hickory_proto/xfer/dnssec_dns_handle/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! The `DnssecDnsHandle` is used to validate all DNS responses for correct DNSSEC signatures.

use std::{
    clone::Clone,
    collections::{HashMap, HashSet},
    pin::Pin,
    sync::Arc,
    time::{SystemTime, UNIX_EPOCH},
};

use async_recursion::async_recursion;
use futures_util::{
    future::{self, TryFutureExt},
    stream::{self, Stream, TryStreamExt},
};
use tracing::{debug, trace, warn};

use crate::{
    error::{ProtoError, ProtoErrorKind},
    op::{Edns, Message, OpCode, Query},
    rr::{
        dnssec::{
            rdata::{DNSSECRData, DNSKEY, DS, RRSIG},
            Algorithm, Proof, ProofError, ProofErrorKind, TrustAnchor,
        },
        Name, RData, Record, RecordData, RecordType, SerialNumber,
    },
    xfer::{dns_handle::DnsHandle, DnsRequest, DnsRequestOptions, DnsResponse, FirstAnswer},
};

#[cfg(feature = "dnssec")]
use crate::rr::dnssec::Verifier;
#[cfg(feature = "dnssec")]
use crate::rr::resource::RecordRef;

use self::rrset::Rrset;

use nsec3_validation::verify_nsec3;
mod nsec3_validation;

/// Performs DNSSEC validation of all DNS responses from the wrapped DnsHandle
///
/// This wraps a DnsHandle, changing the implementation `send()` to validate all
///  message responses for Query operations. Update operation responses are not validated by
///  this process.
#[derive(Clone)]
#[must_use = "queries can only be sent through a DnsHandle"]
pub struct DnssecDnsHandle<H>
where
    H: DnsHandle + Unpin + 'static,
{
    handle: H,
    trust_anchor: Arc<TrustAnchor>,
    request_depth: usize,
    minimum_key_len: usize,
    minimum_algorithm: Algorithm, // used to prevent down grade attacks...
}

impl<H> DnssecDnsHandle<H>
where
    H: DnsHandle + Unpin + 'static,
{
    /// Create a new DnssecDnsHandle wrapping the specified handle.
    ///
    /// This uses the compiled in TrustAnchor default trusted keys.
    ///
    /// # Arguments
    /// * `handle` - handle to use for all connections to a remote server.
    pub fn new(handle: H) -> Self {
        Self::with_trust_anchor(handle, Arc::new(TrustAnchor::default()))
    }

    /// Create a new DnssecDnsHandle wrapping the specified handle.
    ///
    /// This allows a custom TrustAnchor to be define.
    ///
    /// # Arguments
    /// * `handle` - handle to use for all connections to a remote server.
    /// * `trust_anchor` - custom DNSKEYs that will be trusted, can be used to pin trusted keys.
    pub fn with_trust_anchor(handle: H, trust_anchor: Arc<TrustAnchor>) -> Self {
        Self {
            handle,
            trust_anchor,
            request_depth: 0,
            minimum_key_len: 0,
            minimum_algorithm: Algorithm::RSASHA256,
        }
    }

    /// An internal function used to clone the handle, but maintain some information back to the
    ///  original handle, such as the request_depth such that infinite recursion does
    ///  not occur.
    fn clone_with_context(&self) -> Self {
        Self {
            handle: self.handle.clone(),
            trust_anchor: Arc::clone(&self.trust_anchor),
            request_depth: self.request_depth + 1,
            minimum_key_len: self.minimum_key_len,
            minimum_algorithm: self.minimum_algorithm,
        }
    }
}

impl<H> DnsHandle for DnssecDnsHandle<H>
where
    H: DnsHandle + Sync + Unpin,
{
    type Response = Pin<Box<dyn Stream<Item = Result<DnsResponse, ProtoError>> + Send>>;

    fn is_verifying_dnssec(&self) -> bool {
        // This handler is always verifying...
        true
    }

    fn send<R: Into<DnsRequest>>(&self, request: R) -> Self::Response {
        let mut request = request.into();

        // backstop
        if self.request_depth > request.options().max_request_depth {
            return Box::pin(stream::once(future::err(ProtoError::from(
                "exceeded max validation depth",
            ))));
        }

        // dnssec only matters on queries.
        match request.op_code() {
            OpCode::Query => {}
            _ => return Box::pin(self.handle.send(request)),
        }

        // This will panic on no queries, that is a very odd type of request, isn't it?
        // TODO: with mDNS there can be multiple queries
        let query = if let Some(query) = request.queries().first().cloned() {
            query
        } else {
            return Box::pin(stream::once(future::err(ProtoError::from(
                "no query in request",
            ))));
        };

        let handle: Self = self.clone_with_context();

        // TODO: cache response of the server about understood algorithms
        #[cfg(feature = "dnssec")]
        {
            request
                .extensions_mut()
                .get_or_insert_with(Edns::new)
                .enable_dnssec();
        }

        request.set_authentic_data(true);
        request.set_checking_disabled(false);
        let options = *request.options();

        Box::pin(
            self.handle
                .send(request)
                .or_else(move |res| {
                    // Translate NoRecordsFound errors into a DnsResponse message so the rest of the
                    // DNSSEC handler chain can validate negative responses.
                    match res.kind() {
                        ProtoErrorKind::NoRecordsFound {
                            query,
                            authorities,
                            response_code,
                            ..
                        } => {
                            let mut msg = Message::new();

                            debug!("translating NoRecordsFound to DnsResponse for {query}");

                            msg.add_query(*query.clone());

                            msg.set_response_code(*response_code);

                            if let Some(authorities) = authorities {
                                for ns in authorities.iter() {
                                    msg.add_name_server(ns.clone());
                                }
                            }

                            match DnsResponse::from_message(msg) {
                                Ok(res) => future::ok(res),
                                Err(_e) => future::err(ProtoError::from(
                                    "unable to construct DnsResponse: {_e:?}",
                                )),
                            }
                        }
                        _ => future::err(ProtoError::from(res.to_string())),
                    }
                })
                .and_then(move |message_response| {
                    verify_response(handle.clone(), message_response, options)
                })
                .and_then(move |verified_message| {
                    future::ready(check_nsec(verified_message, &query))
                }),
        )
    }
}

/// TODO: I've noticed upstream resolvers don't always return NSEC responses
///   this causes bottom up evaluation to fail
///
/// at this point all of the message is verified.
/// This is where NSEC and NSEC3 validation occurs
fn check_nsec(verified_message: DnsResponse, query: &Query) -> Result<DnsResponse, ProtoError> {
    if !verified_message.answers().is_empty() {
        return Ok(verified_message);
    }

    // get SOA name
    let soa_name = if let Some(soa_name) = verified_message
        .name_servers()
        .iter()
        // there should only be one
        .find(|rr| rr.record_type() == RecordType::SOA)
        .map(Record::name)
    {
        soa_name
    } else {
        return Err(ProtoError::from(
            "could not validate negative response missing SOA",
        ));
    };

    let nsec3s = verified_message
        .name_servers()
        .iter()
        .filter_map(|rr| {
            rr.data()
                .as_dnssec()?
                .as_nsec3()
                .map(|data| (rr.name(), data))
        })
        .collect::<Vec<_>>();

    let nsecs = verified_message
        .name_servers()
        .iter()
        .filter(|rr| is_dnssec(rr, RecordType::NSEC))
        .collect::<Vec<_>>();

    // Both NSEC and NSEC3 records cannot coexist during
    // transition periods, as per RFC 5515 10.4.3 and
    // 10.5.2
    let nsec_proof = match (!nsec3s.is_empty(), !nsecs.is_empty()) {
        (true, false) => verify_nsec3(
            query,
            soa_name,
            verified_message.response_code(),
            verified_message.answers(),
            &nsec3s,
        ),
        (false, true) => verify_nsec(query, soa_name, nsecs.as_slice()),
        (true, true) => {
            warn!("response contains both NSEC and NSEC3 records\nQuery:\n{query:?}\nResponse:\n{verified_message:?}");
            Proof::Bogus
        }
        (false, false) => {
            warn!("response does not contain NSEC or NSEC3 records. Query: {query:?} response: {verified_message:?}");
            Proof::Bogus
        }
    };

    if !nsec_proof.is_secure() {
        // TODO change this to remove the NSECs, like we do for the others?
        return Err(ProtoError::from(ProtoErrorKind::Nsec {
            query: query.clone(),
            proof: nsec_proof,
        }));
    }

    Ok(verified_message)
}

/// Extracts the different sections of a message and verifies the RRSIGs
async fn verify_response<H>(
    handle: DnssecDnsHandle<H>,
    mut message: DnsResponse,
    options: DnsRequestOptions,
) -> Result<DnsResponse, ProtoError>
where
    H: DnsHandle + Sync + Unpin,
{
    debug!(
        "validating message_response: {}, with {} trust_anchors",
        message.id(),
        handle.trust_anchor.len(),
    );

    // group the record sets by name and type
    //  each rrset type needs to validated independently
    let answers = message.take_answers();
    let nameservers = message.take_name_servers();
    let additionals = message.take_additionals();

    let answers = verify_rrsets(&handle, answers, options).await;
    let nameservers = verify_rrsets(&handle, nameservers, options).await;
    let additionals = verify_rrsets(&handle, additionals, options).await;

    message.insert_answers(answers);
    message.insert_name_servers(nameservers);
    message.insert_additionals(additionals);

    Ok(message)
}

/// This pulls all answers returned in a Message response and returns a future which will
///  validate all of them.
#[allow(clippy::type_complexity)]
async fn verify_rrsets<H>(
    handle: &DnssecDnsHandle<H>,
    records: Vec<Record>,
    options: DnsRequestOptions,
) -> Vec<Record>
where
    H: DnsHandle + Sync + Unpin,
{
    let mut rrset_types: HashSet<(Name, RecordType)> = HashSet::new();
    let mut rrset_proofs: HashMap<(Name, RecordType), (Proof, Option<u32>)> = HashMap::new();

    for rrset in records
        .iter()
        .filter(|rr| {
            !is_dnssec(rr, RecordType::RRSIG) &&
                             // if we are at a depth greater than 1, we are only interested in proving evaluation chains
                             //   this means that only DNSKEY and DS are interesting at that point.
                             //   this protects against looping over things like NS records and DNSKEYs in responses.
                             // TODO: is there a cleaner way to prevent cycles in the evaluations?
                                          (handle.request_depth <= 1 ||
                                           is_dnssec(rr, RecordType::DNSKEY) ||
                                           is_dnssec(rr, RecordType::DS))
        })
        .map(|rr| (rr.name().clone(), rr.record_type()))
    {
        rrset_types.insert(rrset);
    }

    // there were no records to verify
    if rrset_types.is_empty() {
        return records;
    }

    // collect all the rrsets to verify
    // TODO: is there a way to get rid of this clone() safely?
    for (name, record_type) in rrset_types {
        let mut rrs_to_verify = records
            .iter()
            .filter(|rr| rr.record_type() == record_type && rr.name() == &name);

        let mut rrset = Rrset::new(rrs_to_verify.next().unwrap());
        rrs_to_verify.for_each(|rr| rrset.add(rr));

        // RRSIGS are never modified after this point
        let rrsigs: Vec<_> = records
            .iter()
            .filter_map(|rr| rr.try_borrow::<RRSIG>())
            .filter(|rr| rr.name() == &name)
            .filter(|rrsig| rrsig.data().type_covered() == record_type)
            .collect();

        // if there is already an active validation going on, assume the other validation will
        //  complete properly or error if it is invalid

        // TODO: support non-IN classes?
        debug!(
            "verifying: {name} record_type: {record_type}, rrsigs: {rrsig_len}",
            rrsig_len = rrsigs.len()
        );

        // verify this rrset
        let proof = verify_rrset(handle.clone_with_context(), rrset, rrsigs, options).await;

        let (proof, adjusted_ttl) = match proof {
            Ok((proof, adjusted_ttl)) => {
                debug!("verified: {name} record_type: {record_type}",);
                (proof, adjusted_ttl)
            }
            Err(ProofError { proof, kind }) => {
                debug!("failed to verify: {name} record_type: {record_type}: {kind}",);
                (proof, None)
            }
        };

        rrset_proofs.insert((name, record_type), (proof, adjusted_ttl));
    }

    // set the proofs of all the records, all records are returned, it's up to downstream users to check for correctness
    let mut records = records;
    for record in &mut records {
        // the RRSIG used to validate a record inherits the outcome of the validation
        // for RRSIGs, we need to use their TYPE_COVERED field instead of `RecordType::RRSIG` as the
        // `RecordType` key in `rrset_proofs`
        let record_type = if let RData::DNSSEC(DNSSECRData::RRSIG(rrsig)) = record.data() {
            rrsig.type_covered()
        } else {
            record.record_type()
        };

        if let Some((proof, adjusted_ttl)) = rrset_proofs.get(&(record.name().clone(), record_type))
        {
            record.set_proof(*proof);
            if let (Proof::Secure, Some(ttl)) = (proof, adjusted_ttl) {
                record.set_ttl(*ttl);
            }
        }
    }

    records
}

// TODO: is this method useful/necessary?
fn is_dnssec<D: RecordData>(rr: &Record<D>, dnssec_type: RecordType) -> bool {
    rr.record_type().is_dnssec() && dnssec_type.is_dnssec() && rr.record_type() == dnssec_type
}

/// Generic entrypoint to verify any RRSET against the provided signatures.
///
/// Generally, the RRSET will be validated by `verify_default_rrset()`. There are additional
///  checks that happen after the RRSET is successfully validated. In the case of DNSKEYs this
///  triggers `verify_dnskey_rrset()`. If it's an NSEC record, then the NSEC record will be
///  validated to prove it's correctness. There is a special case for DNSKEY, where if the RRSET
///  is unsigned, `rrsigs` is empty, then an immediate `verify_dnskey_rrset()` is triggered. In
///  this case, it's possible the DNSKEY is a trust_anchor and is not self-signed.
async fn verify_rrset<H>(
    handle: DnssecDnsHandle<H>,
    rrset: Rrset<'_>,
    rrsigs: Vec<RecordRef<'_, RRSIG>>,
    options: DnsRequestOptions,
) -> Result<(Proof, Option<u32>), ProofError>
where
    H: DnsHandle + Sync + Unpin,
{
    // wrapper for some of the type conversion for typed DNSKEY fn calls.

    if matches!(rrset.record_type(), RecordType::DNSKEY) {
        let is_trust_anchor =
            verify_dnskey_rrset(handle.clone_with_context(), &rrset, options).await?;

        if is_trust_anchor {
            return Ok((Proof::Secure, None));
        }
    }

    verify_default_rrset(&handle.clone_with_context(), rrset, rrsigs, options).await
}

/// Additional, DNSKEY-specific verification
///
/// In addition to RRSIG validation, which happens in `verify_default_rrset`, a DNSKEY needs to be
/// checked against a DS record provided by the parent zone.
///
/// A DNSKEY that's part of the trust anchor does not need to have its DS record (which may
/// not exist as it's the case of the root zone) nor its RRSIG validated.
///
/// This function returns `true` when the DNSKEY is in the trust anchor; `false` when it's not and
/// its DS was validated; or an error when DS validation failed.
async fn verify_dnskey_rrset<H>(
    handle: DnssecDnsHandle<H>,
    rrset: &Rrset<'_>,
    options: DnsRequestOptions,
) -> Result<bool, ProofError>
where
    H: DnsHandle + Sync + Unpin,
{
    trace!(
        "dnskey validation {}, record_type: {:?}",
        rrset.name(),
        rrset.record_type()
    );

    // check the DNSKEYS against the trust_anchor, if it's approved allow it.
    //   this includes the root keys
    let mut all_unsupported = None;
    for r in rrset.records().iter() {
        let Some(key_rdata) = DNSKEY::try_borrow(r.data()) else {
            continue;
        };

        let algorithm = key_rdata.algorithm();
        if algorithm.is_supported() {
            all_unsupported = Some(false);
        } else {
            debug!("unsupported key algorithm {algorithm} in {key_rdata}",);

            all_unsupported.get_or_insert(true);
            continue;
        }

        if !handle
            .trust_anchor
            .contains_dnskey_bytes(key_rdata.public_key())
        {
            continue;
        }

        debug!(
            "validated dnskey with trust_anchor: {}, {key_rdata}",
            rrset.name(),
        );

        return Ok(true);
    }

    if all_unsupported.unwrap_or_default() {
        // cannot validate; mark as insecure
        return Err(ProofError::new(
            Proof::Insecure,
            ProofErrorKind::UnsupportedKeyAlgorithm,
        ));
    }

    // need to get DS records for each DNSKEY
    //   there will be a DS record for everything under the root keys
    let ds_records = find_ds_records(&handle, rrset.name().clone(), options).await?;
    for rr in rrset.records().iter() {
        let Some(key_rdata) = DNSKEY::try_borrow(rr.data()) else {
            continue;
        };

        let Ok(key_tag) = key_rdata.calculate_key_tag() else {
            continue;
        };
        let key_algorithm = key_rdata.algorithm();
        for (i, r) in ds_records.iter().enumerate() {
            if i > MAX_KEY_TAG_COLLISIONS {
                warn!("too many DS records ({i}) with key tag {key_tag}; skipping");
                continue;
            }

            if r.data().algorithm() != key_algorithm {
                trace!(
                    "skipping DS record due to algorithm mismatch, expected algorithm {}: ({}, {})",
                    key_algorithm,
                    r.name(),
                    r.data(),
                );

                continue;
            }

            if r.data().key_tag() != key_tag {
                trace!(
                    "skipping DS record due to key tag mismatch, expected tag {key_tag}: ({}, {})",
                    r.name(),
                    r.data(),
                );

                continue;
            }

            if !r.data().covers(rrset.name(), key_rdata).unwrap_or(false) {
                continue;
            }

            debug!(
                "validated dnskey ({}, {key_rdata}) with {} {}",
                rrset.name(),
                r.name(),
                r.data(),
            );

            // If all the keys are valid, then we are secure
            // FIXME: what if only some are invalid? we should return the good ones?
            return Ok(false);
        }
    }

    if !ds_records.is_empty() {
        // there were DS records, but no DNSKEYs, we're in a bogus state
        trace!("bogus dnskey: {}", rrset.name());
        Err(ProofError::new(
            Proof::Bogus,
            ProofErrorKind::DsRecordsButNoDnskey {
                name: rrset.name().clone(),
            },
        ))
    } else {
        // if rrset.records.is_empty() && ds_records.is_empty()
        // there were DS records, but no DNSKEYs, we're in a bogus state
        //   if there was no DS record, it should have gotten an NSEC upstream, and returned early above
        //   and all other cases...
        trace!("no dnskey found: {}", rrset.name());
        Err(ProofError::new(
            Proof::Indeterminate,
            ProofErrorKind::DnskeyNotFound {
                name: rrset.name().clone(),
            },
        ))
    }
}

#[async_recursion]
async fn find_ds_records<H>(
    handle: &DnssecDnsHandle<H>,
    zone: Name,
    options: DnsRequestOptions,
) -> Result<Vec<Record<DS>>, ProofError>
where
    H: DnsHandle + Sync + Unpin,
{
    // need to get DS records for each DNSKEY
    //   there will be a DS record for everything under the root keys
    let ds_message = handle
        .lookup(Query::query(zone.clone(), RecordType::DS), options)
        .first_answer()
        .await;

    let error: ProtoError = match ds_message {
        Ok(mut ds_message)
            if ds_message
                .answers()
                .iter()
                .filter(|r| r.record_type() == RecordType::DS)
                .any(|r| r.proof().is_secure()) =>
        {
            // this is a secure DS record, perfect

            let all_records = ds_message
                .take_answers()
                .into_iter()
                .filter_map(|r| Record::<DS>::try_from(r).ok());

            let mut supported_records = vec![];
            let mut all_unknown = None;
            for record in all_records {
                if matches!(record.data().algorithm(), Algorithm::Unknown(_)) {
                    all_unknown.get_or_insert(true);
                    continue;
                }
                all_unknown = Some(false);

                supported_records.push(record);
            }

            if all_unknown.unwrap_or(false) {
                return Err(ProofError::new(
                    Proof::Insecure,
                    ProofErrorKind::UnknownKeyAlgorithm,
                ));
            } else if !supported_records.is_empty() {
                return Ok(supported_records);
            } else {
                ProtoError::from(ProtoErrorKind::NoError)
            }
        }
        Ok(_) => ProtoError::from(ProtoErrorKind::NoError),
        Err(error) => error,
    };

    // if the DS record was an NSEC then we have an insecure zone
    if let Some((query, proof)) = error
        .kind()
        .as_nsec()
        .filter(|(_query, proof)| proof.is_secure())
    {
        return Err(ProofError::new(
            *proof,
            ProofErrorKind::DsResponseNsec {
                name: query.name().to_owned(),
            },
        ));
    }

    // otherwise we need to recursively discover the status of DS up the chain,
    //   if we find a valid DS, then we're in a Bogus state,
    //   if we find no records, then we are Indeterminate
    //   if we get ProofError, our result is the same

    let parent = zone.base_name();
    if zone == parent {
        // zone is `.`. do not call `find_ds_records(.., parent, ..)` or that will lead to infinite
        // recursion
        return Err(ProofError::new(
            Proof::Bogus,
            ProofErrorKind::DsRecordShouldExist { name: zone },
        ));
    }

    match find_ds_records(handle, parent, options).await {
        Ok(ds_records) if !ds_records.is_empty() => Err(ProofError::new(
            Proof::Bogus,
            ProofErrorKind::DsRecordShouldExist { name: zone },
        )),
        Ok(ds_records) if ds_records.is_empty() => Err(ProofError::new(
            Proof::Indeterminate,
            ProofErrorKind::DsHasNoDnssecProof { name: zone },
        )),
        err => err,
    }
}

/// Verifies that a given RRSET is validly signed by any of the specified RRSIGs.
///
/// Invalid RRSIGs will be ignored. RRSIGs will only be validated against DNSKEYs which can
///  be validated through a chain back to the `trust_anchor`. As long as one RRSIG is valid,
///  then the RRSET will be valid.
#[allow(clippy::blocks_in_conditions)]
async fn verify_default_rrset<H>(
    handle: &DnssecDnsHandle<H>,
    rrset: Rrset<'_>,
    rrsigs: Vec<RecordRef<'_, RRSIG>>,
    options: DnsRequestOptions,
) -> Result<(Proof, Option<u32>), ProofError>
where
    H: DnsHandle + Sync + Unpin,
{
    if rrsigs.is_empty() {
        // Decide if we're:
        //    1) "indeterminate", i.e. no DNSSEC records are available back to the root
        //    2) "insecure", the zone has a valid NSEC for the DS record in the parent zone
        //    3) "bogus", the parent zone has a valid DS record, but the child zone didn't have the RRSIGs/DNSKEYs
        let ds_records = find_ds_records(handle, rrset.name().clone(), options).await?; // insecure will return early here

        if !ds_records.is_empty() {
            return Err(ProofError::new(
                Proof::Bogus,
                ProofErrorKind::DsRecordShouldExist {
                    name: rrset.name().clone(),
                },
            ));
        } else {
            return Err(ProofError::new(
                Proof::Indeterminate,
                ProofErrorKind::RrsigsNotPresent {
                    name: rrset.name().clone(),
                    record_type: rrset.record_type(),
                },
            ));
        }
    }

    // the record set is going to be shared across a bunch of futures, Arc for that.
    trace!(
        "default validation {}, record_type: {:?}",
        rrset.name(),
        rrset.record_type()
    );

    // use the same current time value for all rrsig + rrset pairs.
    let current_time = current_time();

    // Special case for self-signed DNSKEYS, validate with itself...
    if rrsigs.iter().any(|rrsig| {
        RecordType::DNSKEY == rrset.record_type() && rrsig.data().signer_name() == rrset.name()
    }) {
        // in this case it was looks like a self-signed key, first validate the signature
        //  then return rrset. Like the standard case below, the DNSKEY is validated
        //  after this function. This function is only responsible for validating the signature
        //  the DNSKey validation should come after, see verify_rrset().
        let (proof, adjusted_ttl) = rrsigs
            .iter()
            .find_map(|rrsig| {
                rrset
                    .records()
                    .iter()
                    .filter_map(|r| r.try_borrow::<DNSKEY>())
                    // DNSKEY must be signed using a KSK
                    .filter(|r| r.data().is_key_signing_key())
                    .find_map(|dnskey| {
                        // If we had rrsigs to verify, then we want them to be secure, or the result is a Bogus proof
                        verify_rrset_with_dnskey(dnskey, *rrsig, &rrset, current_time).ok()
                    })
            })
            .ok_or_else(|| {
                ProofError::new(
                    Proof::Bogus,
                    ProofErrorKind::SelfSignedKeyInvalid {
                        name: rrset.name().clone(),
                    },
                )
            })?;

        // Getting here means the rrset (and records), have been verified
        return Ok((proof, adjusted_ttl));
    }

    // we can validate with any of the rrsigs...
    //  i.e. the first that validates is good enough
    //  TODO: could there be a cert downgrade attack here with a MITM stripping stronger RRSIGs?
    //         we could check for the strongest RRSIG and only use that...
    //         though, since the entire package isn't signed any RRSIG could have been injected,
    //         right? meaning if there is an attack on any of the acceptable algorithms, we'd be
    //         susceptible until that algorithm is removed as an option.
    //        dns over TLS will mitigate this.
    //  TODO: strip RRSIGS to accepted algorithms and make algorithms configurable.
    let verifications = rrsigs
        .iter()
        .enumerate()
        .filter_map(|(i, rrsig)| {
            let handle = handle.clone_with_context();
            let query = Query::query(rrsig.data().signer_name().clone(), RecordType::DNSKEY);

            if i > MAX_RRSIGS_PER_RRSET {
                warn!("too many ({i}) RRSIGs for rrset {rrset:?}; skipping");
                return None;
            }

            // TODO: Should this sig.signer_name should be confirmed to be in the same zone as the rrsigs and rrset?
            Some(handle
                .lookup(query.clone(), options)
                .first_answer()
                .map_err(|proto| {
                    ProofError::new(Proof::Indeterminate, ProofErrorKind::Proto { query, proto })
                })
                .map_ok(|message| {
                    let mut tag_count = HashMap::<u16, usize>::new();

                    // DNSKEYs were already validated by the inner query in the above lookup
                    let dnskeys = message
                        .answers()
                        .iter()
                        .filter_map(|r| {
                            let dnskey = r.try_borrow::<DNSKEY>()?;

                            let tag = match dnskey.data().calculate_key_tag() {
                                Ok(tag) => tag,
                                Err(e) => {
                                    warn!("unable to calculate key tag: {e:?}; skipping key");
                                    return None;
                                }
                            };

                            match tag_count.get_mut(&tag) {
                                Some(n_keys) => {
                                    *n_keys += 1;
                                    if *n_keys > MAX_KEY_TAG_COLLISIONS {
                                        warn!("too many ({n_keys}) DNSKEYs with key tag {tag}; skipping");
                                        return None;
                                    }
                                }
                                None => _ = tag_count.insert(tag, 1),
                            }

                            Some(dnskey)
                        });

                    let mut all_insecure = None;
                    for dnskey in dnskeys {
                        match dnskey.proof() {
                            Proof::Secure => {
                                all_insecure = Some(false);
                                if let Ok(proof) =
                                    verify_rrset_with_dnskey(dnskey, *rrsig, &rrset, current_time)
                                {
                                    return Some(proof);
                                }
                            }
                            Proof::Insecure => {
                                all_insecure.get_or_insert(true);
                            }
                            _ => all_insecure = Some(false),
                        }
                    }

                    if all_insecure.unwrap_or(false) {
                        // inherit Insecure state
                        Some((Proof::Insecure, None))
                    } else {
                        None
                    }
                }))
        })
        .collect::<Vec<_>>();

    // if there are no available verifications, then we are in a failed state.
    if verifications.is_empty() {
        return Err(ProofError::new(
            Proof::Bogus,
            ProofErrorKind::RrsigsNotPresent {
                name: rrset.name().clone(),
                record_type: rrset.record_type(),
            },
        ));
    }

    // as long as any of the verifications is good, then the RRSET is valid.
    let select = future::select_ok(verifications);

    // this will return either a good result or the errors
    let (proof, rest) = select.await?;
    drop(rest);

    proof.ok_or_else(||
        // we are in a bogus state, DS records were available (see beginning of function), but RRSIGs couldn't be verified
        ProofError::new(Proof::Bogus, ProofErrorKind::RrsigsUnverified{name: rrset.name().clone(), record_type: rrset.record_type()})
    )
}

/// Verifies the given SIG of the RRSET with the DNSKEY.
#[cfg(feature = "dnssec")]
fn verify_rrset_with_dnskey(
    dnskey: RecordRef<'_, DNSKEY>,
    rrsig: RecordRef<'_, RRSIG>,
    rrset: &Rrset<'_>,
    current_time: u32,
) -> Result<(Proof, Option<u32>), ProofError> {
    if dnskey.data().revoke() {
        debug!("revoked");
        return Err(ProofError::new(
            Proof::Bogus,
            ProofErrorKind::DnsKeyRevoked {
                name: dnskey.name().clone(),
                key_tag: rrsig.data().key_tag(),
            },
        ));
    } // TODO: does this need to be validated? RFC 5011
    if !dnskey.data().zone_key() {
        return Err(ProofError::new(
            Proof::Bogus,
            ProofErrorKind::NotZoneDnsKey {
                name: dnskey.name().clone(),
                key_tag: rrsig.data().key_tag(),
            },
        ));
    }
    if dnskey.data().algorithm() != rrsig.data().algorithm() {
        return Err(ProofError::new(
            Proof::Bogus,
            ProofErrorKind::AlgorithmMismatch {
                rrsig: rrsig.data().algorithm(),
                dnskey: dnskey.data().algorithm(),
            },
        ));
    }

    let validity = check_rrsig_validity(rrsig, rrset, dnskey, current_time);
    if !matches!(validity, RrsigValidity::ValidRrsig) {
        // TODO better error handling when the error payload is not immediately discarded by
        // the caller
        return Err(ProofError::new(
            Proof::Bogus,
            ProofErrorKind::Msg(format!("{:?}", validity)),
        ));
    }

    dnskey
        .data()
        .verify_rrsig(
            rrset.name(),
            rrset.record_class(),
            rrsig.data(),
            rrset.records().iter().copied(),
        )
        .map(|_| {
            debug!(
                "validated ({}, {:?}) with ({}, {})",
                rrset.name(),
                rrset.record_type(),
                dnskey.name(),
                dnskey.data()
            );
            (
                Proof::Secure,
                Some(rrsig.data().authenticated_ttl(rrset.record(), current_time)),
            )
        })
        .map_err(|e| {
            debug!(
                "failed validation of ({}, {:?}) with ({}, {})",
                rrset.name(),
                rrset.record_type(),
                dnskey.name(),
                dnskey.data()
            );
            ProofError::new(
                Proof::Bogus,
                ProofErrorKind::DnsKeyVerifyRrsig {
                    name: dnskey.name().clone(),
                    key_tag: rrsig.data().key_tag(),
                    error: e,
                },
            )
        })
}

// see section 5.3.1 of RFC4035 "Checking the RRSIG RR Validity"
fn check_rrsig_validity(
    rrsig: RecordRef<'_, RRSIG>,
    rrset: &Rrset<'_>,
    dnskey: RecordRef<'_, DNSKEY>,
    current_time: u32,
) -> RrsigValidity {
    let current_time = SerialNumber(current_time);
    let expiration = rrsig.data().sig_expiration();
    let inception = rrsig.data().sig_inception();

    let Ok(dnskey_key_tag) = dnskey.data().calculate_key_tag() else {
        return RrsigValidity::WrongDnskey;
    };

    if !(
        // "The RRSIG RR and the RRset MUST have the same owner name and the same class"
        rrsig.name() == rrset.name() &&
        rrsig.dns_class() == rrset.record_class() &&

        // "The RRSIG RR's Signer's Name field MUST be the name of the zone that contains the RRset"
        // TODO(^) the zone name is in the SOA record, which is not accessible from here

        // "The RRSIG RR's Type Covered field MUST equal the RRset's type"
        rrsig.data().type_covered() == rrset.record_type() &&

        // "The number of labels in the RRset owner name MUST be greater than or equal to the value
        // in the RRSIG RR's Labels field"
        rrset.name().num_labels() >= rrsig.data().num_labels()
    ) {
        return RrsigValidity::WrongRrsig;
    }

    // Section 3.1.5 of RFC4034 states that 'all comparisons involving these fields MUST use
    // "Serial number arithmetic", as defined in RFC1982'
    if !(
        // "The validator's notion of the current time MUST be less than or equal to the time listed
        // in the RRSIG RR's Expiration field"
        current_time <= expiration &&

        // "The validator's notion of the current time MUST be greater than or equal to the time
        // listed in the RRSIG RR's Inception field"
        current_time >= inception
    ) {
        return RrsigValidity::ExpiredRrsig;
    }

    if !(
        // "The RRSIG RR's Signer's Name, Algorithm, and Key Tag fields MUST match the owner name,
        // algorithm, and key tag for some DNSKEY RR in the zone's apex DNSKEY RRset"
        rrsig.data().signer_name() == dnskey.name() &&
        rrsig.data().algorithm() == dnskey.data().algorithm() &&
        rrsig.data().key_tag() == dnskey_key_tag &&

        // "The matching DNSKEY RR MUST be present in the zone's apex DNSKEY RRset, and MUST have the
        // Zone Flag bit (DNSKEY RDATA Flag bit 7) set"
        dnskey.data().zone_key()
    ) {
        return RrsigValidity::WrongDnskey;
    }

    RrsigValidity::ValidRrsig
}

#[derive(Clone, Copy, Debug)]
enum RrsigValidity {
    /// RRSIG has already expired
    ExpiredRrsig,
    /// RRSIG is valid
    ValidRrsig,
    /// DNSKEY does not match RRSIG
    WrongDnskey,
    /// RRSIG does not match RRset
    WrongRrsig,
}

/// Will always return an error. To enable record verification compile with the openssl feature.
#[cfg(not(feature = "dnssec"))]
fn verify_rrset_with_dnskey(_: &DNSKEY, _: &RRSIG, _: &Rrset) -> ProtoResult<()> {
    Err(ProtoErrorKind::Message("openssl or ring feature(s) not enabled").into())
}

/// Verifies NSEC records
///
/// ```text
/// RFC 4035             DNSSEC Protocol Modifications            March 2005
///
/// 5.4.  Authenticated Denial of Existence
///
///  A resolver can use authenticated NSEC RRs to prove that an RRset is
///  not present in a signed zone.  Security-aware name servers should
///  automatically include any necessary NSEC RRs for signed zones in
///  their responses to security-aware resolvers.
///
///  Denial of existence is determined by the following rules:
///
///  o  If the requested RR name matches the owner name of an
///     authenticated NSEC RR, then the NSEC RR's type bit map field lists
///     all RR types present at that owner name, and a resolver can prove
///     that the requested RR type does not exist by checking for the RR
///     type in the bit map.  If the number of labels in an authenticated
///     NSEC RR's owner name equals the Labels field of the covering RRSIG
///     RR, then the existence of the NSEC RR proves that wildcard
///     expansion could not have been used to match the request.
///
///  o  If the requested RR name would appear after an authenticated NSEC
///     RR's owner name and before the name listed in that NSEC RR's Next
///     Domain Name field according to the canonical DNS name order
///     defined in [RFC4034], then no RRsets with the requested name exist
///     in the zone.  However, it is possible that a wildcard could be
///     used to match the requested RR owner name and type, so proving
///     that the requested RRset does not exist also requires proving that
///     no possible wildcard RRset exists that could have been used to
///     generate a positive response.
///
///  In addition, security-aware resolvers MUST authenticate the NSEC
///  RRsets that comprise the non-existence proof as described in Section
///  5.3.
///
///  To prove the non-existence of an RRset, the resolver must be able to
///  verify both that the queried RRset does not exist and that no
///  relevant wildcard RRset exists.  Proving this may require more than
///  one NSEC RRset from the zone.  If the complete set of necessary NSEC
///  RRsets is not present in a response (perhaps due to message
///  truncation), then a security-aware resolver MUST resend the query in
///  order to attempt to obtain the full collection of NSEC RRs necessary
///  to verify the non-existence of the requested RRset.  As with all DNS
///  operations, however, the resolver MUST bound the work it puts into
///  answering any particular query.
///
///  Since a validated NSEC RR proves the existence of both itself and its
///  corresponding RRSIG RR, a validator MUST ignore the settings of the
///  NSEC and RRSIG bits in an NSEC RR.
/// ```
#[allow(clippy::blocks_in_conditions)]
#[doc(hidden)]
pub fn verify_nsec(query: &Query, soa_name: &Name, nsecs: &[&Record]) -> Proof {
    // TODO: consider converting this to Result, and giving explicit reason for the failure

    // first look for a record with the same name
    //  if they are, then the query_type should not exist in the NSEC record.
    //  if we got an NSEC record of the same name, but it is listed in the NSEC types,
    //    WTF? is that bad server, bad record
    if let Some(nsec) = nsecs.iter().find(|nsec| query.name() == nsec.name()) {
        if nsec
            .data()
            .as_dnssec()
            .and_then(DNSSECRData::as_nsec)
            .map_or(false, |rdata| {
                // this should not be in the covered list
                !rdata.type_bit_maps().contains(&query.query_type())
            })
        {
            return Proof::Secure;
        } else {
            return Proof::Bogus;
        }
    }

    let verify_nsec_coverage = |name: &Name| -> bool {
        nsecs.iter().any(|nsec| {
            // the query name must be greater than nsec's label (or equal in the case of wildcard)
            name >= nsec.name() && {
                nsec.data()
                    .as_dnssec()
                    .and_then(DNSSECRData::as_nsec)
                    .map_or(false, |rdata| {
                        // the query name is less than the next name
                        // or this record wraps the end, i.e. is the last record
                        name < rdata.next_domain_name() || rdata.next_domain_name() < nsec.name()
                    })
            }
        })
    };

    // continue to validate there is no wildcard
    if !verify_nsec_coverage(query.name()) {
        return Proof::Bogus;
    }

    // validate ANY or *.domain record existence

    // we need the wildcard proof, but make sure that it's still part of the zone.
    let wildcard = query.name().base_name();
    let wildcard = if soa_name.zone_of(&wildcard) {
        wildcard
    } else {
        soa_name.clone()
    };

    // don't need to validate the same name again
    if wildcard == *query.name() {
        // this was validated by the nsec coverage over the query.name()
        Proof::Secure
    } else {
        // this is the final check, return it's value
        //  if there is wildcard coverage, we're good.
        if verify_nsec_coverage(&wildcard) {
            Proof::Secure
        } else {
            Proof::Bogus
        }
    }
}

/// Returns the current system time as Unix timestamp in seconds.
fn current_time() -> u32 {
    SystemTime::now()
        .duration_since(UNIX_EPOCH)
        .unwrap_or_default()
        .as_secs() as u32
}

mod rrset {
    use crate::rr::{DNSClass, Name, Record, RecordType};

    // TODO: combine this with crate::rr::RecordSet?
    #[derive(Debug)]
    pub(super) struct Rrset<'r> {
        name: Name,
        record_class: DNSClass,
        record_type: RecordType,
        records: Vec<&'r Record>,
    }

    impl<'r> Rrset<'r> {
        pub(super) fn new(record: &'r Record) -> Self {
            Self {
                name: record.name().clone(),
                record_class: record.dns_class(),
                record_type: record.record_type(),
                records: vec![record],
            }
        }

        /// Adds `record` to this RRset IFF it belongs to it
        pub(super) fn add(&mut self, record: &'r Record) {
            if self.name == *record.name()
                && self.record_type == record.record_type()
                && self.record_class == record.dns_class()
            {
                self.records.push(record);
            }
        }

        /// Returns the first (main) record.
        pub(super) fn record(&self) -> &Record {
            self.records[0]
        }

        pub(super) fn name(&self) -> &Name {
            &self.name
        }

        pub(super) fn record_class(&self) -> DNSClass {
            self.record_class
        }

        pub(super) fn record_type(&self) -> RecordType {
            self.record_type
        }

        pub(super) fn records(&self) -> &[&Record] {
            &self.records
        }
    }
}

/// The maximum number of key tag collisions to accept when:
///
/// 1) Retrieving DNSKEY records for a zone
/// 2) Retrieving DS records from a parent zone
///
/// Any colliding records encountered beyond this limit will be discarded.
const MAX_KEY_TAG_COLLISIONS: usize = 2;

/// The maximum number of RRSIGs to attempt to validate for each RRSET.
const MAX_RRSIGS_PER_RRSET: usize = 8;