hickory_proto/dnssec/rdata/
dnskey.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! public key record data for signing zone records

use std::{fmt, sync::Arc};

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::{
    dnssec::{public_key::decode_public_key, Algorithm, Digest, DigestType, PublicKey, Verifier},
    error::{ProtoError, ProtoErrorKind, ProtoResult},
    rr::{record_data::RData, Name, RecordData, RecordDataDecodable, RecordType},
    serialize::binary::{
        BinDecodable, BinDecoder, BinEncodable, BinEncoder, Restrict, RestrictedMath,
    },
};

use super::DNSSECRData;

/// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-2), DNSSEC Resource Records, March 2005
///
/// ```text
/// 2.  The DNSKEY Resource Record
///
///    DNSSEC uses public key cryptography to sign and authenticate DNS
///    resource record sets (RRsets).  The public keys are stored in DNSKEY
///    resource records and are used in the DNSSEC authentication process
///    described in [RFC4035]: A zone signs its authoritative RRsets by
///    using a private key and stores the corresponding public key in a
///    DNSKEY RR.  A resolver can then use the public key to validate
///    signatures covering the RRsets in the zone, and thus to authenticate
///    them.
///
///    The DNSKEY RR is not intended as a record for storing arbitrary
///    public keys and MUST NOT be used to store certificates or public keys
///    that do not directly relate to the DNS infrastructure.
///
///    The Type value for the DNSKEY RR type is 48.
///
///    The DNSKEY RR is class independent.
///
///    The DNSKEY RR has no special TTL requirements.
///
/// 2.1.  DNSKEY RDATA Wire Format
///
///    The RDATA for a DNSKEY RR consists of a 2 octet Flags Field, a 1
///    octet Protocol Field, a 1 octet Algorithm Field, and the Public Key
///    Field.
///
///                         1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
///     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///    |              Flags            |    Protocol   |   Algorithm   |
///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///    /                                                               /
///    /                            Public Key                         /
///    /                                                               /
///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// 2.1.5.  Notes on DNSKEY RDATA Design
///
///    Although the Protocol Field always has value 3, it is retained for
///    backward compatibility with early versions of the KEY record.
///
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct DNSKEY {
    zone_key: bool,
    secure_entry_point: bool,
    revoke: bool,
    algorithm: Algorithm,
    public_key: Vec<u8>,
}

impl DNSKEY {
    /// Create a [`DNSKEY`] record representing a `public_key`.
    ///
    /// # Arguments
    ///
    /// * `algorithm` - algorithm of the DNSKEY
    ///
    /// # Return
    ///
    /// the DNSKEY record data
    pub fn from_key(public_key: &dyn PublicKey, algorithm: Algorithm) -> Self {
        let bytes = public_key.public_bytes();
        Self::new(true, true, false, algorithm, bytes.to_owned())
    }

    /// Construct a new DNSKey RData
    ///
    /// # Arguments
    ///
    /// * `zone_key` - this key is used to sign Zone resource records
    /// * `secure_entry_point` - this key is used to sign DNSKeys that sign the Zone records
    /// * `revoke` - this key has been revoked
    /// * `algorithm` - specifies the algorithm which this Key uses to sign records
    /// * `public_key` - the public key material, in native endian, the emitter will perform any necessary conversion
    ///
    /// # Return
    ///
    /// A new DNSKEY RData for use in a Resource Record
    pub fn new(
        zone_key: bool,
        secure_entry_point: bool,
        revoke: bool,
        algorithm: Algorithm,
        public_key: Vec<u8>,
    ) -> Self {
        Self {
            zone_key,
            secure_entry_point,
            revoke,
            algorithm,
            public_key,
        }
    }

    /// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.1.1)
    ///
    /// ```text
    /// 2.1.1.  The Flags Field
    ///
    ///    Bit 7 of the Flags field is the Zone Key flag.  If bit 7 has value 1,
    ///    then the DNSKEY record holds a DNS zone key, and the DNSKEY RR's
    ///    owner name MUST be the name of a zone.  If bit 7 has value 0, then
    ///    the DNSKEY record holds some other type of DNS public key and MUST
    ///    NOT be used to verify RRSIGs that cover RRsets.
    ///
    ///
    ///    Bits 0-6 and 8-14 are reserved: these bits MUST have value 0 upon
    ///    creation of the DNSKEY RR and MUST be ignored upon receipt.
    /// ```
    pub fn zone_key(&self) -> bool {
        self.zone_key
    }

    /// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.1.1)
    ///
    /// ```text
    /// 2.1.1.  The Flags Field
    ///
    ///    Bit 15 of the Flags field is the Secure Entry Point flag, described
    ///    in [RFC3757].  If bit 15 has value 1, then the DNSKEY record holds a
    ///    key intended for use as a secure entry point.  This flag is only
    ///    intended to be a hint to zone signing or debugging software as to the
    ///    intended use of this DNSKEY record; validators MUST NOT alter their
    ///    behavior during the signature validation process in any way based on
    ///    the setting of this bit.  This also means that a DNSKEY RR with the
    ///    SEP bit set would also need the Zone Key flag set in order to be able
    ///    to generate signatures legally.  A DNSKEY RR with the SEP set and the
    ///    Zone Key flag not set MUST NOT be used to verify RRSIGs that cover
    ///    RRsets.
    /// ```
    pub fn secure_entry_point(&self) -> bool {
        self.secure_entry_point
    }

    /// A KSK has a `flags` value of `257`
    pub fn is_key_signing_key(&self) -> bool {
        // a flags value of 257
        self.secure_entry_point() && self.zone_key() && !self.revoke()
    }

    /// [RFC 5011, Trust Anchor Update, September 2007](https://tools.ietf.org/html/rfc5011#section-3)
    ///
    /// ```text
    /// RFC 5011                  Trust Anchor Update             September 2007
    ///
    /// 7.  IANA Considerations
    ///
    ///   The IANA has assigned a bit in the DNSKEY flags field (see Section 7
    ///   of [RFC4034]) for the REVOKE bit (8).
    /// ```
    pub fn revoke(&self) -> bool {
        self.revoke
    }

    /// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.1.3)
    ///
    /// ```text
    /// 2.1.3.  The Algorithm Field
    ///
    ///    The Algorithm field identifies the public key's cryptographic
    ///    algorithm and determines the format of the Public Key field.  A list
    ///    of DNSSEC algorithm types can be found in Appendix A.1
    /// ```
    pub fn algorithm(&self) -> Algorithm {
        self.algorithm
    }

    /// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.1.4)
    ///
    /// ```text
    /// 2.1.4.  The Public Key Field
    ///
    ///    The Public Key Field holds the public key material.  The format
    ///    depends on the algorithm of the key being stored and is described in
    ///    separate documents.
    /// ```
    pub fn public_key(&self) -> &[u8] {
        &self.public_key
    }

    /// Output the encoded form of the flags
    pub fn flags(&self) -> u16 {
        let mut flags: u16 = 0;
        if self.zone_key() {
            flags |= 0b0000_0001_0000_0000
        }
        if self.secure_entry_point() {
            flags |= 0b0000_0000_0000_0001
        }
        if self.revoke() {
            flags |= 0b0000_0000_1000_0000
        }

        flags
    }

    /// Creates a message digest for this DNSKEY record.
    ///
    /// ```text
    /// 5.1.4.  The Digest Field
    ///
    ///    The DS record refers to a DNSKEY RR by including a digest of that
    ///    DNSKEY RR.
    ///
    ///    The digest is calculated by concatenating the canonical form of the
    ///    fully qualified owner name of the DNSKEY RR with the DNSKEY RDATA,
    ///    and then applying the digest algorithm.
    ///
    ///      digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
    ///
    ///       "|" denotes concatenation
    ///
    ///      DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
    ///
    ///    The size of the digest may vary depending on the digest algorithm and
    ///    DNSKEY RR size.  As of the time of this writing, the only defined
    ///    digest algorithm is SHA-1, which produces a 20 octet digest.
    /// ```
    ///
    /// # Arguments
    ///
    /// * `name` - the label of of the DNSKEY record.
    /// * `digest_type` - the `DigestType` with which to create the message digest.
    #[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
    pub fn to_digest(&self, name: &Name, digest_type: DigestType) -> ProtoResult<Digest> {
        let mut buf: Vec<u8> = Vec::new();
        {
            let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut buf);
            encoder.set_canonical_names(true);
            if let Err(e) = name
                .emit(&mut encoder)
                .and_then(|_| self.emit(&mut encoder))
            {
                tracing::warn!("error serializing dnskey: {e}");
                return Err(format!("error serializing dnskey: {e}").into());
            }
        }

        digest_type.hash(&buf)
    }

    /// This will always return an error unless the Ring or OpenSSL features are enabled
    #[cfg(not(any(feature = "dnssec-openssl", feature = "dnssec-ring")))]
    pub fn to_digest(&self, _: &Name, _: DigestType) -> ProtoResult<Digest> {
        Err("Ring or OpenSSL must be enabled for this feature".into())
    }

    /// The key tag is calculated as a hash to more quickly lookup a DNSKEY.
    ///
    /// [RFC 2535](https://tools.ietf.org/html/rfc2535), Domain Name System Security Extensions, March 1999
    ///
    /// ```text
    /// RFC 2535                DNS Security Extensions               March 1999
    ///
    /// 4.1.6 Key Tag Field
    ///
    ///  The "key Tag" is a two octet quantity that is used to efficiently
    ///  select between multiple keys which may be applicable and thus check
    ///  that a public key about to be used for the computationally expensive
    ///  effort to check the signature is possibly valid.  For algorithm 1
    ///  (MD5/RSA) as defined in [RFC 2537], it is the next to the bottom two
    ///  octets of the public key modulus needed to decode the signature
    ///  field.  That is to say, the most significant 16 of the least
    ///  significant 24 bits of the modulus in network (big endian) order. For
    ///  all other algorithms, including private algorithms, it is calculated
    ///  as a simple checksum of the KEY RR as described in Appendix C.
    ///
    /// Appendix C: Key Tag Calculation
    ///
    ///  The key tag field in the SIG RR is just a means of more efficiently
    ///  selecting the correct KEY RR to use when there is more than one KEY
    ///  RR candidate available, for example, in verifying a signature.  It is
    ///  possible for more than one candidate key to have the same tag, in
    ///  which case each must be tried until one works or all fail.  The
    ///  following reference implementation of how to calculate the Key Tag,
    ///  for all algorithms other than algorithm 1, is in ANSI C.  It is coded
    ///  for clarity, not efficiency.  (See section 4.1.6 for how to determine
    ///  the Key Tag of an algorithm 1 key.)
    ///
    ///  /* assumes int is at least 16 bits
    ///     first byte of the key tag is the most significant byte of return
    ///     value
    ///     second byte of the key tag is the least significant byte of
    ///     return value
    ///     */
    ///
    ///  int keytag (
    ///
    ///          unsigned char key[],  /* the RDATA part of the KEY RR */
    ///          unsigned int keysize, /* the RDLENGTH */
    ///          )
    ///  {
    ///  long int    ac;    /* assumed to be 32 bits or larger */
    ///
    ///  for ( ac = 0, i = 0; i < keysize; ++i )
    ///      ac += (i&1) ? key[i] : key[i]<<8;
    ///  ac += (ac>>16) & 0xFFFF;
    ///  return ac & 0xFFFF;
    ///  }
    /// ```
    pub fn calculate_key_tag(&self) -> ProtoResult<u16> {
        // TODO:
        let mut bytes: Vec<u8> = Vec::with_capacity(512);
        {
            let mut e = BinEncoder::new(&mut bytes);
            self.emit(&mut e)?;
        }
        Ok(Self::calculate_key_tag_internal(&bytes))
    }

    /// Internal checksum function (used for non-RSAMD5 hashes only,
    /// however, RSAMD5 is considered deprecated and not implemented in
    /// hickory-dns, anyways).
    pub fn calculate_key_tag_internal(bytes: &[u8]) -> u16 {
        let mut ac: u32 = 0;
        for (i, k) in bytes.iter().enumerate() {
            ac += u32::from(*k) << if i & 0x01 != 0 { 0 } else { 8 };
        }
        ac += ac >> 16;
        (ac & 0xFFFF) as u16
    }
}

impl From<DNSKEY> for RData {
    fn from(key: DNSKEY) -> Self {
        Self::DNSSEC(super::DNSSECRData::DNSKEY(key))
    }
}

impl BinEncodable for DNSKEY {
    fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
        encoder.emit_u16(self.flags())?;
        encoder.emit(3)?; // always 3 for now
        self.algorithm().emit(encoder)?;
        encoder.emit_vec(self.public_key())?;

        Ok(())
    }
}

impl<'r> RecordDataDecodable<'r> for DNSKEY {
    fn read_data(decoder: &mut BinDecoder<'r>, length: Restrict<u16>) -> ProtoResult<Self> {
        let flags: u16 = decoder.read_u16()?.unverified(/*used as a bitfield, this is safe*/);

        //    Bits 0-6 and 8-14 are reserved: these bits MUST have value 0 upon
        //    creation of the DNSKEY RR and MUST be ignored upon receipt.
        let zone_key: bool = flags & 0b0000_0001_0000_0000 == 0b0000_0001_0000_0000;
        let secure_entry_point: bool = flags & 0b0000_0000_0000_0001 == 0b0000_0000_0000_0001;
        let revoke: bool = flags & 0b0000_0000_1000_0000 == 0b0000_0000_1000_0000;
        let _protocol: u8 = decoder
            .read_u8()?
            .verify_unwrap(|protocol| {
                // RFC 4034                DNSSEC Resource Records               March 2005
                //
                // 2.1.2.  The Protocol Field
                //
                //    The Protocol Field MUST have value 3, and the DNSKEY RR MUST be
                //    treated as invalid during signature verification if it is found to be
                //    some value other than 3.
                //
                // protocol is defined to only be '3' right now

                *protocol == 3
            })
            .map_err(|protocol| ProtoError::from(ProtoErrorKind::DnsKeyProtocolNot3(protocol)))?;

        let algorithm: Algorithm = Algorithm::read(decoder)?;

        // the public key is the left-over bytes minus 4 for the first fields
        //   this sub is safe, as the first 4 fields must have been in the rdata, otherwise there would have been
        //   an earlier return.
        let key_len = length
        .map(|u| u as usize)
        .checked_sub(4)
        .map_err(|_| ProtoError::from("invalid rdata length in DNSKEY"))?
        .unverified(/*used only as length safely*/);
        let public_key: Vec<u8> =
            decoder.read_vec(key_len)?.unverified(/*the byte array will fail in usage if invalid*/);

        Ok(Self::new(
            zone_key,
            secure_entry_point,
            revoke,
            algorithm,
            public_key,
        ))
    }
}

impl RecordData for DNSKEY {
    fn try_from_rdata(data: RData) -> Result<Self, RData> {
        match data {
            RData::DNSSEC(DNSSECRData::DNSKEY(csync)) => Ok(csync),
            _ => Err(data),
        }
    }

    fn try_borrow(data: &RData) -> Option<&Self> {
        match data {
            RData::DNSSEC(DNSSECRData::DNSKEY(csync)) => Some(csync),
            _ => None,
        }
    }

    fn record_type(&self) -> RecordType {
        RecordType::DNSKEY
    }

    fn into_rdata(self) -> RData {
        RData::DNSSEC(DNSSECRData::DNSKEY(self))
    }
}

impl Verifier for DNSKEY {
    fn algorithm(&self) -> Algorithm {
        self.algorithm()
    }

    fn key(&self) -> ProtoResult<Arc<dyn PublicKey + '_>> {
        decode_public_key(&self.public_key, self.algorithm)
    }
}

/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.2)
///
/// ```text
/// 2.2.  The DNSKEY RR Presentation Format
///
///    The presentation format of the RDATA portion is as follows:
///
///    The Flag field MUST be represented as an unsigned decimal integer.
///    Given the currently defined flags, the possible values are: 0, 256,
///    and 257.
///
///    The Protocol Field MUST be represented as an unsigned decimal integer
///    with a value of 3.
///
///    The Algorithm field MUST be represented either as an unsigned decimal
///    integer or as an algorithm mnemonic as specified in Appendix A.1.
///
///    The Public Key field MUST be represented as a Base64 encoding of the
///    Public Key.  Whitespace is allowed within the Base64 text.  For a
///    definition of Base64 encoding, see [RFC3548].
///
/// 2.3.  DNSKEY RR Example
///
///    The following DNSKEY RR stores a DNS zone key for example.com.
///
///    example.com. 86400 IN DNSKEY 256 3 5 ( AQPSKmynfzW4kyBv015MUG2DeIQ3
///                                           Cbl+BBZH4b/0PY1kxkmvHjcZc8no
///                                           kfzj31GajIQKY+5CptLr3buXA10h
///                                           WqTkF7H6RfoRqXQeogmMHfpftf6z
///                                           Mv1LyBUgia7za6ZEzOJBOztyvhjL
///                                           742iU/TpPSEDhm2SNKLijfUppn1U
///                                           aNvv4w==  )
///
///    The first four text fields specify the owner name, TTL, Class, and RR
///    type (DNSKEY).  Value 256 indicates that the Zone Key bit (bit 7) in
///    the Flags field has value 1.  Value 3 is the fixed Protocol value.
///    Value 5 indicates the public key algorithm.  Appendix A.1 identifies
///    algorithm type 5 as RSA/SHA1 and indicates that the format of the
///    RSA/SHA1 public key field is defined in [RFC3110].  The remaining
///    text is a Base64 encoding of the public key.
/// ```
impl fmt::Display for DNSKEY {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        write!(
            f,
            "{flags} 3 {alg} {key}",
            flags = self.flags(),
            alg = u8::from(self.algorithm),
            key = data_encoding::BASE64.encode(&self.public_key)
        )
    }
}

#[cfg(test)]
mod tests {
    #![allow(clippy::dbg_macro, clippy::print_stdout)]

    use super::*;
    #[cfg(feature = "dnssec-ring")]
    use crate::dnssec::{ring::EcdsaSigningKey, SigningKey};

    #[test]
    #[cfg(feature = "dnssec-ring")]
    fn test() {
        let algorithm = Algorithm::ECDSAP256SHA256;
        let pkcs8 = EcdsaSigningKey::generate_pkcs8(algorithm).unwrap();
        let signing_key = EcdsaSigningKey::from_pkcs8(&pkcs8, algorithm).unwrap();

        let rdata = DNSKEY::new(
            true,
            true,
            false,
            algorithm,
            signing_key.to_public_key().unwrap().public_bytes().to_vec(),
        );

        let mut bytes = Vec::new();
        let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
        assert!(rdata.emit(&mut encoder).is_ok());
        let bytes = encoder.into_bytes();

        println!("bytes: {bytes:?}");

        let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
        let read_rdata = DNSKEY::read_data(&mut decoder, Restrict::new(bytes.len() as u16));
        let read_rdata = read_rdata.expect("error decoding");

        assert_eq!(rdata, read_rdata);
        assert!(rdata
            .to_digest(
                &Name::parse("www.example.com.", None).unwrap(),
                DigestType::SHA256
            )
            .is_ok());
    }

    #[test]
    fn test_calculate_key_tag_checksum() {
        let test_text = "The quick brown fox jumps over the lazy dog";
        let test_vectors = vec![
            (vec![], 0),
            (vec![0, 0, 0, 0], 0),
            (vec![0xff, 0xff, 0xff, 0xff], 0xffff),
            (vec![1, 0, 0, 0], 0x0100),
            (vec![0, 1, 0, 0], 0x0001),
            (vec![0, 0, 1, 0], 0x0100),
            (test_text.as_bytes().to_vec(), 0x8d5b),
        ];

        for (input_data, exp_result) in test_vectors {
            let result = DNSKEY::calculate_key_tag_internal(&input_data);
            assert_eq!(result, exp_result);
        }
    }
}