hickory_proto/rr/rdata/cert.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
// Copyright 2024 Brian Taber <btaber@zsd.systems>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! CERT record type for storing certificates in DNS
use std::fmt;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::{
error::{ProtoError, ProtoResult},
rr::{RData, RecordData, RecordDataDecodable, RecordType},
serialize::binary::{
BinDecodable, BinDecoder, BinEncodable, BinEncoder, Restrict, RestrictedMath,
},
};
/// [RFC 4398, Storing Certificates in DNS, November 1987](https://tools.ietf.org/html/rfc4398#section-2.1)
///
/// ```text
/// [2.1](https://datatracker.ietf.org/doc/html/rfc4398#section-2.1). Certificate Type Values
///
/// The following values are defined or reserved:
///
/// Value Mnemonic Certificate Type
/// ----- -------- ----------------
/// 0 Reserved
/// 1 PKIX X.509 as per PKIX
/// 2 SPKI SPKI certificate
/// 3 PGP OpenPGP packet
/// 4 IPKIX The URL of an X.509 data object
/// 5 ISPKI The URL of an SPKI certificate
/// 6 IPGP The fingerprint and URL of an OpenPGP packet
/// 7 ACPKIX Attribute Certificate
/// 8 IACPKIX The URL of an Attribute Certificate
/// 9-252 Available for IANA assignment
/// 253 URI URI private
/// 254 OID OID private
/// 255 Reserved
/// 256-65279 Available for IANA assignment
/// 65280-65534 Experimental
/// 65535 Reserved
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum CertType {
/// 0, 255, 65535 Reserved
Reserved,
/// 1 PKIX X.509 as per PKIX
PKIX,
/// 2 SPKI SPKI certificate
SPKI,
/// 3 PGP OpenPGP packet
PGP,
/// 4 IPKIX The URL of an X.509 data object
IPKIX,
/// 5 ISPKI The URL of an SPKI certificate
ISPKI,
/// 6 IPGP The fingerprint and URL of an OpenPGP packet
IPGP,
/// 7 ACPKIX Attribute Certificate
ACPKIX,
/// 8 IACPKIX The URL of an Attribute Certificate
IACPKIX,
/// 253 URI URI private
URI,
/// 254 OID OID private
OID,
/// 9-252, 256-65279 Available for IANA assignment
Unassigned(u16),
/// 65280-65534 Experimental
Experimental(u16),
}
impl From<u16> for CertType {
fn from(cert_type: u16) -> Self {
match cert_type {
0 => Self::Reserved,
1 => Self::PKIX,
2 => Self::SPKI,
3 => Self::PGP,
4 => Self::IPKIX,
5 => Self::ISPKI,
6 => Self::IPGP,
7 => Self::ACPKIX,
8 => Self::IACPKIX,
9_u16..=252_u16 => Self::Unassigned(cert_type),
253 => Self::URI,
254 => Self::OID,
255 => Self::Reserved,
256_u16..=65279_u16 => Self::Unassigned(cert_type),
65280_u16..=65534_u16 => Self::Experimental(cert_type),
65535 => Self::Reserved,
}
}
}
impl From<CertType> for u16 {
fn from(cert_type: CertType) -> Self {
match cert_type {
CertType::Reserved => 0,
CertType::PKIX => 1,
CertType::SPKI => 2,
CertType::PGP => 3,
CertType::IPKIX => 4,
CertType::ISPKI => 5,
CertType::IPGP => 6,
CertType::ACPKIX => 7,
CertType::IACPKIX => 8,
CertType::URI => 253,
CertType::OID => 254,
CertType::Unassigned(cert_type) => cert_type,
CertType::Experimental(cert_type) => cert_type,
}
}
}
impl<'r> BinDecodable<'r> for CertType {
fn read(decoder: &mut BinDecoder<'r>) -> ProtoResult<Self> {
let algorithm_id = decoder
.read_u16()?
.unverified(/*CertType is verified as safe in processing this*/);
Ok(Self::from(algorithm_id))
}
}
impl fmt::Display for CertType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self)
}
}
/// [RFC 4398, Storing Certificates in DNS, November 1987](https://tools.ietf.org/html/rfc4398#section-2.2)
///
/// ```text
///
/// [2.2](https://datatracker.ietf.org/doc/html/rfc4398#section-2.2). Text Representation of CERT RRs
///
/// The RDATA portion of a CERT RR has the type field as an unsigned
/// decimal integer or as a mnemonic symbol as listed in [Section 2.1](https://datatracker.ietf.org/doc/html/rfc4398#section-2.1),
/// above.
///
/// The key tag field is represented as an unsigned decimal integer.
///
/// The algorithm field is represented as an unsigned decimal integer or
/// a mnemonic symbol as listed in [[12](https://datatracker.ietf.org/doc/html/rfc4398#ref-12)].
///
/// [12] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose,
/// "Resource Records for the DNS Security Extensions", RFC 4034,
/// March 2005.
///
///
/// [RFC 4034, Resource Records for the DNS Security Extensions, March 2005][rfc4034]
/// https://tools.ietf.org/html/rfc4034#appendix-A.1
///
/// [A.1](https://datatracker.ietf.org/doc/html/rfc4034#appendix-A.1). DNSSEC Algorithm Types
///
/// The DNSKEY, RRSIG, and DS RRs use an 8-bit number to identify the
/// security algorithm being used. These values are stored in the
/// "Algorithm number" field in the resource record RDATA.
///
/// Some algorithms are usable only for zone signing (DNSSEC), some only
/// for transaction security mechanisms (SIG(0) and TSIG), and some for
/// both. Those usable for zone signing may appear in DNSKEY, RRSIG, and
/// DS RRs. Those usable for transaction security would be present in
/// SIG(0) and KEY RRs, as described in [RFC2931].
///
/// Zone
/// Value Algorithm [Mnemonic] Signing References Status
/// ----- -------------------- --------- ---------- ---------
/// 0 reserved
/// 1 RSA/MD5 [RSAMD5] n [RFC2537] NOT RECOMMENDED
/// 2 Diffie-Hellman [DH] n [RFC2539] -
/// 3 DSA/SHA-1 [DSA] y [RFC2536] OPTIONAL
/// 4 Elliptic Curve [ECC] TBA -
/// 5 RSA/SHA-1 [RSASHA1] y [RFC3110] MANDATORY
/// 252 Indirect [INDIRECT] n -
/// 253 Private [PRIVATEDNS] y see below OPTIONAL
/// 254 Private [PRIVATEOID] y see below OPTIONAL
/// 255 reserved
///
/// 6 - 251 Available for assignment by IETF Standards Action.
///
/// (RFC Required) Domain Name System Security (DNSSEC) Algorithm Numbers
/// Created: 2003-11-03, Last Updated: 2024-04-16
/// https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.txt
///
/// Zone
/// Value Algorithm [Mnemonic] Signing References
/// ----- -------------------- --------- ----------
/// 6 DSA-NSEC3-SHA1 [DSA-NSEC3-SHA1] Y [RFC5155][proposed standard]
/// 7 RSASHA1-NSEC3-SHA1 [RSASHA1-NSEC3-SHA1] Y [RFC5155][proposed standard]
/// 8 RSA/SHA-256 [RSASHA256] Y [RFC5702][proposed standard]
/// 9 reserved
/// 10 RSA/SHA-512 [RSASHA512] Y [RFC5702][proposed standard]
/// 11 reserved
/// 12 GOST R 34.10-2001 [ECC-GOST] Y [RFC5933][proposed standard]
/// 13 ECDSA Curve P-256 with SHA-256 [ECDSAP256SHA256] Y [RFC6605][proposed standard]
/// 14 ECDSA Curve P-384 with SHA-384 [ECDSAP384SHA384] Y [RFC6605][proposed standard]
/// 15 Ed25519 [ED25519] Y [RFC8080][proposed standard]
/// 16 Ed448 [ED448] Y [RFC8080][proposed standard]
/// 17 SM2 signing with SM3 hashing [SM2SM3] Y [RFC-cuiling-dnsop-sm2-alg-15][informational]
/// 18-22 Unassigned
/// 23 GOST R 34.10-2012 [ECC-GOST12] Y [RFC9558][informational]
/// 24-122 Unassigned
/// 123-251 reserved
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum Algorithm {
/// 0, 9, 11, 123-251, 255 reserved
Reserved(u8),
/// 1 RSA/MD5 ([RFC 2537](https://tools.ietf.org/html/rfc2537))
RSAMD5,
/// 2 Diffie-Hellman ([RFC 2539](https://tools.ietf.org/html/rfc2539))
DH,
/// 3 DSA/SHA-1 ([RFC 2536](https://tools.ietf.org/html/rfc2536))
DSA,
/// 4 Elliptic Curve
ECC,
/// 5 RSA/SHA-1 ([RFC 3110](https://tools.ietf.org/html/rfc3110))
RSASHA1,
/// 252 Indirect
INDIRECT,
/// 253 Private
PRIVATEDNS,
/// 254 Private
PRIVATEOID,
/// 6 DSA-NSEC3-SHA1 ([RFC 5155](https://tools.ietf.org/html/rfc5155))
DSANSEC3SHA1,
/// 7 RSASHA1-NSEC3-SHA1 (RFC5155)
RSASHA1NSEC3SHA1,
/// 8 RSA/SHA-256 ([RFC 5702](https://tools.ietf.org/html/rfc5702))
RSASHA256,
/// 10 RSA/SHA-512 ([RFC 5702](https://tools.ietf.org/html/rfc5702))
RSASHA512,
/// 12 GOST R 34.10-2001 ([RFC 5933](https://tools.ietf.org/html/rfc5933))
ECCGOST,
/// 13 ECDSA Curve P-256 with SHA-256 ([RFC 6605](https://tools.ietf.org/html/rfc6605))
ECDSAP256SHA256,
/// 14 ECDSA Curve P-384 with SHA-384 ([RFC 6605](https://tools.ietf.org/html/rfc6605))
ECDSAP384SHA384,
/// 15 Ed25519 ([RFC 8080](https://tools.ietf.org/html/rfc8080))
ED25519,
/// 16 Ed448 ([RFC 8080](https://tools.ietf.org/html/rfc8080))
ED448,
/// 17 SM2 signing with SM3 hashing (RFC-cuiling-dnsop-sm2-alg-15)
SM2SM3,
/// 23 GOST R 34.10-2012 ([RFC 9558](https://tools.ietf.org/html/rfc9558))
ECCGOST12,
/// 18-22, 24-122 Unassigned
Unassigned(u8),
}
impl From<u8> for Algorithm {
fn from(algorithm: u8) -> Self {
match algorithm {
0 => Self::Reserved(0),
1 => Self::RSAMD5,
2 => Self::DH,
3 => Self::DSA,
4 => Self::ECC,
5 => Self::RSASHA1,
6 => Self::DSANSEC3SHA1,
7 => Self::RSASHA1NSEC3SHA1,
8 => Self::RSASHA256,
9 => Self::Reserved(9),
10 => Self::RSASHA512,
11 => Self::Reserved(11),
12 => Self::ECCGOST,
13 => Self::ECDSAP256SHA256,
14 => Self::ECDSAP384SHA384,
15 => Self::ED25519,
16 => Self::ED448,
17 => Self::SM2SM3,
18..=22 => Self::Unassigned(algorithm),
23 => Self::ECCGOST12,
24..=122 => Self::Unassigned(algorithm),
252 => Self::INDIRECT,
253 => Self::PRIVATEDNS,
254 => Self::PRIVATEOID,
_ => Self::Unassigned(algorithm),
}
}
}
impl From<Algorithm> for u8 {
fn from(algorithm: Algorithm) -> Self {
match algorithm {
Algorithm::Reserved(value) if value == 0 => value,
Algorithm::RSAMD5 => 1,
Algorithm::DH => 2,
Algorithm::DSA => 3,
Algorithm::ECC => 4,
Algorithm::RSASHA1 => 5,
Algorithm::DSANSEC3SHA1 => 6,
Algorithm::RSASHA1NSEC3SHA1 => 7,
Algorithm::RSASHA256 => 8,
Algorithm::Reserved(value) if value == 9 => value,
Algorithm::RSASHA512 => 10,
Algorithm::Reserved(value) if value == 11 => value,
Algorithm::ECCGOST => 12,
Algorithm::ECDSAP256SHA256 => 13,
Algorithm::ECDSAP384SHA384 => 14,
Algorithm::ED25519 => 15,
Algorithm::ED448 => 16,
Algorithm::SM2SM3 => 17,
Algorithm::Unassigned(value) if (18..=22).contains(&value) => value,
Algorithm::ECCGOST12 => 23,
Algorithm::Unassigned(value) if (24..=122).contains(&value) => value,
Algorithm::INDIRECT => 252,
Algorithm::PRIVATEDNS => 253,
Algorithm::PRIVATEOID => 254,
Algorithm::Unassigned(value) => value,
Algorithm::Reserved(value) => value,
}
}
}
impl<'r> BinDecodable<'r> for Algorithm {
// https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
fn read(decoder: &mut BinDecoder<'r>) -> ProtoResult<Self> {
let algorithm_id = decoder
.read_u8()?
.unverified(/*Algorithm is verified as safe in processing this*/);
Ok(Self::from(algorithm_id))
}
}
impl fmt::Display for Algorithm {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self)
}
}
/// [RFC 4398, Storing Certificates in DNS, November 1987](https://tools.ietf.org/html/rfc4398)
///
/// ```text
///
/// [2](https://datatracker.ietf.org/doc/html/rfc4398#section-2). The CERT Resource Record
///
/// The CERT resource record (RR) has the structure given below. Its RR
/// type code is 37.
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | type | key tag |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | algorithm | /
/// +---------------+ certificate or CRL /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct CERT {
cert_type: CertType,
key_tag: u16,
algorithm: Algorithm,
cert_data: Vec<u8>,
}
impl CERT {
/// Construct a new CERT RData
pub const fn new(
cert_type: CertType,
key_tag: u16,
algorithm: Algorithm,
cert_data: Vec<u8>,
) -> Self {
Self {
cert_type,
key_tag,
algorithm,
cert_data,
}
}
/// Returns the CERT type
pub fn cert_type(&self) -> CertType {
self.cert_type
}
/// Returns the CERT key tag
pub fn key_tag(&self) -> u16 {
self.key_tag
}
/// Returns the CERT algorithm
pub fn algorithm(&self) -> Algorithm {
self.algorithm
}
/// Returns the CERT record data
pub fn cert_data(&self) -> Vec<u8> {
self.cert_data.clone()
}
/// Returns the CERT (Base64)
pub fn cert_base64(&self) -> String {
data_encoding::BASE64.encode(&self.cert_data).clone()
}
}
impl TryFrom<&[u8]> for CERT {
type Error = ProtoError;
fn try_from(cert_record: &[u8]) -> Result<Self, Self::Error> {
let mut decoder = BinDecoder::new(cert_record);
let length = Restrict::new(cert_record.len() as u16); // You can use the full length here
Self::read_data(&mut decoder, length) // Reuse the read_data method for parsing
}
}
impl BinEncodable for CERT {
fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
encoder.emit_u16(self.cert_type.into())?;
encoder.emit_u16(self.key_tag)?;
encoder.emit_u8(self.algorithm.into())?;
encoder.emit_vec(&self.cert_data)?;
Ok(())
}
}
impl<'r> RecordDataDecodable<'r> for CERT {
fn read_data(decoder: &mut BinDecoder<'r>, length: Restrict<u16>) -> ProtoResult<Self> {
let rdata_length = length.map(|u| u as usize).unverified(/*used only as length safely*/);
if rdata_length <= 5 {
return Err(ProtoError::from("invalid cert_record length".to_string()));
}
let start_idx = decoder.index();
// let cert_type = decoder.read_u16()?.unverified(/*valid as any u16*/);
let cert_type = CertType::read(decoder)?;
let key_tag = decoder.read_u16()?.unverified(/*valid as any u16*/);
let algorithm = Algorithm::read(decoder)?;
let cert_len = length
.map(|u| u as usize)
.checked_sub(decoder.index() - start_idx)
.map_err(|_| ProtoError::from("invalid rdata length in CERT"))?
.unverified(/*used only as length safely*/);
let cert_data = decoder.read_vec(cert_len)?.unverified(/*will fail in usage if invalid*/);
Ok(Self {
cert_type,
key_tag,
algorithm,
cert_data,
})
}
}
impl RecordData for CERT {
fn try_from_rdata(data: RData) -> Result<Self, RData> {
match data {
RData::CERT(data) => Ok(data),
_ => Err(data),
}
}
fn try_borrow(data: &RData) -> Option<&Self> {
match data {
RData::CERT(data) => Some(data),
_ => None,
}
}
fn record_type(&self) -> RecordType {
RecordType::CERT
}
fn into_rdata(self) -> RData {
RData::CERT(self)
}
}
/// [RFC 4398, Storing Certificates in DNS, November 1987](https://tools.ietf.org/html/rfc4398#section-2.2)
///
/// ```text
///
/// [2.2](https://datatracker.ietf.org/doc/html/rfc4398#section-2.2). Text Representation of CERT RRs
///
/// The RDATA portion of a CERT RR has the type field as an unsigned
/// decimal integer or as a mnemonic symbol as listed in [Section 2.1](https://datatracker.ietf.org/doc/html/rfc4398#section-2.1),
/// above.
///
/// The key tag field is represented as an unsigned decimal integer.
///
/// The algorithm field is represented as an unsigned decimal integer or
/// a mnemonic symbol as listed in [[12](https://datatracker.ietf.org/doc/html/rfc4398#ref-12)].
///
/// The certificate/CRL portion is represented in base 64 [[16](https://datatracker.ietf.org/doc/html/rfc4398#ref-16)] and may be
/// divided into any number of white-space-separated substrings, down to
/// single base-64 digits, which are concatenated to obtain the full
/// signature. These substrings can span lines using the standard
/// parenthesis.
///
/// Note that the certificate/CRL portion may have internal sub-fields,
/// but these do not appear in the master file representation. For
/// example, with type 254, there will be an OID size, an OID, and then
/// the certificate/CRL proper. However, only a single logical base-64
/// string will appear in the text representation.
///
/// ```
impl fmt::Display for CERT {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
let cert_data = &data_encoding::BASE64.encode(&self.cert_data);
write!(
f,
"{cert_type} {key_tag} {algorithm} {cert_data}",
cert_type = self.cert_type,
key_tag = &self.key_tag,
algorithm = self.algorithm,
cert_data = &cert_data
)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use super::*;
#[test]
fn test_cert_type() {
assert_eq!(CertType::Reserved, CertType::from(0));
assert_eq!(CertType::PKIX, CertType::from(1));
assert_eq!(CertType::SPKI, CertType::from(2));
assert_eq!(CertType::PGP, CertType::from(3));
assert_eq!(CertType::IPKIX, CertType::from(4));
assert_eq!(CertType::ISPKI, CertType::from(5));
assert_eq!(CertType::IPGP, CertType::from(6));
assert_eq!(CertType::ACPKIX, CertType::from(7));
assert_eq!(CertType::IACPKIX, CertType::from(8));
assert_eq!(CertType::URI, CertType::from(253));
assert_eq!(CertType::OID, CertType::from(254));
assert_eq!(CertType::Unassigned(9), CertType::from(9));
assert_eq!(CertType::Unassigned(90), CertType::from(90));
assert_eq!(CertType::Experimental(65280), CertType::from(65280));
assert_eq!(CertType::Experimental(65390), CertType::from(65390));
let cert_type_ianna_9 = CertType::Unassigned(9);
let cert_type_ianna_90 = CertType::Unassigned(90);
let cert_type_experimental_80 = CertType::Experimental(65280);
let cert_type_experimental_90 = CertType::Experimental(65290);
assert_eq!(u16::from(CertType::Reserved), 0);
assert_eq!(u16::from(CertType::PKIX), 1);
assert_eq!(u16::from(CertType::SPKI), 2);
assert_eq!(u16::from(CertType::PGP), 3);
assert_eq!(u16::from(CertType::IPKIX), 4);
assert_eq!(u16::from(CertType::ISPKI), 5);
assert_eq!(u16::from(CertType::IPGP), 6);
assert_eq!(u16::from(CertType::ACPKIX), 7);
assert_eq!(u16::from(CertType::IACPKIX), 8);
assert_eq!(u16::from(cert_type_ianna_9), 9);
assert_eq!(u16::from(cert_type_ianna_90), 90);
assert_eq!(u16::from(CertType::URI), 253);
assert_eq!(u16::from(CertType::OID), 254);
assert_eq!(u16::from(cert_type_experimental_80), 65280);
assert_eq!(u16::from(cert_type_experimental_90), 65290);
}
#[test]
fn test_algorithm() {
assert_eq!(Algorithm::Reserved(0), Algorithm::from(0));
assert_eq!(Algorithm::DH, Algorithm::from(2));
assert_eq!(Algorithm::DSA, Algorithm::from(3));
assert_eq!(Algorithm::ECC, Algorithm::from(4));
assert_eq!(Algorithm::RSASHA1, Algorithm::from(5));
assert_eq!(Algorithm::DSANSEC3SHA1, Algorithm::from(6));
assert_eq!(Algorithm::RSASHA1NSEC3SHA1, Algorithm::from(7));
assert_eq!(Algorithm::RSASHA256, Algorithm::from(8));
assert_eq!(Algorithm::Reserved(9), Algorithm::from(9));
assert_eq!(Algorithm::RSASHA512, Algorithm::from(10));
assert_eq!(Algorithm::Reserved(11), Algorithm::from(11));
assert_eq!(Algorithm::ECCGOST, Algorithm::from(12));
assert_eq!(Algorithm::ECDSAP256SHA256, Algorithm::from(13));
assert_eq!(Algorithm::ECDSAP384SHA384, Algorithm::from(14));
assert_eq!(Algorithm::ED25519, Algorithm::from(15));
assert_eq!(Algorithm::ED448, Algorithm::from(16));
assert_eq!(Algorithm::SM2SM3, Algorithm::from(17));
assert_eq!(Algorithm::Unassigned(18), Algorithm::from(18));
assert_eq!(Algorithm::Unassigned(20), Algorithm::from(20));
assert_eq!(Algorithm::ECCGOST12, Algorithm::from(23));
assert_eq!(Algorithm::INDIRECT, Algorithm::from(252));
assert_eq!(Algorithm::PRIVATEDNS, Algorithm::from(253));
assert_eq!(Algorithm::PRIVATEOID, Algorithm::from(254));
let algorithm_reserved_0 = Algorithm::Reserved(0);
let algorithm_reserved_9 = Algorithm::Reserved(9);
assert_eq!(u8::from(algorithm_reserved_0), 0);
assert_eq!(u8::from(Algorithm::DH), 2);
assert_eq!(u8::from(Algorithm::DSA), 3);
assert_eq!(u8::from(Algorithm::ECC), 4);
assert_eq!(u8::from(Algorithm::RSASHA1), 5);
assert_eq!(u8::from(Algorithm::DSANSEC3SHA1), 6);
assert_eq!(u8::from(Algorithm::RSASHA1NSEC3SHA1), 7);
assert_eq!(u8::from(Algorithm::RSASHA256), 8);
assert_eq!(u8::from(Algorithm::Reserved(9)), 9);
assert_eq!(u8::from(Algorithm::RSASHA512), 10);
assert_eq!(u8::from(Algorithm::Reserved(11)), 11);
assert_eq!(u8::from(Algorithm::ECCGOST), 12);
assert_eq!(u8::from(Algorithm::ECDSAP256SHA256), 13);
assert_eq!(u8::from(Algorithm::ECDSAP384SHA384), 14);
assert_eq!(u8::from(Algorithm::ED25519), 15);
assert_eq!(u8::from(Algorithm::ED448), 16);
assert_eq!(u8::from(Algorithm::SM2SM3), 17);
assert_eq!(u8::from(Algorithm::Unassigned(18)), 18);
assert_eq!(u8::from(Algorithm::Unassigned(20)), 20);
assert_eq!(u8::from(Algorithm::ECCGOST12), 23);
assert_eq!(u8::from(Algorithm::INDIRECT), 252);
assert_eq!(u8::from(Algorithm::PRIVATEDNS), 253);
assert_eq!(u8::from(Algorithm::PRIVATEOID), 254);
assert_eq!(u8::from(algorithm_reserved_9), 9);
}
#[test]
fn test_valid_cert_data_length() {
let valid_cert_data = [1, 2, 3, 4, 5, 6]; // At least 6 bytes
let result = CERT::try_from(&valid_cert_data[..]);
assert!(
result.is_ok(),
"Expected a valid result with sufficient cert_data length"
);
}
#[test]
fn test_cert_creation() {
// Sample values
let cert_type = CertType::PKIX;
let key_tag = 12345;
let algorithm = Algorithm::RSASHA256; // Replace with an actual variant from Algorithm
let cert_data = [1, 2, 3, 4, 5];
// Create an instance of the CERT struct
let cert = CERT {
cert_type,
key_tag,
algorithm,
cert_data: cert_data.to_vec(),
};
// Assert that the fields are correctly set
assert_eq!(cert.cert_type, cert_type);
assert_eq!(cert.key_tag, key_tag);
assert_eq!(cert.algorithm, algorithm);
assert_eq!(cert.cert_data, cert_data);
}
#[test]
fn test_cert_empty_cert_data() {
let cert_type = CertType::PKIX;
let key_tag = 12345;
let algorithm = Algorithm::RSASHA256;
let cert_data = Vec::new(); // Empty cert_data
// Create an instance of the CERT struct
let cert = CERT {
cert_type,
key_tag,
algorithm,
cert_data,
};
// Assert that cert_data is empty and other fields are correctly set
assert_eq!(cert.cert_type, cert_type);
assert_eq!(cert.key_tag, key_tag);
assert_eq!(cert.algorithm, algorithm);
assert!(cert.cert_data.is_empty());
}
#[test]
fn test_valid_cert_record() {
// Create a mock cert_data with 5 initial bytes + valid Base64 string for the rest
let valid_cert_record = [
0x00, 0x01, // cert_type: 1 (PKIX)
0x30, 0x39, // key_tag: 12345
0x08, // algorithm: 8 (e.g., RSASHA256)
65, 81, 73, 68, // "AQID" = [1, 2, 3]
];
let cert = CERT::try_from(&valid_cert_record[..]);
assert!(cert.is_ok(), "Expected valid cert_record");
let cert = cert.unwrap();
assert_eq!(cert.cert_type, CertType::PKIX);
assert_eq!(cert.key_tag, 12345);
assert_eq!(cert.algorithm, Algorithm::RSASHA256); // Assuming this is algorithm 8
assert_eq!(cert.cert_data, [65, 81, 73, 68]);
}
#[test]
fn test_invalid_cert_record_length() {
let invalid_cert_record = [1, 2, 3, 4]; // Less than 5 bytes
let result = CERT::try_from(&invalid_cert_record[..]);
assert!(
result.is_err(),
"Expected error due to invalid cert_record length"
);
if let Err(e) = result {
assert_eq!(e.to_string(), "invalid cert_record length".to_string());
}
}
}