hickory_proto/dnssec/rdata/ds.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! pointer record from parent zone to child zone for dnskey proof
use std::fmt::{self, Display, Formatter};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use super::{DNSSECRData, DnsSecError};
use crate::{
dnssec::{rdata::DNSKEY, Algorithm, DigestType, PublicKey},
error::{ProtoError, ProtoResult},
rr::{Name, RData, RecordData, RecordDataDecodable, RecordType},
serialize::binary::{
BinDecodable, BinDecoder, BinEncodable, BinEncoder, Restrict, RestrictedMath,
},
};
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-5)
///
/// ```text
/// 5.1. DS RDATA Wire Format
///
/// The RDATA for a DS RR consists of a 2 octet Key Tag field, a 1 octet
/// Algorithm field, a 1 octet Digest Type field, and a Digest field.
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Key Tag | Algorithm | Digest Type |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / /
/// / Digest /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// 5.2. Processing of DS RRs When Validating Responses
///
/// The DS RR links the authentication chain across zone boundaries, so
/// the DS RR requires extra care in processing. The DNSKEY RR referred
/// to in the DS RR MUST be a DNSSEC zone key. The DNSKEY RR Flags MUST
/// have Flags bit 7 set. If the DNSKEY flags do not indicate a DNSSEC
/// zone key, the DS RR (and the DNSKEY RR it references) MUST NOT be
/// used in the validation process.
///
/// 5.3. The DS RR Presentation Format
///
/// The presentation format of the RDATA portion is as follows:
///
/// The Key Tag field MUST be represented as an unsigned decimal integer.
///
/// The Algorithm field MUST be represented either as an unsigned decimal
/// integer or as an algorithm mnemonic specified in Appendix A.1.
///
/// The Digest Type field MUST be represented as an unsigned decimal
/// integer.
///
/// The Digest MUST be represented as a sequence of case-insensitive
/// hexadecimal digits. Whitespace is allowed within the hexadecimal
/// text.
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct DS {
key_tag: u16,
algorithm: Algorithm,
digest_type: DigestType,
digest: Vec<u8>,
}
impl DS {
/// Creates a [`DS`] record for the given `public_key` and `name`.
///
/// # Arguments
///
/// * `public_key` - the public key to create the DS record for
/// * `name` - name of the DNSKEY record covered by the new DS record
/// * `algorithm` - the algorithm of the DNSKEY
/// * `digest_type` - the digest_type used to
pub fn from_key(
public_key: &dyn PublicKey,
name: &Name,
algorithm: Algorithm,
digest_type: DigestType,
) -> Result<Self, DnsSecError> {
let tag = key_tag(public_key.public_bytes());
let dnskey = DNSKEY::from_key(public_key, algorithm);
Ok(Self::new(
tag,
algorithm,
digest_type,
dnskey.to_digest(name, digest_type)?.as_ref().to_owned(),
))
}
/// Constructs a new DS RData
///
/// # Arguments
///
/// * `key_tag` - the key_tag associated to the DNSKEY
/// * `algorithm` - algorithm as specified in the DNSKEY
/// * `digest_type` - hash algorithm used to validate the DNSKEY
/// * `digest` - hash of the DNSKEY
///
/// # Returns
///
/// the DS RDATA for use in a Resource Record
pub fn new(
key_tag: u16,
algorithm: Algorithm,
digest_type: DigestType,
digest: Vec<u8>,
) -> Self {
Self {
key_tag,
algorithm,
digest_type,
digest,
}
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-5.1.1)
///
/// ```text
/// 5.1.1. The Key Tag Field
///
/// The Key Tag field lists the key tag of the DNSKEY RR referred to by
/// the DS record, in network byte order.
///
/// The Key Tag used by the DS RR is identical to the Key Tag used by
/// RRSIG RRs. Appendix B describes how to compute a Key Tag.
/// ```
pub fn key_tag(&self) -> u16 {
self.key_tag
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-5.1.1)
///
/// ```text
/// 5.1.2. The Algorithm Field
///
/// The Algorithm field lists the algorithm number of the DNSKEY RR
/// referred to by the DS record.
///
/// The algorithm number used by the DS RR is identical to the algorithm
/// number used by RRSIG and DNSKEY RRs. Appendix A.1 lists the
/// algorithm number types.
/// ```
pub fn algorithm(&self) -> Algorithm {
self.algorithm
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-5.1.1)
///
/// ```text
/// 5.1.3. The Digest Type Field
///
/// The DS RR refers to a DNSKEY RR by including a digest of that DNSKEY
/// RR. The Digest Type field identifies the algorithm used to construct
/// the digest. Appendix A.2 lists the possible digest algorithm types.
/// ```
pub fn digest_type(&self) -> DigestType {
self.digest_type
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-5.1.1)
///
/// ```text
/// 5.1.4. The Digest Field
///
/// The DS record refers to a DNSKEY RR by including a digest of that
/// DNSKEY RR.
///
/// The digest is calculated by concatenating the canonical form of the
/// fully qualified owner name of the DNSKEY RR with the DNSKEY RDATA,
/// and then applying the digest algorithm.
///
/// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
///
/// "|" denotes concatenation
///
/// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
///
/// The size of the digest may vary depending on the digest algorithm and
/// DNSKEY RR size. As of the time of this writing, the only defined
/// digest algorithm is SHA-1, which produces a 20 octet digest.
/// ```
pub fn digest(&self) -> &[u8] {
&self.digest
}
/// Validates that a given DNSKEY is covered by the DS record.
///
/// # Return
///
/// true if and only if the DNSKEY is covered by the DS record.
#[cfg(any(feature = "dnssec-openssl", feature = "dnssec-ring"))]
pub fn covers(&self, name: &Name, key: &DNSKEY) -> ProtoResult<bool> {
key.to_digest(name, self.digest_type())
.map(|hash| key.zone_key() && hash.as_ref() == self.digest())
}
/// This will always return an error unless the Ring or OpenSSL features are enabled
#[cfg(not(any(feature = "dnssec-openssl", feature = "dnssec-ring")))]
pub fn covers(&self, _: &Name, _: &DNSKEY) -> ProtoResult<bool> {
Err("Ring or OpenSSL must be enabled for this feature".into())
}
}
impl BinEncodable for DS {
fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
encoder.emit_u16(self.key_tag())?;
self.algorithm().emit(encoder)?; // always 3 for now
encoder.emit(self.digest_type().into())?;
encoder.emit_vec(self.digest())?;
Ok(())
}
}
impl<'r> RecordDataDecodable<'r> for DS {
fn read_data(decoder: &mut BinDecoder<'r>, length: Restrict<u16>) -> ProtoResult<Self> {
let start_idx = decoder.index();
let key_tag: u16 = decoder.read_u16()?.unverified(/*key_tag is valid as any u16*/);
let algorithm: Algorithm = Algorithm::read(decoder)?;
let digest_type: DigestType =
DigestType::from_u8(decoder.read_u8()?.unverified(/*DigestType is verified as safe*/))?;
let bytes_read = decoder.index() - start_idx;
let left: usize = length
.map(|u| u as usize)
.checked_sub(bytes_read)
.map_err(|_| ProtoError::from("invalid rdata length in DS"))?
.unverified(/*used only as length safely*/);
let digest =
decoder.read_vec(left)?.unverified(/*the byte array will fail in usage if invalid*/);
Ok(Self::new(key_tag, algorithm, digest_type, digest))
}
}
impl RecordData for DS {
fn try_from_rdata(data: RData) -> Result<Self, RData> {
match data {
RData::DNSSEC(DNSSECRData::DS(csync)) => Ok(csync),
_ => Err(data),
}
}
fn try_borrow(data: &RData) -> Option<&Self> {
match data {
RData::DNSSEC(DNSSECRData::DS(csync)) => Some(csync),
_ => None,
}
}
fn record_type(&self) -> RecordType {
RecordType::DS
}
fn into_rdata(self) -> RData {
RData::DNSSEC(DNSSECRData::DS(self))
}
}
/// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-5.3)
///
/// ```text
/// 5.3. The DS RR Presentation Format
///
/// The presentation format of the RDATA portion is as follows:
///
/// The Key Tag field MUST be represented as an unsigned decimal integer.
///
/// The Algorithm field MUST be represented either as an unsigned decimal
/// integer or as an algorithm mnemonic specified in Appendix A.1.
///
/// The Digest Type field MUST be represented as an unsigned decimal
/// integer.
///
/// The Digest MUST be represented as a sequence of case-insensitive
/// hexadecimal digits. Whitespace is allowed within the hexadecimal
/// text.
///
/// 5.4. DS RR Example
///
/// The following example shows a DNSKEY RR and its corresponding DS RR.
///
/// dskey.example.com. 86400 IN DNSKEY 256 3 5 ( AQOeiiR0GOMYkDshWoSKz9Xz
/// fwJr1AYtsmx3TGkJaNXVbfi/
/// 2pHm822aJ5iI9BMzNXxeYCmZ
/// DRD99WYwYqUSdjMmmAphXdvx
/// egXd/M5+X7OrzKBaMbCVdFLU
/// Uh6DhweJBjEVv5f2wwjM9Xzc
/// nOf+EPbtG9DMBmADjFDc2w/r
/// ljwvFw==
/// ) ; key id = 60485
///
/// dskey.example.com. 86400 IN DS 60485 5 1 ( 2BB183AF5F22588179A53B0A
/// 98631FAD1A292118 )
///
/// The first four text fields specify the name, TTL, Class, and RR type
/// (DS). Value 60485 is the key tag for the corresponding
/// "dskey.example.com." DNSKEY RR, and value 5 denotes the algorithm
/// used by this "dskey.example.com." DNSKEY RR. The value 1 is the
/// algorithm used to construct the digest, and the rest of the RDATA
/// text is the digest in hexadecimal.
/// ```
impl Display for DS {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(
f,
"{tag} {alg} {ty} {digest}",
tag = self.key_tag,
alg = u8::from(self.algorithm),
ty = u8::from(self.digest_type),
digest = data_encoding::HEXUPPER_PERMISSIVE.encode(&self.digest)
)
}
}
/// The key tag is calculated as a hash to more quickly lookup a DNSKEY.
///
/// [RFC 1035](https://tools.ietf.org/html/rfc1035), DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION, November 1987
///
/// ```text
/// RFC 2535 DNS Security Extensions March 1999
///
/// 4.1.6 Key Tag Field
///
/// The "key Tag" is a two octet quantity that is used to efficiently
/// select between multiple keys which may be applicable and thus check
/// that a public key about to be used for the computationally expensive
/// effort to check the signature is possibly valid. For algorithm 1
/// (MD5/RSA) as defined in [RFC 2537], it is the next to the bottom two
/// octets of the public key modulus needed to decode the signature
/// field. That is to say, the most significant 16 of the least
/// significant 24 bits of the modulus in network (big endian) order. For
/// all other algorithms, including private algorithms, it is calculated
/// as a simple checksum of the KEY RR as described in Appendix C.
///
/// Appendix C: Key Tag Calculation
///
/// The key tag field in the SIG RR is just a means of more efficiently
/// selecting the correct KEY RR to use when there is more than one KEY
/// RR candidate available, for example, in verifying a signature. It is
/// possible for more than one candidate key to have the same tag, in
/// which case each must be tried until one works or all fail. The
/// following reference implementation of how to calculate the Key Tag,
/// for all algorithms other than algorithm 1, is in ANSI C. It is coded
/// for clarity, not efficiency. (See section 4.1.6 for how to determine
/// the Key Tag of an algorithm 1 key.)
///
/// /* assumes int is at least 16 bits
/// first byte of the key tag is the most significant byte of return
/// value
/// second byte of the key tag is the least significant byte of
/// return value
/// */
///
/// int keytag (
///
/// unsigned char key[], /* the RDATA part of the KEY RR */
/// unsigned int keysize, /* the RDLENGTH */
/// )
/// {
/// long int ac; /* assumed to be 32 bits or larger */
///
/// for ( ac = 0, i = 0; i < keysize; ++i )
/// ac += (i&1) ? key[i] : key[i]<<8;
/// ac += (ac>>16) & 0xFFFF;
/// return ac & 0xFFFF;
/// }
/// ```
fn key_tag(public_key: &[u8]) -> u16 {
let mut ac = 0;
for (i, k) in public_key.iter().enumerate() {
ac += if i & 0x0001 == 0x0001 {
*k as usize
} else {
(*k as usize) << 8
};
}
ac += (ac >> 16) & 0xFFFF;
(ac & 0xFFFF) as u16 // this is unnecessary, no?
}
#[cfg(test)]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use super::*;
#[cfg(feature = "dnssec-ring")]
use crate::dnssec::ring::EcdsaSigningKey;
use crate::dnssec::{rdata::DNSKEY, SigningKey};
#[test]
fn test() {
let rdata = DS::new(
0xF00F,
Algorithm::RSASHA256,
DigestType::SHA256,
vec![5, 6, 7, 8],
);
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
assert!(rdata.emit(&mut encoder).is_ok());
let bytes = encoder.into_bytes();
println!("bytes: {bytes:?}");
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let restrict = Restrict::new(bytes.len() as u16);
let read_rdata = DS::read_data(&mut decoder, restrict).expect("Decoding error");
assert_eq!(rdata, read_rdata);
}
#[cfg(feature = "dnssec-ring")]
#[test]
pub(crate) fn test_covers() {
let algorithm = Algorithm::ECDSAP256SHA256;
let pkcs8 = EcdsaSigningKey::generate_pkcs8(algorithm).unwrap();
let signing_key = EcdsaSigningKey::from_pkcs8(&pkcs8, algorithm).unwrap();
let dnskey_rdata = DNSKEY::new(
true,
true,
false,
algorithm,
signing_key.to_public_key().unwrap().public_bytes().to_vec(),
);
let name = Name::parse("www.example.com.", None).unwrap();
let ds_rdata = DS::new(
0,
algorithm,
DigestType::SHA256,
dnskey_rdata
.to_digest(&name, DigestType::SHA256)
.unwrap()
.as_ref()
.to_owned(),
);
assert!(ds_rdata.covers(&name, &dnskey_rdata).unwrap());
}
#[cfg(feature = "dnssec-ring")]
#[test]
pub(crate) fn test_covers_fails_with_non_zone_key() {
let algorithm = Algorithm::ECDSAP256SHA256;
let pkcs8 = EcdsaSigningKey::generate_pkcs8(algorithm).unwrap();
let signing_key = EcdsaSigningKey::from_pkcs8(&pkcs8, algorithm).unwrap();
let dnskey_rdata = DNSKEY::new(
false,
true,
false,
algorithm,
signing_key.to_public_key().unwrap().public_bytes().to_vec(),
);
let name = Name::parse("www.example.com.", None).unwrap();
let ds_rdata = DS::new(
0,
algorithm,
DigestType::SHA256,
dnskey_rdata
.to_digest(&name, DigestType::SHA256)
.unwrap()
.as_ref()
.to_owned(),
);
assert!(!ds_rdata.covers(&name, &dnskey_rdata).unwrap());
}
}