hickory_proto/rr/dnssec/rdata/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! All record data structures and related serialization methods
use std::fmt;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
// TODO: these should each be it's own struct, it would make parsing and decoding a little cleaner
// and also a little more ergonomic when accessing.
// each of these module's has the parser for that rdata embedded, to keep the file sizes down...
pub mod cdnskey;
pub mod cds;
pub mod dnskey;
pub mod ds;
#[allow(deprecated)]
pub mod key;
pub mod nsec;
pub mod nsec3;
pub mod nsec3param;
pub mod rrsig;
pub mod sig;
pub mod tsig;
use enum_as_inner::EnumAsInner;
use tracing::trace;
use crate::{
error::*,
rr::{rdata::NULL, RData, RecordDataDecodable, RecordType},
serialize::binary::{BinDecodable, BinDecoder, BinEncodable, BinEncoder, Restrict},
};
pub use self::cdnskey::CDNSKEY;
pub use self::cds::CDS;
pub use self::dnskey::DNSKEY;
pub use self::ds::DS;
pub use self::key::KEY;
pub use self::nsec::NSEC;
pub use self::nsec3::NSEC3;
pub use self::nsec3param::NSEC3PARAM;
pub use self::rrsig::RRSIG;
pub use self::sig::SIG;
pub use self::tsig::TSIG;
/// The type of the resource record, for DNSSEC-specific records.
#[deprecated(note = "All RecordType definitions have been moved into RecordType")]
pub type DNSSECRecordType = RecordType;
/// Record data enum variants for DNSSEC-specific records.
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, EnumAsInner, PartialEq, Clone, Eq)]
#[non_exhaustive]
pub enum DNSSECRData {
/// ```text
/// RFC 7344 Delegation Trust Maintenance September 2014
///
/// 3.2. CDNSKEY Resource Record Format
///
/// The wire and presentation format of the CDNSKEY ("Child DNSKEY")
/// resource record is identical to the DNSKEY record. IANA has
/// allocated RR code 60 for the CDNSKEY resource record via Expert
/// Review. The CDNSKEY RR uses the same registries as DNSKEY for its
/// fields.
///
/// No special processing is performed by authoritative servers or by
/// resolvers, when serving or resolving. For all practical purposes,
/// CDNSKEY is a regular RR type.
/// ```
CDNSKEY(CDNSKEY),
/// ```text
/// RFC 7344 Delegation Trust Maintenance September 2014
///
/// 3.1. CDS Resource Record Format
/// The wire and presentation format of the Child DS (CDS) resource
/// record is identical to the DS record [RFC4034]. IANA has allocated
/// RR code 59 for the CDS resource record via Expert Review
/// [DNS-TRANSPORT]. The CDS RR uses the same registries as DS for its
/// fields.
///
/// No special processing is performed by authoritative servers or by
/// resolvers, when serving or resolving. For all practical purposes,
/// CDS is a regular RR type.
/// ```
CDS(CDS),
/// ```text
/// RFC 4034 DNSSEC Resource Records March 2005
///
/// 2.1. DNSKEY RDATA Wire Format
///
/// The RDATA for a DNSKEY RR consists of a 2 octet Flags Field, a 1
/// octet Protocol Field, a 1 octet Algorithm Field, and the Public Key
/// Field.
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Flags | Protocol | Algorithm |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / /
/// / Public Key /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// 2.1.1. The Flags Field
///
/// Bit 7 of the Flags field is the Zone Key flag. If bit 7 has value 1,
/// then the DNSKEY record holds a DNS zone key, and the DNSKEY RR's
/// owner name MUST be the name of a zone. If bit 7 has value 0, then
/// the DNSKEY record holds some other type of DNS public key and MUST
/// NOT be used to verify RRSIGs that cover RRsets.
///
/// Bit 15 of the Flags field is the Secure Entry Point flag, described
/// in [RFC3757]. If bit 15 has value 1, then the DNSKEY record holds a
/// key intended for use as a secure entry point. This flag is only
/// intended to be a hint to zone signing or debugging software as to the
/// intended use of this DNSKEY record; validators MUST NOT alter their
/// behavior during the signature validation process in any way based on
/// the setting of this bit. This also means that a DNSKEY RR with the
/// SEP bit set would also need the Zone Key flag set in order to be able
/// to generate signatures legally. A DNSKEY RR with the SEP set and the
/// Zone Key flag not set MUST NOT be used to verify RRSIGs that cover
/// RRsets.
///
/// Bits 0-6 and 8-14 are reserved: these bits MUST have value 0 upon
/// creation of the DNSKEY RR and MUST be ignored upon receipt.
///
/// RFC 5011 Trust Anchor Update September 2007
///
/// 7. IANA Considerations
///
/// The IANA has assigned a bit in the DNSKEY flags field (see Section 7
/// of [RFC4034]) for the REVOKE bit (8).
/// ```
DNSKEY(DNSKEY),
/// ```text
/// 5.1. DS RDATA Wire Format
///
/// The RDATA for a DS RR consists of a 2 octet Key Tag field, a 1 octet
/// Algorithm field, a 1 octet Digest Type field, and a Digest field.
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Key Tag | Algorithm | Digest Type |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / /
/// / Digest /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// 5.1.1. The Key Tag Field
///
/// The Key Tag field lists the key tag of the DNSKEY RR referred to by
/// the DS record, in network byte order.
///
/// The Key Tag used by the DS RR is identical to the Key Tag used by
/// RRSIG RRs. Appendix B describes how to compute a Key Tag.
///
/// 5.1.2. The Algorithm Field
///
/// The Algorithm field lists the algorithm number of the DNSKEY RR
/// referred to by the DS record.
///
/// The algorithm number used by the DS RR is identical to the algorithm
/// number used by RRSIG and DNSKEY RRs. Appendix A.1 lists the
/// algorithm number types.
///
/// 5.1.3. The Digest Type Field
///
/// The DS RR refers to a DNSKEY RR by including a digest of that DNSKEY
/// RR. The Digest Type field identifies the algorithm used to construct
/// the digest. Appendix A.2 lists the possible digest algorithm types.
///
/// 5.1.4. The Digest Field
///
/// The DS record refers to a DNSKEY RR by including a digest of that
/// DNSKEY RR.
///
/// The digest is calculated by concatenating the canonical form of the
/// fully qualified owner name of the DNSKEY RR with the DNSKEY RDATA,
/// and then applying the digest algorithm.
///
/// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
///
/// "|" denotes concatenation
///
/// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
///
/// The size of the digest may vary depending on the digest algorithm and
/// DNSKEY RR size. As of the time of this writing, the only defined
/// digest algorithm is SHA-1, which produces a 20 octet digest.
/// ```
DS(DS),
/// ```text
/// RFC 2535 DNS Security Extensions March 1999
///
/// 3.1 KEY RDATA format
///
/// The RDATA for a KEY RR consists of flags, a protocol octet, the
/// algorithm number octet, and the public key itself. The format is as
/// follows:
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | flags | protocol | algorithm |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | /
/// / public key /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
///
/// The KEY RR is not intended for storage of certificates and a separate
/// certificate RR has been developed for that purpose, defined in [RFC
/// 2538].
///
/// The meaning of the KEY RR owner name, flags, and protocol octet are
/// described in Sections 3.1.1 through 3.1.5 below. The flags and
/// algorithm must be examined before any data following the algorithm
/// octet as they control the existence and format of any following data.
/// The algorithm and public key fields are described in Section 3.2.
/// The format of the public key is algorithm dependent.
///
/// KEY RRs do not specify their validity period but their authenticating
/// SIG RR(s) do as described in Section 4 below.
/// ```
KEY(KEY),
/// ```text
/// RFC 4034 DNSSEC Resource Records March 2005
///
/// 4.1. NSEC RDATA Wire Format
///
/// The RDATA of the NSEC RR is as shown below:
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / Next Domain Name /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / Type Bit Maps /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// ```
NSEC(NSEC),
/// ```text
/// RFC 5155 NSEC3 March 2008
///
/// 3.2. NSEC3 RDATA Wire Format
///
/// The RDATA of the NSEC3 RR is as shown below:
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Hash Alg. | Flags | Iterations |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Salt Length | Salt /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Hash Length | Next Hashed Owner Name /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / Type Bit Maps /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// Hash Algorithm is a single octet.
///
/// Flags field is a single octet, the Opt-Out flag is the least
/// significant bit, as shown below:
///
/// 0 1 2 3 4 5 6 7
/// +-+-+-+-+-+-+-+-+
/// | |O|
/// +-+-+-+-+-+-+-+-+
///
/// Iterations is represented as a 16-bit unsigned integer, with the most
/// significant bit first.
///
/// Salt Length is represented as an unsigned octet. Salt Length
/// represents the length of the Salt field in octets. If the value is
/// zero, the following Salt field is omitted.
///
/// Salt, if present, is encoded as a sequence of binary octets. The
/// length of this field is determined by the preceding Salt Length
/// field.
///
/// Hash Length is represented as an unsigned octet. Hash Length
/// represents the length of the Next Hashed Owner Name field in octets.
///
/// The next hashed owner name is not base32 encoded, unlike the owner
/// name of the NSEC3 RR. It is the unmodified binary hash value. It
/// does not include the name of the containing zone. The length of this
/// field is determined by the preceding Hash Length field.
///
/// 3.2.1. Type Bit Maps Encoding
///
/// The encoding of the Type Bit Maps field is the same as that used by
/// the NSEC RR, described in [RFC4034]. It is explained and clarified
/// here for clarity.
///
/// The RR type space is split into 256 window blocks, each representing
/// the low-order 8 bits of the 16-bit RR type space. Each block that
/// has at least one active RR type is encoded using a single octet
/// window number (from 0 to 255), a single octet bitmap length (from 1
/// to 32) indicating the number of octets used for the bitmap of the
/// window block, and up to 32 octets (256 bits) of bitmap.
///
/// Blocks are present in the NSEC3 RR RDATA in increasing numerical
/// order.
///
/// Type Bit Maps Field = ( Window Block # | Bitmap Length | Bitmap )+
///
/// where "|" denotes concatenation.
///
/// Each bitmap encodes the low-order 8 bits of RR types within the
/// window block, in network bit order. The first bit is bit 0. For
/// window block 0, bit 1 corresponds to RR type 1 (A), bit 2 corresponds
/// to RR type 2 (NS), and so forth. For window block 1, bit 1
/// corresponds to RR type 257, bit 2 to RR type 258. If a bit is set to
/// 1, it indicates that an RRSet of that type is present for the
/// original owner name of the NSEC3 RR. If a bit is set to 0, it
/// indicates that no RRSet of that type is present for the original
/// owner name of the NSEC3 RR.
///
/// Since bit 0 in window block 0 refers to the non-existing RR type 0,
/// it MUST be set to 0. After verification, the validator MUST ignore
/// the value of bit 0 in window block 0.
///
/// Bits representing Meta-TYPEs or QTYPEs as specified in Section 3.1 of
/// [RFC2929] or within the range reserved for assignment only to QTYPEs
/// and Meta-TYPEs MUST be set to 0, since they do not appear in zone
/// data. If encountered, they must be ignored upon reading.
///
/// Blocks with no types present MUST NOT be included. Trailing zero
/// octets in the bitmap MUST be omitted. The length of the bitmap of
/// each block is determined by the type code with the largest numerical
/// value, within that block, among the set of RR types present at the
/// original owner name of the NSEC3 RR. Trailing octets not specified
/// MUST be interpreted as zero octets.
/// ```
NSEC3(NSEC3),
/// ```text
/// RFC 5155 NSEC3 March 2008
///
/// 4.2. NSEC3PARAM RDATA Wire Format
///
/// The RDATA of the NSEC3PARAM RR is as shown below:
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Hash Alg. | Flags | Iterations |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Salt Length | Salt /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// Hash Algorithm is a single octet.
///
/// Flags field is a single octet.
///
/// Iterations is represented as a 16-bit unsigned integer, with the most
/// significant bit first.
///
/// Salt Length is represented as an unsigned octet. Salt Length
/// represents the length of the following Salt field in octets. If the
/// value is zero, the Salt field is omitted.
///
/// Salt, if present, is encoded as a sequence of binary octets. The
/// length of this field is determined by the preceding Salt Length
/// field.
/// ```
NSEC3PARAM(NSEC3PARAM),
/// ```text
/// RFC 2535 & 2931 DNS Security Extensions March 1999
/// RFC 4034 DNSSEC Resource Records March 2005
///
/// 3.1. RRSIG RDATA Wire Format
///
/// The RDATA for an RRSIG RR consists of a 2 octet Type Covered field, a
/// 1 octet Algorithm field, a 1 octet Labels field, a 4 octet Original
/// TTL field, a 4 octet Signature Expiration field, a 4 octet Signature
/// Inception field, a 2 octet Key tag, the Signer's Name field, and the
/// Signature field.
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Type Covered | Algorithm | Labels |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Original TTL |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Signature Expiration |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Signature Inception |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Key Tag | /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Signer's Name /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / /
/// / Signature /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// ```
RRSIG(RRSIG),
/// ```text
/// RFC 2535 & 2931 DNS Security Extensions March 1999
/// RFC 4034 DNSSEC Resource Records March 2005
///
/// 3.1. RRSIG RDATA Wire Format
///
/// The RDATA for an RRSIG RR consists of a 2 octet Type Covered field, a
/// 1 octet Algorithm field, a 1 octet Labels field, a 4 octet Original
/// TTL field, a 4 octet Signature Expiration field, a 4 octet Signature
/// Inception field, a 2 octet Key tag, the Signer's Name field, and the
/// Signature field.
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Type Covered | Algorithm | Labels |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Original TTL |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Signature Expiration |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Signature Inception |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Key Tag | /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Signer's Name /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / /
/// / Signature /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// ```
SIG(SIG),
/// [RFC 8945, Secret Key Transaction Authentication for DNS](https://tools.ietf.org/html/rfc8945#section-4.2)
///
/// ```text
/// 4.2. TSIG Record Format
///
/// The fields of the TSIG RR are described below. All multi-octet
/// integers in the record are sent in network byte order (see
/// Section 2.3.2 of [RFC1035]).
///
/// NAME: The name of the key used, in domain name syntax. The name
/// should reflect the names of the hosts and uniquely identify the
/// key among a set of keys these two hosts may share at any given
/// time. For example, if hosts A.site.example and B.example.net
/// share a key, possibilities for the key name include
/// <id>.A.site.example, <id>.B.example.net, and
/// <id>.A.site.example.B.example.net. It should be possible for more
/// than one key to be in simultaneous use among a set of interacting
/// hosts. This allows for periodic key rotation as per best
/// operational practices, as well as algorithm agility as indicated
/// by [RFC7696].
///
/// The name may be used as a local index to the key involved, but it
/// is recommended that it be globally unique. Where a key is just
/// shared between two hosts, its name actually need only be
/// meaningful to them, but it is recommended that the key name be
/// mnemonic and incorporate the names of participating agents or
/// resources as suggested above.
///
/// TYPE: This MUST be TSIG (250: Transaction SIGnature).
///
/// CLASS: This MUST be ANY.
///
/// TTL: This MUST be 0.
///
/// RDLENGTH: (variable)
///
/// RDATA: The RDATA for a TSIG RR consists of a number of fields,
/// described below:
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / Algorithm Name /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | |
/// | Time Signed +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | | Fudge |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | MAC Size | /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ MAC /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Original ID | Error |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Other Len | /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Other Data /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// The contents of the RDATA fields are:
///
/// Algorithm Name:
/// an octet sequence identifying the TSIG algorithm in the domain
/// name syntax. (Allowed names are listed in Table 3.) The name is
/// stored in the DNS name wire format as described in [RFC1034]. As
/// per [RFC3597], this name MUST NOT be compressed.
///
/// Time Signed:
/// an unsigned 48-bit integer containing the time the message was
/// signed as seconds since 00:00 on 1970-01-01 UTC, ignoring leap
/// seconds.
///
/// Fudge:
/// an unsigned 16-bit integer specifying the allowed time difference
/// in seconds permitted in the Time Signed field.
///
/// MAC Size:
/// an unsigned 16-bit integer giving the length of the MAC field in
/// octets. Truncation is indicated by a MAC Size less than the size
/// of the keyed hash produced by the algorithm specified by the
/// Algorithm Name.
///
/// MAC:
/// a sequence of octets whose contents are defined by the TSIG
/// algorithm used, possibly truncated as specified by the MAC Size.
/// The length of this field is given by the MAC Size. Calculation of
/// the MAC is detailed in Section 4.3.
///
/// Original ID:
/// an unsigned 16-bit integer holding the message ID of the original
/// request message. For a TSIG RR on a request, it is set equal to
/// the DNS message ID. In a TSIG attached to a response -- or in
/// cases such as the forwarding of a dynamic update request -- the
/// field contains the ID of the original DNS request.
///
/// Error:
/// in responses, an unsigned 16-bit integer containing the extended
/// RCODE covering TSIG processing. In requests, this MUST be zero.
///
/// Other Len:
/// an unsigned 16-bit integer specifying the length of the Other Data
/// field in octets.
///
/// Other Data:
/// additional data relevant to the TSIG record. In responses, this
/// will be empty (i.e., Other Len will be zero) unless the content of
/// the Error field is BADTIME, in which case it will be a 48-bit
/// unsigned integer containing the server's current time as the
/// number of seconds since 00:00 on 1970-01-01 UTC, ignoring leap
/// seconds (see Section 5.2.3). This document assigns no meaning to
/// its contents in requests.
/// ```
TSIG(TSIG),
/// Unknown or unsupported DNSSEC record data
Unknown {
/// RecordType code
code: u16,
/// RData associated to the record
rdata: NULL,
},
}
impl DNSSECRData {
pub(crate) fn read(
decoder: &mut BinDecoder<'_>,
record_type: RecordType,
rdata_length: Restrict<u16>,
) -> ProtoResult<Self> {
match record_type {
RecordType::CDNSKEY => {
trace!("reading CDNSKEY");
CDNSKEY::read_data(decoder, rdata_length).map(Self::CDNSKEY)
}
RecordType::CDS => {
trace!("reading CDS");
CDS::read_data(decoder, rdata_length).map(Self::CDS)
}
RecordType::DNSKEY => {
trace!("reading DNSKEY");
DNSKEY::read_data(decoder, rdata_length).map(Self::DNSKEY)
}
RecordType::DS => {
trace!("reading DS");
DS::read_data(decoder, rdata_length).map(Self::DS)
}
RecordType::KEY => {
trace!("reading KEY");
KEY::read_data(decoder, rdata_length).map(Self::KEY)
}
RecordType::NSEC => {
trace!("reading NSEC");
NSEC::read_data(decoder, rdata_length).map(Self::NSEC)
}
RecordType::NSEC3 => {
trace!("reading NSEC3");
NSEC3::read_data(decoder, rdata_length).map(Self::NSEC3)
}
RecordType::NSEC3PARAM => {
trace!("reading NSEC3PARAM");
NSEC3PARAM::read(decoder).map(Self::NSEC3PARAM)
}
RecordType::RRSIG => {
trace!("reading RRSIG");
RRSIG::read_data(decoder, rdata_length).map(Self::RRSIG)
}
RecordType::SIG => {
trace!("reading SIG");
SIG::read_data(decoder, rdata_length).map(Self::SIG)
}
RecordType::TSIG => {
trace!("reading TSIG");
TSIG::read_data(decoder, rdata_length).map(Self::TSIG)
}
r => {
panic!("not a dnssec RecordType: {}", r);
}
}
}
pub(crate) fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
match self {
Self::CDNSKEY(cdnskey) => encoder.with_canonical_names(|encoder| cdnskey.emit(encoder)),
Self::CDS(cds) => encoder.with_canonical_names(|encoder| cds.emit(encoder)),
Self::DS(ds) => encoder.with_canonical_names(|encoder| ds.emit(encoder)),
Self::KEY(key) => encoder.with_canonical_names(|encoder| key.emit(encoder)),
Self::DNSKEY(dnskey) => encoder.with_canonical_names(|encoder| dnskey.emit(encoder)),
Self::NSEC(nsec) => encoder.with_canonical_names(|encoder| nsec.emit(encoder)),
Self::NSEC3(nsec3) => encoder.with_canonical_names(|encoder| nsec3.emit(encoder)),
Self::NSEC3PARAM(nsec3param) => {
encoder.with_canonical_names(|encoder| nsec3param.emit(encoder))
}
Self::RRSIG(rrsig) => encoder.with_canonical_names(|encoder| rrsig.emit(encoder)),
Self::SIG(sig) => encoder.with_canonical_names(|encoder| sig.emit(encoder)),
Self::TSIG(tsig) => tsig.emit(encoder),
Self::Unknown { rdata, .. } => {
encoder.with_canonical_names(|encoder| rdata.emit(encoder))
}
}
}
pub(crate) fn to_record_type(&self) -> RecordType {
match self {
Self::CDNSKEY(..) => RecordType::CDNSKEY,
Self::CDS(..) => RecordType::CDS,
Self::DS(..) => RecordType::DS,
Self::KEY(..) => RecordType::KEY,
Self::DNSKEY(..) => RecordType::DNSKEY,
Self::NSEC(..) => RecordType::NSEC,
Self::NSEC3(..) => RecordType::NSEC3,
Self::NSEC3PARAM(..) => RecordType::NSEC3PARAM,
Self::SIG(..) => RecordType::SIG,
Self::RRSIG(..) => RecordType::RRSIG,
Self::TSIG(..) => RecordType::TSIG,
Self::Unknown { code, .. } => RecordType::Unknown(*code),
}
}
}
impl fmt::Display for DNSSECRData {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
fn w<D: fmt::Display>(f: &mut fmt::Formatter<'_>, rdata: D) -> Result<(), fmt::Error> {
write!(f, "{rdata}")
}
match self {
Self::CDNSKEY(key) => w(f, key),
Self::CDS(ds) => w(f, ds),
Self::DS(ds) => w(f, ds),
Self::KEY(key) => w(f, key),
Self::DNSKEY(key) => w(f, key),
Self::NSEC(nsec) => w(f, nsec),
Self::NSEC3(nsec3) => w(f, nsec3),
Self::NSEC3PARAM(nsec3param) => w(f, nsec3param),
Self::SIG(sig) => w(f, sig),
Self::RRSIG(rrsig) => w(f, rrsig),
Self::TSIG(tsig) => w(f, tsig),
Self::Unknown { rdata, .. } => w(f, rdata),
}
}
}
impl From<DNSSECRData> for RData {
fn from(rdata: DNSSECRData) -> Self {
Self::DNSSEC(rdata)
}
}