hickory_proto/dnssec/
ring.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
use std::borrow::Cow;

use ring::{
    rand::{self, SystemRandom},
    signature::{
        self, EcdsaKeyPair, Ed25519KeyPair, KeyPair as RingKeyPair,
        ECDSA_P256_SHA256_FIXED_SIGNING, ECDSA_P384_SHA384_FIXED_SIGNING, ED25519_PUBLIC_KEY_LEN,
    },
};

use super::{
    ec_public_key::ECPublicKey, rsa_public_key::RSAPublicKey, Algorithm, PublicKey, PublicKeyBuf,
    SigningKey, TBS,
};
use crate::error::{DnsSecErrorKind, DnsSecResult, ProtoResult};

/// An ECDSA signing key pair (backed by ring).
pub struct EcdsaSigningKey {
    inner: EcdsaKeyPair,
    algorithm: Algorithm,
}

impl EcdsaSigningKey {
    /// Decode signing key pair from DER-encoded PKCS#8 bytes.
    ///
    /// Errors unless the given algorithm is one of the following:
    ///
    /// - [`Algorithm::ECDSAP256SHA256`]
    /// - [`Algorithm::ECDSAP384SHA384`]
    pub fn from_pkcs8(bytes: &[u8], algorithm: Algorithm) -> DnsSecResult<Self> {
        let rng = SystemRandom::new();
        let ring_algorithm = if algorithm == Algorithm::ECDSAP256SHA256 {
            &ECDSA_P256_SHA256_FIXED_SIGNING
        } else if algorithm == Algorithm::ECDSAP384SHA384 {
            &ECDSA_P384_SHA384_FIXED_SIGNING
        } else {
            return Err(DnsSecErrorKind::Message("unsupported algorithm").into());
        };

        Ok(Self {
            inner: EcdsaKeyPair::from_pkcs8(ring_algorithm, bytes, &rng)?,
            algorithm,
        })
    }

    /// Creates an ECDSA key pair with ring.
    pub fn from_ecdsa(inner: EcdsaKeyPair, algorithm: Algorithm) -> Self {
        Self { inner, algorithm }
    }

    /// Generate signing key pair and return the DER-encoded PKCS#8 bytes.
    ///
    /// Errors unless the given algorithm is one of the following:
    ///
    /// - [`Algorithm::ECDSAP256SHA256`]
    /// - [`Algorithm::ECDSAP384SHA384`]
    pub fn generate_pkcs8(algorithm: Algorithm) -> DnsSecResult<Vec<u8>> {
        let rng = SystemRandom::new();
        let alg = if algorithm == Algorithm::ECDSAP256SHA256 {
            &ECDSA_P256_SHA256_FIXED_SIGNING
        } else if algorithm == Algorithm::ECDSAP384SHA384 {
            &ECDSA_P384_SHA384_FIXED_SIGNING
        } else {
            return Err(DnsSecErrorKind::Message("unsupported algorithm").into());
        };

        let pkcs8 = EcdsaKeyPair::generate_pkcs8(alg, &rng)?;
        Ok(pkcs8.as_ref().to_vec())
    }
}

impl SigningKey for EcdsaSigningKey {
    fn sign(&self, tbs: &TBS) -> DnsSecResult<Vec<u8>> {
        let rng = rand::SystemRandom::new();
        Ok(self.inner.sign(&rng, tbs.as_ref())?.as_ref().to_vec())
    }

    fn to_public_key(&self) -> DnsSecResult<PublicKeyBuf> {
        let mut bytes = self.inner.public_key().as_ref().to_vec();
        bytes.remove(0);
        Ok(PublicKeyBuf::new(bytes, self.algorithm))
    }
}

/// An Ed25519 signing key pair (backed by ring).
pub struct Ed25519SigningKey {
    inner: Ed25519KeyPair,
}

impl Ed25519SigningKey {
    /// Decode signing key pair from DER-encoded PKCS#8 bytes.
    pub fn from_pkcs8(bytes: &[u8]) -> DnsSecResult<Self> {
        Ok(Self {
            inner: Ed25519KeyPair::from_pkcs8(bytes)?,
        })
    }

    /// Creates an Ed25519 keypair.
    pub fn from_ed25519(inner: Ed25519KeyPair) -> Self {
        Self { inner }
    }

    /// Generate signing key pair and return the DER-encoded PKCS#8 bytes.
    pub fn generate_pkcs8() -> DnsSecResult<Vec<u8>> {
        let rng = rand::SystemRandom::new();
        let pkcs8 = Ed25519KeyPair::generate_pkcs8(&rng)?;
        Ok(pkcs8.as_ref().to_vec())
    }
}

impl SigningKey for Ed25519SigningKey {
    fn sign(&self, tbs: &TBS) -> DnsSecResult<Vec<u8>> {
        Ok(self.inner.sign(tbs.as_ref()).as_ref().to_vec())
    }

    fn to_public_key(&self) -> DnsSecResult<PublicKeyBuf> {
        Ok(PublicKeyBuf::new(
            self.inner.public_key().as_ref().to_vec(),
            Algorithm::ED25519,
        ))
    }
}

/// Elyptic Curve public key type
pub type Ec = ECPublicKey;

impl Ec {
    /// ```text
    /// RFC 6605                    ECDSA for DNSSEC                  April 2012
    ///
    ///   4.  DNSKEY and RRSIG Resource Records for ECDSA
    ///
    ///   ECDSA public keys consist of a single value, called "Q" in FIPS
    ///   186-3.  In DNSSEC keys, Q is a simple bit string that represents the
    ///   uncompressed form of a curve point, "x | y".
    ///
    ///   The ECDSA signature is the combination of two non-negative integers,
    ///   called "r" and "s" in FIPS 186-3.  The two integers, each of which is
    ///   formatted as a simple octet string, are combined into a single longer
    ///   octet string for DNSSEC as the concatenation "r | s".  (Conversion of
    ///   the integers to bit strings is described in Section C.2 of FIPS
    ///   186-3.)  For P-256, each integer MUST be encoded as 32 octets; for
    ///   P-384, each integer MUST be encoded as 48 octets.
    ///
    ///   The algorithm numbers associated with the DNSKEY and RRSIG resource
    ///   records are fully defined in the IANA Considerations section.  They
    ///   are:
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-256 curve and
    ///      SHA-256 use the algorithm number 13.
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-384 curve and
    ///      SHA-384 use the algorithm number 14.
    ///
    ///   Conformant implementations that create records to be put into the DNS
    ///   MUST implement signing and verification for both of the above
    ///   algorithms.  Conformant DNSSEC verifiers MUST implement verification
    ///   for both of the above algorithms.
    /// ```
    pub fn from_public_bytes(public_key: &[u8], algorithm: Algorithm) -> ProtoResult<Self> {
        Self::from_unprefixed(public_key, algorithm)
    }
}

#[cfg(feature = "dnssec-ring")]
impl PublicKey for Ec {
    fn public_bytes(&self) -> &[u8] {
        self.unprefixed_bytes()
    }

    fn verify(&self, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        // TODO: assert_eq!(algorithm, self.algorithm); once *ring* allows this.
        let alg = match self.algorithm {
            Algorithm::ECDSAP256SHA256 => &signature::ECDSA_P256_SHA256_FIXED,
            Algorithm::ECDSAP384SHA384 => &signature::ECDSA_P384_SHA384_FIXED,
            _ => return Err("only ECDSAP256SHA256 and ECDSAP384SHA384 are supported by Ec".into()),
        };
        let public_key = signature::UnparsedPublicKey::new(alg, self.prefixed_bytes());
        public_key.verify(message, signature).map_err(Into::into)
    }

    fn algorithm(&self) -> Algorithm {
        self.algorithm
    }
}

/// Ed25519 Public key
pub struct Ed25519<'k> {
    raw: Cow<'k, [u8]>,
}

impl<'k> Ed25519<'k> {
    /// ```text
    ///  Internet-Draft              EdDSA for DNSSEC               December 2016
    ///
    ///  An Ed25519 public key consists of a 32-octet value, which is encoded
    ///  into the Public Key field of a DNSKEY resource record as a simple bit
    ///  string.  The generation of a public key is defined in Section 5.1.5
    ///  in [RFC 8032]. Breaking tradition, the keys are encoded in little-
    ///  endian byte order.
    /// ```
    pub fn from_public_bytes(public_key: Cow<'k, [u8]>) -> ProtoResult<Self> {
        if public_key.len() != ED25519_PUBLIC_KEY_LEN {
            return Err(format!(
                "expected {} byte public_key: {}",
                ED25519_PUBLIC_KEY_LEN,
                public_key.len()
            )
            .into());
        }

        Ok(Self { raw: public_key })
    }
}

impl PublicKey for Ed25519<'_> {
    // TODO: just store reference to public key bytes in ctor...
    fn public_bytes(&self) -> &[u8] {
        self.raw.as_ref()
    }

    fn verify(&self, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        let public_key = signature::UnparsedPublicKey::new(&signature::ED25519, self.raw.as_ref());
        public_key.verify(message, signature).map_err(Into::into)
    }

    fn algorithm(&self) -> Algorithm {
        Algorithm::ED25519
    }
}

/// Rsa public key
pub struct Rsa<'k> {
    raw: &'k [u8],
    pkey: RSAPublicKey<'k>,
    algorithm: Algorithm,
}

impl<'k> Rsa<'k> {
    /// ```text
    /// RFC 3110              RSA SIGs and KEYs in the DNS              May 2001
    ///
    ///       2. RSA Public KEY Resource Records
    ///
    ///  RSA public keys are stored in the DNS as KEY RRs using algorithm
    ///  number 5 [RFC2535].  The structure of the algorithm specific portion
    ///  of the RDATA part of such RRs is as shown below.
    ///
    ///        Field             Size
    ///        -----             ----
    ///        exponent length   1 or 3 octets (see text)
    ///        exponent          as specified by length field
    ///        modulus           remaining space
    ///
    ///  For interoperability, the exponent and modulus are each limited to
    ///  4096 bits in length.  The public key exponent is a variable length
    ///  unsigned integer.  Its length in octets is represented as one octet
    ///  if it is in the range of 1 to 255 and by a zero octet followed by a
    ///  two octet unsigned length if it is longer than 255 bytes.  The public
    ///  key modulus field is a multiprecision unsigned integer.  The length
    ///  of the modulus can be determined from the RDLENGTH and the preceding
    ///  RDATA fields including the exponent.  Leading zero octets are
    ///  prohibited in the exponent and modulus.
    ///
    ///  Note: KEY RRs for use with RSA/SHA1 DNS signatures MUST use this
    ///  algorithm number (rather than the algorithm number specified in the
    ///  obsoleted RFC 2537).
    ///
    ///  Note: This changes the algorithm number for RSA KEY RRs to be the
    ///  same as the new algorithm number for RSA/SHA1 SIGs.
    /// ```
    pub fn from_public_bytes(raw: &'k [u8], algorithm: Algorithm) -> ProtoResult<Self> {
        let pkey = RSAPublicKey::try_from(raw)?;
        Ok(Self {
            raw,
            pkey,
            algorithm,
        })
    }
}

impl PublicKey for Rsa<'_> {
    fn public_bytes(&self) -> &[u8] {
        self.raw
    }

    fn verify(&self, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        #[allow(deprecated)]
        let alg = match self.algorithm {
            Algorithm::RSASHA256 => &signature::RSA_PKCS1_1024_8192_SHA256_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA512 => &signature::RSA_PKCS1_1024_8192_SHA512_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA1 => &signature::RSA_PKCS1_1024_8192_SHA1_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA1NSEC3SHA1 => {
                return Err("*ring* doesn't support RSASHA1NSEC3SHA1 yet".into())
            }
            _ => unreachable!("non-RSA algorithm passed to RSA verify()"),
        };
        let public_key = signature::RsaPublicKeyComponents {
            n: self.pkey.n(),
            e: self.pkey.e(),
        };
        public_key
            .verify(alg, message, signature)
            .map_err(Into::into)
    }

    fn algorithm(&self) -> Algorithm {
        self.algorithm
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::dnssec::{
        decode_key,
        test_utils::{hash_test, public_key_test},
        KeyFormat,
    };

    #[test]
    fn test_ec_p256_pkcs8() {
        let algorithm = Algorithm::ECDSAP256SHA256;
        let format = KeyFormat::Pkcs8;
        let pkcs8 = EcdsaSigningKey::generate_pkcs8(algorithm).unwrap();
        let key = decode_key(&pkcs8, None, algorithm, format).unwrap();
        public_key_test(&*key, algorithm);

        let neg_pkcs8 = EcdsaSigningKey::generate_pkcs8(algorithm).unwrap();
        let neg = decode_key(&neg_pkcs8, None, algorithm, format).unwrap();
        hash_test(&*key, &*neg, algorithm);
    }

    #[test]
    fn test_ec_p384_pkcs8() {
        let algorithm = Algorithm::ECDSAP384SHA384;
        let format = KeyFormat::Pkcs8;
        let pkcs8 = EcdsaSigningKey::generate_pkcs8(algorithm).unwrap();
        let key = decode_key(&pkcs8, None, algorithm, format).unwrap();
        public_key_test(&*key, algorithm);

        let neg_pkcs8 = EcdsaSigningKey::generate_pkcs8(algorithm).unwrap();
        let neg = decode_key(&neg_pkcs8, None, algorithm, format).unwrap();
        hash_test(&*key, &*neg, algorithm);
    }

    #[test]
    fn test_ed25519() {
        let algorithm = Algorithm::ED25519;
        let format = KeyFormat::Pkcs8;
        let pkcs8 = Ed25519SigningKey::generate_pkcs8().unwrap();
        let key = decode_key(&pkcs8, None, algorithm, format).unwrap();
        public_key_test(&*key, algorithm);

        let neg_pkcs8 = Ed25519SigningKey::generate_pkcs8().unwrap();
        let neg = decode_key(&neg_pkcs8, None, algorithm, format).unwrap();
        hash_test(&*key, &*neg, algorithm);
    }
}