hickory_proto/dnssec/rdata/dnskey.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! public key record data for signing zone records
use std::{fmt, sync::Arc};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::{
dnssec::{public_key::decode_public_key, Algorithm, Digest, DigestType, PublicKey, Verifier},
error::{ProtoError, ProtoErrorKind, ProtoResult},
rr::{record_data::RData, Name, RecordData, RecordDataDecodable, RecordType},
serialize::binary::{
BinDecodable, BinDecoder, BinEncodable, BinEncoder, Restrict, RestrictedMath,
},
};
use super::DNSSECRData;
/// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-2), DNSSEC Resource Records, March 2005
///
/// ```text
/// 2. The DNSKEY Resource Record
///
/// DNSSEC uses public key cryptography to sign and authenticate DNS
/// resource record sets (RRsets). The public keys are stored in DNSKEY
/// resource records and are used in the DNSSEC authentication process
/// described in [RFC4035]: A zone signs its authoritative RRsets by
/// using a private key and stores the corresponding public key in a
/// DNSKEY RR. A resolver can then use the public key to validate
/// signatures covering the RRsets in the zone, and thus to authenticate
/// them.
///
/// The DNSKEY RR is not intended as a record for storing arbitrary
/// public keys and MUST NOT be used to store certificates or public keys
/// that do not directly relate to the DNS infrastructure.
///
/// The Type value for the DNSKEY RR type is 48.
///
/// The DNSKEY RR is class independent.
///
/// The DNSKEY RR has no special TTL requirements.
///
/// 2.1. DNSKEY RDATA Wire Format
///
/// The RDATA for a DNSKEY RR consists of a 2 octet Flags Field, a 1
/// octet Protocol Field, a 1 octet Algorithm Field, and the Public Key
/// Field.
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Flags | Protocol | Algorithm |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / /
/// / Public Key /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// 2.1.5. Notes on DNSKEY RDATA Design
///
/// Although the Protocol Field always has value 3, it is retained for
/// backward compatibility with early versions of the KEY record.
///
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct DNSKEY {
zone_key: bool,
secure_entry_point: bool,
revoke: bool,
algorithm: Algorithm,
public_key: Vec<u8>,
}
impl DNSKEY {
/// Create a [`DNSKEY`] record representing a `public_key`.
///
/// # Arguments
///
/// * `algorithm` - algorithm of the DNSKEY
///
/// # Return
///
/// the DNSKEY record data
pub fn from_key(public_key: &dyn PublicKey, algorithm: Algorithm) -> Self {
let bytes = public_key.public_bytes();
Self::new(true, true, false, algorithm, bytes.to_owned())
}
/// Construct a new DNSKey RData
///
/// # Arguments
///
/// * `zone_key` - this key is used to sign Zone resource records
/// * `secure_entry_point` - this key is used to sign DNSKeys that sign the Zone records
/// * `revoke` - this key has been revoked
/// * `algorithm` - specifies the algorithm which this Key uses to sign records
/// * `public_key` - the public key material, in native endian, the emitter will perform any necessary conversion
///
/// # Return
///
/// A new DNSKEY RData for use in a Resource Record
pub fn new(
zone_key: bool,
secure_entry_point: bool,
revoke: bool,
algorithm: Algorithm,
public_key: Vec<u8>,
) -> Self {
Self {
zone_key,
secure_entry_point,
revoke,
algorithm,
public_key,
}
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.1.1)
///
/// ```text
/// 2.1.1. The Flags Field
///
/// Bit 7 of the Flags field is the Zone Key flag. If bit 7 has value 1,
/// then the DNSKEY record holds a DNS zone key, and the DNSKEY RR's
/// owner name MUST be the name of a zone. If bit 7 has value 0, then
/// the DNSKEY record holds some other type of DNS public key and MUST
/// NOT be used to verify RRSIGs that cover RRsets.
///
///
/// Bits 0-6 and 8-14 are reserved: these bits MUST have value 0 upon
/// creation of the DNSKEY RR and MUST be ignored upon receipt.
/// ```
pub fn zone_key(&self) -> bool {
self.zone_key
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.1.1)
///
/// ```text
/// 2.1.1. The Flags Field
///
/// Bit 15 of the Flags field is the Secure Entry Point flag, described
/// in [RFC3757]. If bit 15 has value 1, then the DNSKEY record holds a
/// key intended for use as a secure entry point. This flag is only
/// intended to be a hint to zone signing or debugging software as to the
/// intended use of this DNSKEY record; validators MUST NOT alter their
/// behavior during the signature validation process in any way based on
/// the setting of this bit. This also means that a DNSKEY RR with the
/// SEP bit set would also need the Zone Key flag set in order to be able
/// to generate signatures legally. A DNSKEY RR with the SEP set and the
/// Zone Key flag not set MUST NOT be used to verify RRSIGs that cover
/// RRsets.
/// ```
pub fn secure_entry_point(&self) -> bool {
self.secure_entry_point
}
/// A KSK has a `flags` value of `257`
pub fn is_key_signing_key(&self) -> bool {
// a flags value of 257
self.secure_entry_point() && self.zone_key() && !self.revoke()
}
/// [RFC 5011, Trust Anchor Update, September 2007](https://tools.ietf.org/html/rfc5011#section-3)
///
/// ```text
/// RFC 5011 Trust Anchor Update September 2007
///
/// 7. IANA Considerations
///
/// The IANA has assigned a bit in the DNSKEY flags field (see Section 7
/// of [RFC4034]) for the REVOKE bit (8).
/// ```
pub fn revoke(&self) -> bool {
self.revoke
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.1.3)
///
/// ```text
/// 2.1.3. The Algorithm Field
///
/// The Algorithm field identifies the public key's cryptographic
/// algorithm and determines the format of the Public Key field. A list
/// of DNSSEC algorithm types can be found in Appendix A.1
/// ```
pub fn algorithm(&self) -> Algorithm {
self.algorithm
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.1.4)
///
/// ```text
/// 2.1.4. The Public Key Field
///
/// The Public Key Field holds the public key material. The format
/// depends on the algorithm of the key being stored and is described in
/// separate documents.
/// ```
pub fn public_key(&self) -> &[u8] {
&self.public_key
}
/// Output the encoded form of the flags
pub fn flags(&self) -> u16 {
let mut flags: u16 = 0;
if self.zone_key() {
flags |= 0b0000_0001_0000_0000
}
if self.secure_entry_point() {
flags |= 0b0000_0000_0000_0001
}
if self.revoke() {
flags |= 0b0000_0000_1000_0000
}
flags
}
/// Creates a message digest for this DNSKEY record.
///
/// ```text
/// 5.1.4. The Digest Field
///
/// The DS record refers to a DNSKEY RR by including a digest of that
/// DNSKEY RR.
///
/// The digest is calculated by concatenating the canonical form of the
/// fully qualified owner name of the DNSKEY RR with the DNSKEY RDATA,
/// and then applying the digest algorithm.
///
/// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
///
/// "|" denotes concatenation
///
/// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
///
/// The size of the digest may vary depending on the digest algorithm and
/// DNSKEY RR size. As of the time of this writing, the only defined
/// digest algorithm is SHA-1, which produces a 20 octet digest.
/// ```
///
/// # Arguments
///
/// * `name` - the label of of the DNSKEY record.
/// * `digest_type` - the `DigestType` with which to create the message digest.
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
pub fn to_digest(&self, name: &Name, digest_type: DigestType) -> ProtoResult<Digest> {
let mut buf: Vec<u8> = Vec::new();
{
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut buf);
encoder.set_canonical_names(true);
if let Err(e) = name
.emit(&mut encoder)
.and_then(|_| self.emit(&mut encoder))
{
tracing::warn!("error serializing dnskey: {e}");
return Err(format!("error serializing dnskey: {e}").into());
}
}
digest_type.hash(&buf)
}
/// This will always return an error unless the Ring or OpenSSL features are enabled
#[cfg(not(any(feature = "dnssec-openssl", feature = "dnssec-ring")))]
pub fn to_digest(&self, _: &Name, _: DigestType) -> ProtoResult<Digest> {
Err("Ring or OpenSSL must be enabled for this feature".into())
}
/// The key tag is calculated as a hash to more quickly lookup a DNSKEY.
///
/// [RFC 2535](https://tools.ietf.org/html/rfc2535), Domain Name System Security Extensions, March 1999
///
/// ```text
/// RFC 2535 DNS Security Extensions March 1999
///
/// 4.1.6 Key Tag Field
///
/// The "key Tag" is a two octet quantity that is used to efficiently
/// select between multiple keys which may be applicable and thus check
/// that a public key about to be used for the computationally expensive
/// effort to check the signature is possibly valid. For algorithm 1
/// (MD5/RSA) as defined in [RFC 2537], it is the next to the bottom two
/// octets of the public key modulus needed to decode the signature
/// field. That is to say, the most significant 16 of the least
/// significant 24 bits of the modulus in network (big endian) order. For
/// all other algorithms, including private algorithms, it is calculated
/// as a simple checksum of the KEY RR as described in Appendix C.
///
/// Appendix C: Key Tag Calculation
///
/// The key tag field in the SIG RR is just a means of more efficiently
/// selecting the correct KEY RR to use when there is more than one KEY
/// RR candidate available, for example, in verifying a signature. It is
/// possible for more than one candidate key to have the same tag, in
/// which case each must be tried until one works or all fail. The
/// following reference implementation of how to calculate the Key Tag,
/// for all algorithms other than algorithm 1, is in ANSI C. It is coded
/// for clarity, not efficiency. (See section 4.1.6 for how to determine
/// the Key Tag of an algorithm 1 key.)
///
/// /* assumes int is at least 16 bits
/// first byte of the key tag is the most significant byte of return
/// value
/// second byte of the key tag is the least significant byte of
/// return value
/// */
///
/// int keytag (
///
/// unsigned char key[], /* the RDATA part of the KEY RR */
/// unsigned int keysize, /* the RDLENGTH */
/// )
/// {
/// long int ac; /* assumed to be 32 bits or larger */
///
/// for ( ac = 0, i = 0; i < keysize; ++i )
/// ac += (i&1) ? key[i] : key[i]<<8;
/// ac += (ac>>16) & 0xFFFF;
/// return ac & 0xFFFF;
/// }
/// ```
pub fn calculate_key_tag(&self) -> ProtoResult<u16> {
// TODO:
let mut bytes: Vec<u8> = Vec::with_capacity(512);
{
let mut e = BinEncoder::new(&mut bytes);
self.emit(&mut e)?;
}
Ok(Self::calculate_key_tag_internal(&bytes))
}
/// Internal checksum function (used for non-RSAMD5 hashes only,
/// however, RSAMD5 is considered deprecated and not implemented in
/// hickory-dns, anyways).
pub fn calculate_key_tag_internal(bytes: &[u8]) -> u16 {
let mut ac: u32 = 0;
for (i, k) in bytes.iter().enumerate() {
ac += u32::from(*k) << if i & 0x01 != 0 { 0 } else { 8 };
}
ac += ac >> 16;
(ac & 0xFFFF) as u16
}
}
impl From<DNSKEY> for RData {
fn from(key: DNSKEY) -> Self {
Self::DNSSEC(super::DNSSECRData::DNSKEY(key))
}
}
impl BinEncodable for DNSKEY {
fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
encoder.emit_u16(self.flags())?;
encoder.emit(3)?; // always 3 for now
self.algorithm().emit(encoder)?;
encoder.emit_vec(self.public_key())?;
Ok(())
}
}
impl<'r> RecordDataDecodable<'r> for DNSKEY {
fn read_data(decoder: &mut BinDecoder<'r>, length: Restrict<u16>) -> ProtoResult<Self> {
let flags: u16 = decoder.read_u16()?.unverified(/*used as a bitfield, this is safe*/);
// Bits 0-6 and 8-14 are reserved: these bits MUST have value 0 upon
// creation of the DNSKEY RR and MUST be ignored upon receipt.
let zone_key: bool = flags & 0b0000_0001_0000_0000 == 0b0000_0001_0000_0000;
let secure_entry_point: bool = flags & 0b0000_0000_0000_0001 == 0b0000_0000_0000_0001;
let revoke: bool = flags & 0b0000_0000_1000_0000 == 0b0000_0000_1000_0000;
let _protocol: u8 = decoder
.read_u8()?
.verify_unwrap(|protocol| {
// RFC 4034 DNSSEC Resource Records March 2005
//
// 2.1.2. The Protocol Field
//
// The Protocol Field MUST have value 3, and the DNSKEY RR MUST be
// treated as invalid during signature verification if it is found to be
// some value other than 3.
//
// protocol is defined to only be '3' right now
*protocol == 3
})
.map_err(|protocol| ProtoError::from(ProtoErrorKind::DnsKeyProtocolNot3(protocol)))?;
let algorithm: Algorithm = Algorithm::read(decoder)?;
// the public key is the left-over bytes minus 4 for the first fields
// this sub is safe, as the first 4 fields must have been in the rdata, otherwise there would have been
// an earlier return.
let key_len = length
.map(|u| u as usize)
.checked_sub(4)
.map_err(|_| ProtoError::from("invalid rdata length in DNSKEY"))?
.unverified(/*used only as length safely*/);
let public_key: Vec<u8> =
decoder.read_vec(key_len)?.unverified(/*the byte array will fail in usage if invalid*/);
Ok(Self::new(
zone_key,
secure_entry_point,
revoke,
algorithm,
public_key,
))
}
}
impl RecordData for DNSKEY {
fn try_from_rdata(data: RData) -> Result<Self, RData> {
match data {
RData::DNSSEC(DNSSECRData::DNSKEY(csync)) => Ok(csync),
_ => Err(data),
}
}
fn try_borrow(data: &RData) -> Option<&Self> {
match data {
RData::DNSSEC(DNSSECRData::DNSKEY(csync)) => Some(csync),
_ => None,
}
}
fn record_type(&self) -> RecordType {
RecordType::DNSKEY
}
fn into_rdata(self) -> RData {
RData::DNSSEC(DNSSECRData::DNSKEY(self))
}
}
impl Verifier for DNSKEY {
fn algorithm(&self) -> Algorithm {
self.algorithm()
}
fn key(&self) -> ProtoResult<Arc<dyn PublicKey + '_>> {
decode_public_key(&self.public_key, self.algorithm)
}
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-2.2)
///
/// ```text
/// 2.2. The DNSKEY RR Presentation Format
///
/// The presentation format of the RDATA portion is as follows:
///
/// The Flag field MUST be represented as an unsigned decimal integer.
/// Given the currently defined flags, the possible values are: 0, 256,
/// and 257.
///
/// The Protocol Field MUST be represented as an unsigned decimal integer
/// with a value of 3.
///
/// The Algorithm field MUST be represented either as an unsigned decimal
/// integer or as an algorithm mnemonic as specified in Appendix A.1.
///
/// The Public Key field MUST be represented as a Base64 encoding of the
/// Public Key. Whitespace is allowed within the Base64 text. For a
/// definition of Base64 encoding, see [RFC3548].
///
/// 2.3. DNSKEY RR Example
///
/// The following DNSKEY RR stores a DNS zone key for example.com.
///
/// example.com. 86400 IN DNSKEY 256 3 5 ( AQPSKmynfzW4kyBv015MUG2DeIQ3
/// Cbl+BBZH4b/0PY1kxkmvHjcZc8no
/// kfzj31GajIQKY+5CptLr3buXA10h
/// WqTkF7H6RfoRqXQeogmMHfpftf6z
/// Mv1LyBUgia7za6ZEzOJBOztyvhjL
/// 742iU/TpPSEDhm2SNKLijfUppn1U
/// aNvv4w== )
///
/// The first four text fields specify the owner name, TTL, Class, and RR
/// type (DNSKEY). Value 256 indicates that the Zone Key bit (bit 7) in
/// the Flags field has value 1. Value 3 is the fixed Protocol value.
/// Value 5 indicates the public key algorithm. Appendix A.1 identifies
/// algorithm type 5 as RSA/SHA1 and indicates that the format of the
/// RSA/SHA1 public key field is defined in [RFC3110]. The remaining
/// text is a Base64 encoding of the public key.
/// ```
impl fmt::Display for DNSKEY {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
write!(
f,
"{flags} 3 {alg} {key}",
flags = self.flags(),
alg = u8::from(self.algorithm),
key = data_encoding::BASE64.encode(&self.public_key)
)
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use super::*;
#[cfg(feature = "dnssec-ring")]
use crate::dnssec::{ring::EcdsaSigningKey, SigningKey};
#[test]
#[cfg(feature = "dnssec-ring")]
fn test() {
let algorithm = Algorithm::ECDSAP256SHA256;
let pkcs8 = EcdsaSigningKey::generate_pkcs8(algorithm).unwrap();
let signing_key = EcdsaSigningKey::from_pkcs8(&pkcs8, algorithm).unwrap();
let rdata = DNSKEY::new(
true,
true,
false,
algorithm,
signing_key.to_public_key().unwrap().public_bytes().to_vec(),
);
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
assert!(rdata.emit(&mut encoder).is_ok());
let bytes = encoder.into_bytes();
println!("bytes: {bytes:?}");
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let read_rdata = DNSKEY::read_data(&mut decoder, Restrict::new(bytes.len() as u16));
let read_rdata = read_rdata.expect("error decoding");
assert_eq!(rdata, read_rdata);
assert!(rdata
.to_digest(
&Name::parse("www.example.com.", None).unwrap(),
DigestType::SHA256
)
.is_ok());
}
#[test]
fn test_calculate_key_tag_checksum() {
let test_text = "The quick brown fox jumps over the lazy dog";
let test_vectors = vec![
(vec![], 0),
(vec![0, 0, 0, 0], 0),
(vec![0xff, 0xff, 0xff, 0xff], 0xffff),
(vec![1, 0, 0, 0], 0x0100),
(vec![0, 1, 0, 0], 0x0001),
(vec![0, 0, 1, 0], 0x0100),
(test_text.as_bytes().to_vec(), 0x8d5b),
];
for (input_data, exp_result) in test_vectors {
let result = DNSKEY::calculate_key_tag_internal(&input_data);
assert_eq!(result, exp_result);
}
}
}