
        })
}

/// Elyptic Curve public key type
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
pub struct Ec<'k> {
    raw: &'k [u8],
    pkey: PKey<Public>,
}

#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
impl<'k> Ec<'k> {
    /// ```text
    /// RFC 6605                    ECDSA for DNSSEC                  April 2012
    ///
    ///   4.  DNSKEY and RRSIG Resource Records for ECDSA
    ///
    ///   ECDSA public keys consist of a single value, called "Q" in FIPS
    ///   186-3.  In DNSSEC keys, Q is a simple bit string that represents the
    ///   uncompressed form of a curve point, "x | y".
    ///
    ///   The ECDSA signature is the combination of two non-negative integers,
    ///   called "r" and "s" in FIPS 186-3.  The two integers, each of which is
    ///   formatted as a simple octet string, are combined into a single longer
    ///   octet string for DNSSEC as the concatenation "r | s".  (Conversion of
    ///   the integers to bit strings is described in Section C.2 of FIPS
    ///   186-3.)  For P-256, each integer MUST be encoded as 32 octets; for
    ///   P-384, each integer MUST be encoded as 48 octets.
    ///
    ///   The algorithm numbers associated with the DNSKEY and RRSIG resource
    ///   records are fully defined in the IANA Considerations section.  They
    ///   are:
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-256 curve and
    ///      SHA-256 use the algorithm number 13.
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-384 curve and
    ///      SHA-384 use the algorithm number 14.
    ///
    ///   Conformant implementations that create records to be put into the DNS
    ///   MUST implement signing and verification for both of the above
    ///   algorithms.  Conformant DNSSEC verifiers MUST implement verification
    ///   for both of the above algorithms.
    /// ```
    pub fn from_public_bytes(public_key: &'k [u8], algorithm: Algorithm) -> ProtoResult<Self> {
        let curve = match algorithm {
            Algorithm::ECDSAP256SHA256 => Nid::X9_62_PRIME256V1,
            Algorithm::ECDSAP384SHA384 => Nid::SECP384R1,
            _ => return Err("only ECDSAP256SHA256 and ECDSAP384SHA384 are supported by Ec".into()),
        };
        // Key needs to be converted to OpenSSL format
        let k = ECPublicKey::from_unprefixed(public_key, algorithm)?;
        EcGroup::from_curve_name(curve)
            .and_then(|group| BigNumContext::new().map(|ctx| (group, ctx)))
            // FYI: BigNum slices treat all slices as BigEndian, i.e NetworkByteOrder
            .and_then(|(group, mut ctx)| {
                EcPoint::from_bytes(&group, k.prefixed_bytes(), &mut ctx)
                    .map(|point| (group, point))
            })
            .and_then(|(group, point)| EcKey::from_public_key(&group, &point))
            .and_then(PKey::from_ec_key)
            .map_err(Into::into)
            .map(|pkey| Ec {
                raw: public_key,
                pkey,
            })
    }
}

#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
fn asn1_emit_integer(output: &mut Vec<u8>, int: &[u8]) {
    assert!(!int.is_empty());
    output.push(0x02); // INTEGER
    if int[0] > 0x7f {
        output.push((int.len() + 1) as u8);
        output.push(0x00); // MSB must be zero
        output.extend(int);
        return;
    }
    // Trim leading zeros
    let mut pos = 0;
    while pos < int.len() {
        if int[pos] == 0 {
            if pos == int.len() - 1 {
                break;
            }
            pos += 1;
            continue;
        }
        if int[pos] > 0x7f {
            // We need to leave one 0x00 to make MSB zero
            pos -= 1;
        }
        break;
    }
    let int_output = &int[pos..];
    output.push(int_output.len() as u8);
    output.extend(int_output);
}

/// Convert raw DNSSEC ECDSA signature to ASN.1 DER format
#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
pub fn dnssec_ecdsa_signature_to_der(signature: &[u8]) -> ProtoResult<Vec<u8>> {
    if signature.is_empty() || signature.len() & 1 != 0 || signature.len() > 127 {
        return Err("invalid signature length".into());
    }
    let part_len = signature.len() / 2;
    // ASN.1 SEQUENCE: 0x30 [LENGTH]
    let mut signature_asn1 = vec![0x30, 0x00];
    asn1_emit_integer(&mut signature_asn1, &signature[..part_len]);
    asn1_emit_integer(&mut signature_asn1, &signature[part_len..]);
    signature_asn1[1] = (signature_asn1.len() - 2) as u8;
    Ok(signature_asn1)
}

#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
impl<'k> PublicKey for Ec<'k> {
    fn public_bytes(&self) -> &[u8] {
        self.raw
    }

    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        let signature_asn1 = dnssec_ecdsa_signature_to_der(signature)?;
        verify_with_pkey(&self.pkey, algorithm, message, &signature_asn1)
    }
}

/// Elyptic Curve public key type
#[cfg(feature = "dnssec-ring")]
pub type Ec = ECPublicKey;

#[cfg(feature = "dnssec-ring")]
impl Ec {
    /// ```text
    /// RFC 6605                    ECDSA for DNSSEC                  April 2012
    ///
    ///   4.  DNSKEY and RRSIG Resource Records for ECDSA
    ///
    ///   ECDSA public keys consist of a single value, called "Q" in FIPS
    ///   186-3.  In DNSSEC keys, Q is a simple bit string that represents the
    ///   uncompressed form of a curve point, "x | y".
    ///
    ///   The ECDSA signature is the combination of two non-negative integers,
    ///   called "r" and "s" in FIPS 186-3.  The two integers, each of which is
    ///   formatted as a simple octet string, are combined into a single longer
    ///   octet string for DNSSEC as the concatenation "r | s".  (Conversion of
    ///   the integers to bit strings is described in Section C.2 of FIPS
    ///   186-3.)  For P-256, each integer MUST be encoded as 32 octets; for
    ///   P-384, each integer MUST be encoded as 48 octets.
    ///
    ///   The algorithm numbers associated with the DNSKEY and RRSIG resource
    ///   records are fully defined in the IANA Considerations section.  They
    ///   are:
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-256 curve and
    ///      SHA-256 use the algorithm number 13.
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-384 curve and
    ///      SHA-384 use the algorithm number 14.
    ///
    ///   Conformant implementations that create records to be put into the DNS
    ///   MUST implement signing and verification for both of the above
    ///   algorithms.  Conformant DNSSEC verifiers MUST implement verification
    ///   for both of the above algorithms.
    /// ```
    pub fn from_public_bytes(public_key: &[u8], algorithm: Algorithm) -> ProtoResult<Self> {
        Self::from_unprefixed(public_key, algorithm)
    }
}

#[cfg(feature = "dnssec-ring")]
impl PublicKey for Ec {
    fn public_bytes(&self) -> &[u8] {
        self.unprefixed_bytes()
    }

    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        // TODO: assert_eq!(algorithm, self.algorithm); once *ring* allows this.
        let alg = match algorithm {
            Algorithm::ECDSAP256SHA256 => &signature::ECDSA_P256_SHA256_FIXED,
            Algorithm::ECDSAP384SHA384 => &signature::ECDSA_P384_SHA384_FIXED,
            _ => return Err("only ECDSAP256SHA256 and ECDSAP384SHA384 are supported by Ec".into()),
        };
        let public_key = signature::UnparsedPublicKey::new(alg, self.prefixed_bytes());
        public_key.verify(message, signature).map_err(Into::into)
    }
}

/// Ed25519 Public key
#[cfg(feature = "dnssec-ring")]
pub struct Ed25519<'k> {
    raw: &'k [u8],
}

#[cfg(feature = "dnssec-ring")]
impl<'k> Ed25519<'k> {
    /// ```text
    ///  Internet-Draft              EdDSA for DNSSEC               December 2016
    ///
    ///  An Ed25519 public key consists of a 32-octet value, which is encoded
    ///  into the Public Key field of a DNSKEY resource record as a simple bit
    ///  string.  The generation of a public key is defined in Section 5.1.5
    ///  in [RFC 8032]. Breaking tradition, the keys are encoded in little-
    ///  endian byte order.
    /// ```
    pub fn from_public_bytes(public_key: &'k [u8]) -> ProtoResult<Self> {
        if public_key.len() != ED25519_PUBLIC_KEY_LEN {
            return Err(format!(
                "expected {} byte public_key: {}",
                ED25519_PUBLIC_KEY_LEN,
                public_key.len()
            )
            .into());
        }

        Ok(Ed25519 { raw: public_key })
    }
}

#[cfg(feature = "dnssec-ring")]
impl<'k> PublicKey for Ed25519<'k> {
    // TODO: just store reference to public key bytes in ctor...
    fn public_bytes(&self) -> &[u8] {
        self.raw
    }

    fn verify(&self, _: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        let public_key = signature::UnparsedPublicKey::new(&signature::ED25519, self.raw);
        public_key.verify(message, signature).map_err(Into::into)
    }
}

/// Rsa public key
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
pub struct Rsa<'k> {
    raw: &'k [u8],

    #[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
    pkey: PKey<Public>,

    #[cfg(feature = "dnssec-ring")]
    pkey: RSAPublicKey<'k>,
}

#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
impl<'k> Rsa<'k> {
    /// ```text
    /// RFC 3110              RSA SIGs and KEYs in the DNS              May 2001
    ///
    ///       2. RSA Public KEY Resource Records
    ///
    ///  RSA public keys are stored in the DNS as KEY RRs using algorithm
    ///  number 5 [RFC2535].  The structure of the algorithm specific portion
    ///  of the RDATA part of such RRs is as shown below.
    ///
    ///        Field             Size
    ///        -----             ----
    ///        exponent length   1 or 3 octets (see text)
    ///        exponent          as specified by length field
    ///        modulus           remaining space
    ///
    ///  For interoperability, the exponent and modulus are each limited to
    ///  4096 bits in length.  The public key exponent is a variable length
    ///  unsigned integer.  Its length in octets is represented as one octet
    ///  if it is in the range of 1 to 255 and by a zero octet followed by a
    ///  two octet unsigned length if it is longer than 255 bytes.  The public
    ///  key modulus field is a multiprecision unsigned integer.  The length
    ///  of the modulus can be determined from the RDLENGTH and the preceding
    ///  RDATA fields including the exponent.  Leading zero octets are
    ///  prohibited in the exponent and modulus.
    ///
    ///  Note: KEY RRs for use with RSA/SHA1 DNS signatures MUST use this
    ///  algorithm number (rather than the algorithm number specified in the
    ///  obsoleted RFC 2537).
    ///
    ///  Note: This changes the algorithm number for RSA KEY RRs to be the
    ///  same as the new algorithm number for RSA/SHA1 SIGs.
    /// ```
    pub fn from_public_bytes(raw: &'k [u8]) -> ProtoResult<Self> {
        let parsed = RSAPublicKey::try_from(raw)?;
        let pkey = into_pkey(parsed)?;
        Ok(Rsa { raw, pkey })
    }
}

#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
fn into_pkey(parsed: RSAPublicKey<'_>) -> ProtoResult<PKey<Public>> {
    // FYI: BigNum slices treat all slices as BigEndian, i.e NetworkByteOrder
    let e = BigNum::from_slice(parsed.e())?;
    let n = BigNum::from_slice(parsed.n())?;

    OpenSslRsa::from_public_components(n, e)
        .and_then(PKey::from_rsa)
        .map_err(Into::into)
}

#[cfg(feature = "dnssec-ring")]
#[allow(clippy::unnecessary_wraps)]
fn into_pkey(parsed: RSAPublicKey<'_>) -> ProtoResult<RSAPublicKey<'_>> {
    Ok(parsed)
}

#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
impl<'k> PublicKey for Rsa<'k> {
    fn public_bytes(&self) -> &[u8] {
        self.raw
    }

    #[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        verify_with_pkey(&self.pkey, algorithm, message, signature)
    }

    #[cfg(feature = "dnssec-ring")]
    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        #[allow(deprecated)]
        let alg = match algorithm {
            Algorithm::RSASHA256 => &signature::RSA_PKCS1_1024_8192_SHA256_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA512 => &signature::RSA_PKCS1_1024_8192_SHA512_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA1 => &signature::RSA_PKCS1_1024_8192_SHA1_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA1NSEC3SHA1 => {
                return Err("*ring* doesn't support RSASHA1NSEC3SHA1 yet".into())
            }
            _ => unreachable!("non-RSA algorithm passed to RSA verify()"),
        };
        let public_key = signature::RsaPublicKeyComponents {
            n: self.pkey.n(),
            e: self.pkey.e(),
        };
        public_key
            .verify(alg, message, signature)
            .map_err(Into::into)
    }
}

/// Variants of all know public keys
#[non_exhaustive]
pub enum PublicKeyEnum<'k> {
    /// RSA keypair, supported by OpenSSL
    #[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
    Rsa(Rsa<'k>),
    /// Elliptic curve keypair
    #[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
    Ec(Ec<'k>),
    /// Elliptic curve keypair
    #[cfg(feature = "dnssec-ring")]
    Ec(Ec),
    /// Ed25519 public key for the Algorithm::ED25519
    #[cfg(feature = "dnssec-ring")]
    Ed25519(Ed25519<'k>),
    /// PhatomData for compiler when ring and or openssl not defined, do not use...
    #[cfg(not(any(feature = "dnssec-ring", feature = "dnssec-openssl")))]
    Phantom(&'k PhantomData<()>),
}

impl<'k> PublicKeyEnum<'k> {
    /// Converts the bytes into a PulbicKey of the specified algorithm
    #[allow(unused_variables, clippy::match_single_binding)]
    pub fn from_public_bytes(public_key: &'k [u8], algorithm: Algorithm) -> ProtoResult<Self> {
        // try to keep this and `Algorithm::is_supported` in sync
        debug_assert!(algorithm.is_supported());

        #[allow(deprecated)]
        match algorithm {
            #[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
            Algorithm::ECDSAP256SHA256 | Algorithm::ECDSAP384SHA384 => Ok(PublicKeyEnum::Ec(
                Ec::from_public_bytes(public_key, algorithm)?,
            )),
            #[cfg(feature = "dnssec-ring")]
            Algorithm::ED25519 => Ok(PublicKeyEnum::Ed25519(Ed25519::from_public_bytes(
                public_key,
            )?)),
            #[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
            Algorithm::RSASHA1
            | Algorithm::RSASHA1NSEC3SHA1
            | Algorithm::RSASHA256
            | Algorithm::RSASHA512 => Ok(PublicKeyEnum::Rsa(Rsa::from_public_bytes(public_key)?)),
            _ => Err("public key algorithm not supported".into()),
        }
    }
}

impl<'k> PublicKey for PublicKeyEnum<'k> {
    #[allow(clippy::match_single_binding, clippy::match_single_binding)]
    fn public_bytes(&self) -> &[u8] {
        match self {
            #[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
            PublicKeyEnum::Ec(ec) => ec.public_bytes(),
            #[cfg(feature = "dnssec-ring")]
            PublicKeyEnum::Ed25519(ed) => ed.public_bytes(),
            #[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
            PublicKeyEnum::Rsa(rsa) => rsa.public_bytes(),
            #[cfg(not(any(feature = "dnssec-ring", feature = "dnssec-openssl")))]
            _ => panic!("no public keys registered, enable ring or openssl features"),
        }
    }

    #[allow(unused_variables, clippy::match_single_binding)]
    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        match self {
            #[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
            PublicKeyEnum::Ec(ec) => ec.verify(algorithm, message, signature),
            #[cfg(feature = "dnssec-ring")]
            PublicKeyEnum::Ed25519(ed) => ed.verify(algorithm, message, signature),
            #[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
            PublicKeyEnum::Rsa(rsa) => rsa.verify(algorithm, message, signature),
            #[cfg(not(any(feature = "dnssec-ring", feature = "dnssec-openssl")))]
            _ => panic!("no public keys registered, enable ring or openssl features"),
        }
    }
}

/// An owned variant of PublicKey
pub struct PublicKeyBuf {
    key_buf: Vec<u8>,
}

impl PublicKeyBuf {
    /// Constructs a new PublicKey from the specified bytes, these should be in DNSKEY form.
    pub fn new(key_buf: Vec<u8>) -> Self {
        Self { key_buf }
    }

    /// Constructs a new [`PublicKeyBuf`] from an [`OpenSslRsa`] key.
    #[cfg(feature = "dnssec-openssl")]
    pub fn from_rsa<T: HasPublic>(key: &OpenSslRsa<T>) -> Self {
        let mut key_buf = Vec::new();

        // this is to get us access to the exponent and the modulus
        let e = key.e().to_vec();
        let n = key.n().to_vec();

        if e.len() > 255 {
            key_buf.push(0);
            key_buf.push((e.len() >> 8) as u8);
        }

        key_buf.push(e.len() as u8);
        key_buf.extend_from_slice(&e);
        key_buf.extend_from_slice(&n);
        Self { key_buf }
    }

    /// Constructs a new [`PublicKeyBuf`] from an openssl [`EcKey`].
    #[cfg(feature = "dnssec-openssl")]
    pub fn from_ec<T: HasPublic>(ec_key: &EcKey<T>) -> DnsSecResult<Self> {
        let group = ec_key.group();
        let point = ec_key.public_key();

        let mut key_buf = BigNumContext::new().and_then(|mut ctx| {
            point.to_bytes(group, PointConversionForm::UNCOMPRESSED, &mut ctx)
        })?;

        // Remove OpenSSL header byte
        key_buf.remove(0);
        Ok(Self { key_buf })
    }

    /// Extract the inner buffer of public key bytes.
    pub fn into_inner(self) -> Vec<u8> {
        self.key_buf
    }
}

impl PublicKey for PublicKeyBuf {
    fn public_bytes(&self) -> &[u8] {
        &self.key_buf
    }

    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        let public_key = PublicKeyEnum::from_public_bytes(&self.key_buf, algorithm)?;

        public_key.verify(algorithm, message, signature)
    }
}

#[cfg(all(not(feature = "dnssec-ring"), feature = "dnssec-openssl"))]
#[cfg(test)]
mod tests {
    #[cfg(feature = "dnssec-openssl")]
    #[test]
    fn test_asn1_emit_integer() {
        fn test_case(source: &[u8], expected_data: &[u8]) {
            use crate::rr::dnssec::public_key::asn1_emit_integer;

            let mut output = Vec::<u8>::new();
            asn1_emit_integer(&mut output, source);
            assert_eq!(output[0], 0x02);
            assert_eq!(output[1], expected_data.len() as u8);
            assert_eq!(&output[2..], expected_data);
        }
        test_case(&[0x00], &[0x00]);
        test_case(&[0x00, 0x00], &[0x00]);
        test_case(&[0x7f], &[0x7f]);
        test_case(&[0x80], &[0x00, 0x80]);
        test_case(&[0x00, 0x80], &[0x00, 0x80]);
        test_case(&[0x00, 0x00, 0x80], &[0x00, 0x80]);
        test_case(&[0x7f, 0x00, 0x80], &[0x7f, 0x00, 0x80]);
        test_case(&[0x00, 0x7f, 0x00, 0x80], &[0x7f, 0x00, 0x80]);
        test_case(&[0x80, 0x00, 0x80], &[0x00, 0x80, 0x00, 0x80]);
        test_case(&[0xff, 0x00, 0x80], &[0x00, 0xff, 0x00, 0x80]);
    }
}