hickory_proto/rr/rdata/opt.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! option record for passing protocol options between the client and server
#![allow(clippy::use_self)]
use std::fmt;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
use std::str::FromStr;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use tracing::warn;
use crate::{
error::{ProtoError, ProtoErrorKind, ProtoResult},
rr::{RData, RecordData, RecordDataDecodable, RecordType},
serialize::binary::{BinDecodable, BinDecoder, BinEncodable, BinEncoder, Restrict},
};
#[cfg(feature = "dnssec")]
use crate::dnssec::SupportedAlgorithms;
/// The OPT record type is used for ExtendedDNS records.
///
/// These allow for additional information to be associated with the DNS request that otherwise
/// would require changes to the DNS protocol.
///
/// Multiple options with the same code are allowed to appear in this record
///
/// [RFC 6891, EDNS(0) Extensions, April 2013](https://tools.ietf.org/html/rfc6891#section-6)
///
/// ```text
/// 6.1. OPT Record Definition
///
/// 6.1.1. Basic Elements
///
/// An OPT pseudo-RR (sometimes called a meta-RR) MAY be added to the
/// additional data section of a request.
///
/// The OPT RR has RR type 41.
///
/// If an OPT record is present in a received request, compliant
/// responders MUST include an OPT record in their respective responses.
///
/// An OPT record does not carry any DNS data. It is used only to
/// contain control information pertaining to the question-and-answer
/// sequence of a specific transaction. OPT RRs MUST NOT be cached,
/// forwarded, or stored in or loaded from Zone Files.
///
/// The OPT RR MAY be placed anywhere within the additional data section.
/// When an OPT RR is included within any DNS message, it MUST be the
/// only OPT RR in that message. If a query message with more than one
/// OPT RR is received, a FORMERR (RCODE=1) MUST be returned. The
/// placement flexibility for the OPT RR does not override the need for
/// the TSIG or SIG(0) RRs to be the last in the additional section
/// whenever they are present.
///
/// 6.1.2. Wire Format
///
/// An OPT RR has a fixed part and a variable set of options expressed as
/// {attribute, value} pairs. The fixed part holds some DNS metadata,
/// and also a small collection of basic extension elements that we
/// expect to be so popular that it would be a waste of wire space to
/// encode them as {attribute, value} pairs.
///
/// The fixed part of an OPT RR is structured as follows:
///
/// +------------+--------------+------------------------------+
/// | Field Name | Field Type | Description |
/// +------------+--------------+------------------------------+
/// | NAME | domain name | MUST be 0 (root domain) |
/// | TYPE | u_int16_t | OPT (41) |
/// | CLASS | u_int16_t | requestor's UDP payload size |
/// | TTL | u_int32_t | extended RCODE and flags |
/// | RDLEN | u_int16_t | length of all RDATA |
/// | RDATA | octet stream | {attribute,value} pairs |
/// +------------+--------------+------------------------------+
///
/// OPT RR Format
///
/// The variable part of an OPT RR may contain zero or more options in
/// the RDATA. Each option MUST be treated as a bit field. Each option
/// is encoded as:
///
/// +0 (MSB) +1 (LSB)
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
/// 0: | OPTION-CODE |
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
/// 2: | OPTION-LENGTH |
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
/// 4: | |
/// / OPTION-DATA /
/// / /
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
///
/// OPTION-CODE
/// Assigned by the Expert Review process as defined by the DNSEXT
/// working group and the IESG.
///
/// OPTION-LENGTH
/// Size (in octets) of OPTION-DATA.
///
/// OPTION-DATA
/// Varies per OPTION-CODE. MUST be treated as a bit field.
///
/// The order of appearance of option tuples is not defined. If one
/// option modifies the behaviour of another or multiple options are
/// related to one another in some way, they have the same effect
/// regardless of ordering in the RDATA wire encoding.
///
/// Any OPTION-CODE values not understood by a responder or requestor
/// MUST be ignored. Specifications of such options might wish to
/// include some kind of signaled acknowledgement. For example, an
/// option specification might say that if a responder sees and supports
/// option XYZ, it MUST include option XYZ in its response.
///
/// 6.1.3. OPT Record TTL Field Use
///
/// The extended RCODE and flags, which OPT stores in the RR Time to Live
/// (TTL) field, are structured as follows:
///
/// +0 (MSB) +1 (LSB)
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
/// 0: | EXTENDED-RCODE | VERSION |
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
/// 2: | DO| Z |
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
///
/// EXTENDED-RCODE
/// Forms the upper 8 bits of extended 12-bit RCODE (together with the
/// 4 bits defined in [RFC1035]. Note that EXTENDED-RCODE value 0
/// indicates that an unextended RCODE is in use (values 0 through
/// 15).
///
/// VERSION
/// Indicates the implementation level of the setter. Full
/// conformance with this specification is indicated by version '0'.
/// Requestors are encouraged to set this to the lowest implemented
/// level capable of expressing a transaction, to minimise the
/// responder and network load of discovering the greatest common
/// implementation level between requestor and responder. A
/// requestor's version numbering strategy MAY ideally be a run-time
/// configuration option.
/// If a responder does not implement the VERSION level of the
/// request, then it MUST respond with RCODE=BADVERS. All responses
/// MUST be limited in format to the VERSION level of the request, but
/// the VERSION of each response SHOULD be the highest implementation
/// level of the responder. In this way, a requestor will learn the
/// implementation level of a responder as a side effect of every
/// response, including error responses and including RCODE=BADVERS.
///
/// 6.1.4. Flags
///
/// DO
/// DNSSEC OK bit as defined by [RFC3225].
///
/// Z
/// Set to zero by senders and ignored by receivers, unless modified
/// in a subsequent specification.
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Default, Debug, Clone)]
pub struct OPT {
options: Vec<(EdnsCode, EdnsOption)>,
}
impl OPT {
/// Creates a new OPT record data.
///
/// # Arguments
///
/// * `options` - List of code and record type tuples
///
/// # Return value
///
/// The newly created OPT data
pub fn new(options: Vec<(EdnsCode, EdnsOption)>) -> Self {
Self { options }
}
/// Get a single option based on the code
pub fn get(&self, code: EdnsCode) -> Option<&EdnsOption> {
self.options
.iter()
.find_map(|(c, option)| if code == *c { Some(option) } else { None })
}
/// Get all options based on the code
pub fn get_all(&self, code: EdnsCode) -> Vec<&EdnsOption> {
self.options
.iter()
.filter_map(|(c, option)| if code == *c { Some(option) } else { None })
.collect()
}
/// Insert a new option, the key is derived from the `EdnsOption`
pub fn insert(&mut self, option: EdnsOption) {
self.options.push(((&option).into(), option));
}
/// Removes all options based on the code
pub fn remove(&mut self, option: EdnsCode) {
self.options.retain(|(c, _)| *c != option)
}
}
impl PartialEq for OPT {
fn eq(&self, other: &Self) -> bool {
let matching_elements_count = self
.options
.iter()
.filter(|entry| other.options.contains(entry))
.count();
matching_elements_count == self.options.len()
&& matching_elements_count == other.options.len()
}
}
impl Eq for OPT {}
impl AsMut<Vec<(EdnsCode, EdnsOption)>> for OPT {
fn as_mut(&mut self) -> &mut Vec<(EdnsCode, EdnsOption)> {
&mut self.options
}
}
impl AsRef<[(EdnsCode, EdnsOption)]> for OPT {
fn as_ref(&self) -> &[(EdnsCode, EdnsOption)] {
&self.options
}
}
impl BinEncodable for OPT {
fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
for (edns_code, edns_option) in self.as_ref().iter() {
encoder.emit_u16(u16::from(*edns_code))?;
encoder.emit_u16(edns_option.len())?;
edns_option.emit(encoder)?
}
Ok(())
}
}
impl<'r> RecordDataDecodable<'r> for OPT {
fn read_data(decoder: &mut BinDecoder<'r>, length: Restrict<u16>) -> ProtoResult<Self> {
let mut state: OptReadState = OptReadState::ReadCode;
let mut options: Vec<(EdnsCode, EdnsOption)> = Vec::new();
let start_idx = decoder.index();
// There is no unsafe direct use of the rdata length after this point
let rdata_length = length.map(|u| u as usize).unverified(/*rdata length usage is bounded*/);
while rdata_length > decoder.index() - start_idx {
match state {
OptReadState::ReadCode => {
state = OptReadState::Code {
code: EdnsCode::from(
decoder.read_u16()?.unverified(/*EdnsCode is verified as safe*/),
),
};
}
OptReadState::Code { code } => {
let length = decoder
.read_u16()?
.map(|u| u as usize)
.verify_unwrap(|u| *u <= rdata_length)
.map_err(|_| ProtoError::from("OPT value length exceeds rdata length"))?;
// If we know that the length is 0, we can avoid the `OptReadState::Data` state
// and directly add the option to the map.
// The data state does not process 0-length correctly, since it always reads at
// least 1 byte, thus making the length check fail.
state = if length == 0 {
options.push((code, (code, &[] as &[u8]).try_into()?));
OptReadState::ReadCode
} else {
OptReadState::Data {
code,
length,
// TODO: this can be replaced with decoder.read_vec(), right?
// the current version allows for malformed opt to be skipped...
collected: Vec::<u8>::with_capacity(length),
}
};
}
OptReadState::Data {
code,
length,
mut collected,
} => {
// TODO: can this be replaced by read_slice()?
collected.push(decoder.pop()?.unverified(/*byte array is safe*/));
if length == collected.len() {
options.push((code, (code, &collected as &[u8]).try_into()?));
state = OptReadState::ReadCode;
} else {
state = OptReadState::Data {
code,
length,
collected,
};
}
}
}
}
if state != OptReadState::ReadCode {
// there was some problem parsing the data for the options, ignoring them
// TODO: should we ignore all of the EDNS data in this case?
warn!("incomplete or poorly formatted EDNS options: {:?}", state);
options.clear();
}
// the record data is stored as unstructured data, the expectation is that this will be processed after initial parsing.
Ok(Self::new(options))
}
}
impl RecordData for OPT {
fn try_from_rdata(data: RData) -> Result<Self, RData> {
match data {
RData::OPT(csync) => Ok(csync),
_ => Err(data),
}
}
fn try_borrow(data: &RData) -> Option<&Self> {
match data {
RData::OPT(csync) => Some(csync),
_ => None,
}
}
fn record_type(&self) -> RecordType {
RecordType::OPT
}
fn into_rdata(self) -> RData {
RData::OPT(self)
}
}
impl fmt::Display for OPT {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
fmt::Debug::fmt(self, f)
}
}
#[derive(Debug, PartialEq, Eq)]
enum OptReadState {
ReadCode,
Code {
code: EdnsCode,
}, // expect LSB for the opt code, store the high byte
Data {
code: EdnsCode,
length: usize,
collected: Vec<u8>,
}, // expect the data for the option
}
/// The code of the EDNS data option
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Hash, Debug, Copy, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum EdnsCode {
/// [RFC 6891, Reserved](https://tools.ietf.org/html/rfc6891)
Zero,
/// [RFC 8764l, Apple's Long-Lived Queries, Optional](https://tools.ietf.org/html/rfc8764)
LLQ,
/// [UL On-hold](https://files.dns-sd.org/draft-sekar-dns-ul.txt)
UL,
/// [RFC 5001, NSID](https://tools.ietf.org/html/rfc5001)
NSID,
// 4 Reserved [draft-cheshire-edns0-owner-option] -EXPIRED-
/// [RFC 6975, DNSSEC Algorithm Understood](https://tools.ietf.org/html/rfc6975)
DAU,
/// [RFC 6975, DS Hash Understood](https://tools.ietf.org/html/rfc6975)
DHU,
/// [RFC 6975, NSEC3 Hash Understood](https://tools.ietf.org/html/rfc6975)
N3U,
/// [RFC 7871, Client Subnet, Optional](https://tools.ietf.org/html/rfc7871)
Subnet,
/// [RFC 7314, EDNS EXPIRE, Optional](https://tools.ietf.org/html/rfc7314)
Expire,
/// [RFC 7873, DNS Cookies](https://tools.ietf.org/html/rfc7873)
Cookie,
/// [RFC 7828, edns-tcp-keepalive](https://tools.ietf.org/html/rfc7828)
Keepalive,
/// [RFC 7830, The EDNS(0) Padding](https://tools.ietf.org/html/rfc7830)
Padding,
/// [RFC 7901, CHAIN Query Requests in DNS, Optional](https://tools.ietf.org/html/rfc7901)
Chain,
/// Unknown, used to deal with unknown or unsupported codes
Unknown(u16),
}
// TODO: implement a macro to perform these inversions
impl From<u16> for EdnsCode {
fn from(value: u16) -> Self {
match value {
0 => Self::Zero,
1 => Self::LLQ,
2 => Self::UL,
3 => Self::NSID,
// 4 Reserved [draft-cheshire-edns0-owner-option] -EXPIRED-
5 => Self::DAU,
6 => Self::DHU,
7 => Self::N3U,
8 => Self::Subnet,
9 => Self::Expire,
10 => Self::Cookie,
11 => Self::Keepalive,
12 => Self::Padding,
13 => Self::Chain,
_ => Self::Unknown(value),
}
}
}
impl From<EdnsCode> for u16 {
fn from(value: EdnsCode) -> Self {
match value {
EdnsCode::Zero => 0,
EdnsCode::LLQ => 1,
EdnsCode::UL => 2,
EdnsCode::NSID => 3,
// 4 Reserved [draft-cheshire-edns0-owner-option] -EXPIRED-
EdnsCode::DAU => 5,
EdnsCode::DHU => 6,
EdnsCode::N3U => 7,
EdnsCode::Subnet => 8,
EdnsCode::Expire => 9,
EdnsCode::Cookie => 10,
EdnsCode::Keepalive => 11,
EdnsCode::Padding => 12,
EdnsCode::Chain => 13,
EdnsCode::Unknown(value) => value,
}
}
}
/// options used to pass information about capabilities between client and server
///
/// `note: Not all EdnsOptions are supported at this time.`
///
/// <https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-13>
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialOrd, PartialEq, Eq, Clone, Hash)]
#[non_exhaustive]
pub enum EdnsOption {
/// [RFC 6975, DNSSEC Algorithm Understood](https://tools.ietf.org/html/rfc6975)
#[cfg(feature = "dnssec")]
DAU(SupportedAlgorithms),
/// [RFC 6975, DS Hash Understood](https://tools.ietf.org/html/rfc6975)
#[cfg(feature = "dnssec")]
DHU(SupportedAlgorithms),
/// [RFC 6975, NSEC3 Hash Understood](https://tools.ietf.org/html/rfc6975)
#[cfg(feature = "dnssec")]
N3U(SupportedAlgorithms),
/// [RFC 7871, Client Subnet, Optional](https://tools.ietf.org/html/rfc7871)
Subnet(ClientSubnet),
/// Unknown, used to deal with unknown or unsupported codes
Unknown(u16, Vec<u8>),
}
impl EdnsOption {
/// Returns the length in bytes of the EdnsOption
pub fn len(&self) -> u16 {
match self {
#[cfg(feature = "dnssec")]
EdnsOption::DAU(algorithms)
| EdnsOption::DHU(algorithms)
| EdnsOption::N3U(algorithms) => algorithms.len(),
EdnsOption::Subnet(subnet) => subnet.len(),
EdnsOption::Unknown(_, data) => data.len() as u16, // TODO: should we verify?
}
}
/// Returns `true` if the length in bytes of the EdnsOption is 0
pub fn is_empty(&self) -> bool {
match self {
#[cfg(feature = "dnssec")]
EdnsOption::DAU(algorithms)
| EdnsOption::DHU(algorithms)
| EdnsOption::N3U(algorithms) => algorithms.is_empty(),
EdnsOption::Subnet(subnet) => subnet.is_empty(),
EdnsOption::Unknown(_, data) => data.is_empty(),
}
}
}
impl BinEncodable for EdnsOption {
fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
match self {
#[cfg(feature = "dnssec")]
EdnsOption::DAU(algorithms)
| EdnsOption::DHU(algorithms)
| EdnsOption::N3U(algorithms) => algorithms.emit(encoder),
EdnsOption::Subnet(subnet) => subnet.emit(encoder),
EdnsOption::Unknown(_, data) => encoder.emit_vec(data), // gah, clone needed or make a crazy api.
}
}
}
/// only the supported extensions are listed right now.
impl<'a> TryFrom<(EdnsCode, &'a [u8])> for EdnsOption {
type Error = ProtoError;
#[allow(clippy::match_single_binding)]
fn try_from(value: (EdnsCode, &'a [u8])) -> Result<Self, Self::Error> {
Ok(match value.0 {
#[cfg(feature = "dnssec")]
EdnsCode::DAU => Self::DAU(value.1.into()),
#[cfg(feature = "dnssec")]
EdnsCode::DHU => Self::DHU(value.1.into()),
#[cfg(feature = "dnssec")]
EdnsCode::N3U => Self::N3U(value.1.into()),
EdnsCode::Subnet => Self::Subnet(value.1.try_into()?),
_ => Self::Unknown(value.0.into(), value.1.to_vec()),
})
}
}
impl<'a> TryFrom<&'a EdnsOption> for Vec<u8> {
type Error = ProtoError;
fn try_from(value: &'a EdnsOption) -> Result<Self, Self::Error> {
Ok(match value {
#[cfg(feature = "dnssec")]
EdnsOption::DAU(algorithms)
| EdnsOption::DHU(algorithms)
| EdnsOption::N3U(algorithms) => algorithms.into(),
EdnsOption::Subnet(subnet) => subnet.try_into()?,
EdnsOption::Unknown(_, data) => data.clone(), // gah, clone needed or make a crazy api.
})
}
}
impl<'a> From<&'a EdnsOption> for EdnsCode {
fn from(value: &'a EdnsOption) -> Self {
match value {
#[cfg(feature = "dnssec")]
EdnsOption::DAU(..) => Self::DAU,
#[cfg(feature = "dnssec")]
EdnsOption::DHU(..) => Self::DHU,
#[cfg(feature = "dnssec")]
EdnsOption::N3U(..) => Self::N3U,
EdnsOption::Subnet(..) => Self::Subnet,
EdnsOption::Unknown(code, _) => (*code).into(),
}
}
}
/// [RFC 7871, Client Subnet, Optional](https://tools.ietf.org/html/rfc7871)
///
/// ```text
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
/// 0: | FAMILY |
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
/// 2: | SOURCE PREFIX-LENGTH | SCOPE PREFIX-LENGTH |
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
/// 4: | ADDRESS... /
/// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
///
/// o FAMILY, 2 octets, indicates the family of the address contained in
/// the option, using address family codes as assigned by IANA in
/// Address Family Numbers [Address_Family_Numbers].
/// o SOURCE PREFIX-LENGTH, an unsigned octet representing the leftmost
/// number of significant bits of ADDRESS to be used for the lookup.
/// In responses, it mirrors the same value as in the queries.
/// o SCOPE PREFIX-LENGTH, an unsigned octet representing the leftmost
/// number of significant bits of ADDRESS that the response covers.
/// In queries, it MUST be set to 0.
/// o ADDRESS, variable number of octets, contains either an IPv4 or
/// IPv6 address, depending on FAMILY, which MUST be truncated to the
/// number of bits indicated by the SOURCE PREFIX-LENGTH field,
/// padding with 0 bits to pad to the end of the last octet needed.
/// o A server receiving an ECS option that uses either too few or too
/// many ADDRESS octets, or that has non-zero ADDRESS bits set beyond
/// SOURCE PREFIX-LENGTH, SHOULD return FORMERR to reject the packet,
/// as a signal to the software developer making the request to fix
/// their implementation.
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialOrd, PartialEq, Eq, Clone, Copy, Hash)]
pub struct ClientSubnet {
address: IpAddr,
source_prefix: u8,
scope_prefix: u8,
}
impl ClientSubnet {
/// Construct a new EcsOption with the address, source_prefix and scope_prefix.
pub fn new(address: IpAddr, source_prefix: u8, scope_prefix: u8) -> Self {
Self {
address,
source_prefix,
scope_prefix,
}
}
/// Returns the length in bytes of the EdnsOption
pub fn len(&self) -> u16 {
// FAMILY: 2 octets
// SOURCE PREFIX-LENGTH: 1 octets
// SCOPE PREFIX-LENGTH: 1 octets
// ADDRESS: runcated to the number of bits indicated by the SOURCE PREFIX-LENGTH field
2 + 1 + 1 + self.addr_len()
}
/// Returns `true` if the length in bytes of the EcsOption is 0
#[inline]
pub fn is_empty(&self) -> bool {
false
}
/// returns the ip address
pub fn addr(&self) -> IpAddr {
self.address
}
/// set the ip address
pub fn set_addr(&mut self, addr: IpAddr) {
self.address = addr;
}
/// returns the source prefix
pub fn source_prefix(&self) -> u8 {
self.source_prefix
}
/// returns the source prefix
pub fn set_source_prefix(&mut self, source_prefix: u8) {
self.source_prefix = source_prefix;
}
/// returns the scope prefix
pub fn scope_prefix(&self) -> u8 {
self.scope_prefix
}
/// returns the scope prefix
pub fn set_scope_prefix(&mut self, scope_prefix: u8) {
self.scope_prefix = scope_prefix;
}
fn addr_len(&self) -> u16 {
let source_prefix = self.source_prefix as u16;
source_prefix / 8 + if source_prefix % 8 > 0 { 1 } else { 0 }
}
}
impl BinEncodable for ClientSubnet {
fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
let address = self.address;
let source_prefix = self.source_prefix;
let scope_prefix = self.scope_prefix;
let addr_len = self.addr_len();
match address {
IpAddr::V4(ip) => {
encoder.emit_u16(1)?; // FAMILY: IPv4
encoder.emit_u8(source_prefix)?;
encoder.emit_u8(scope_prefix)?;
let octets = ip.octets();
let addr_len = addr_len as usize;
if addr_len <= octets.len() {
encoder.emit_vec(&octets[0..addr_len])?
} else {
return Err(ProtoErrorKind::Message(
"Invalid addr length for encode EcsOption",
)
.into());
}
}
IpAddr::V6(ip) => {
encoder.emit_u16(2)?; // FAMILY: IPv6
encoder.emit_u8(source_prefix)?;
encoder.emit_u8(scope_prefix)?;
let octets = ip.octets();
let addr_len = addr_len as usize;
if addr_len <= octets.len() {
encoder.emit_vec(&octets[0..addr_len])?
} else {
return Err(ProtoErrorKind::Message(
"Invalid addr length for encode EcsOption",
)
.into());
}
}
}
Ok(())
}
}
impl<'a> BinDecodable<'a> for ClientSubnet {
fn read(decoder: &mut BinDecoder<'a>) -> ProtoResult<Self> {
let family = decoder.read_u16()?.unverified();
match family {
1 => {
// ipv4
let source_prefix = decoder.read_u8()?.unverified();
let scope_prefix = decoder.read_u8()?.unverified();
let addr_len =
(source_prefix / 8 + if source_prefix % 8 > 0 { 1 } else { 0 }) as usize;
let mut octets = Ipv4Addr::UNSPECIFIED.octets();
if addr_len > octets.len() {
return Err(ProtoErrorKind::Message("Invalid address length").into());
}
for octet in octets.iter_mut().take(addr_len) {
*octet = decoder.read_u8()?.unverified();
}
Ok(Self {
address: IpAddr::from(octets),
source_prefix,
scope_prefix,
})
}
2 => {
// ipv6
let source_prefix = decoder.read_u8()?.unverified();
let scope_prefix = decoder.read_u8()?.unverified();
let addr_len =
(source_prefix / 8 + if source_prefix % 8 > 0 { 1 } else { 0 }) as usize;
let mut octets = Ipv6Addr::UNSPECIFIED.octets();
if addr_len > octets.len() {
return Err(ProtoErrorKind::Message("Invalid address length").into());
}
for octet in octets.iter_mut().take(addr_len) {
*octet = decoder.read_u8()?.unverified();
}
Ok(Self {
address: IpAddr::from(octets),
source_prefix,
scope_prefix,
})
}
_ => Err(ProtoErrorKind::Message("Invalid family type.").into()),
}
}
}
impl<'a> TryFrom<&'a ClientSubnet> for Vec<u8> {
type Error = ProtoError;
fn try_from(value: &'a ClientSubnet) -> Result<Self, Self::Error> {
let mut bytes = Self::with_capacity(value.len() as usize); // today this is less than 8
let mut encoder = BinEncoder::new(&mut bytes);
value.emit(&mut encoder)?;
bytes.shrink_to_fit();
Ok(bytes)
}
}
impl<'a> TryFrom<&'a [u8]> for ClientSubnet {
type Error = ProtoError;
fn try_from(value: &'a [u8]) -> Result<Self, Self::Error> {
let mut decoder = BinDecoder::new(value);
Self::read(&mut decoder)
}
}
impl From<ipnet::IpNet> for ClientSubnet {
fn from(net: ipnet::IpNet) -> Self {
Self {
address: net.addr(),
source_prefix: net.prefix_len(),
scope_prefix: Default::default(),
}
}
}
impl FromStr for ClientSubnet {
type Err = ipnet::AddrParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
ipnet::IpNet::from_str(s).map(ClientSubnet::from)
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use super::*;
#[test]
#[cfg(feature = "dnssec")]
fn test() {
let mut rdata = OPT::default();
rdata.insert(EdnsOption::DAU(SupportedAlgorithms::all()));
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
assert!(rdata.emit(&mut encoder).is_ok());
let bytes = encoder.into_bytes();
println!("bytes: {bytes:?}");
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let restrict = Restrict::new(bytes.len() as u16);
let read_rdata = OPT::read_data(&mut decoder, restrict).expect("Decoding error");
assert_eq!(rdata, read_rdata);
}
#[test]
fn test_read_empty_option_at_end_of_opt() {
let bytes: Vec<u8> = vec![
0x00, 0x0a, 0x00, 0x08, 0x0b, 0x64, 0xb4, 0xdc, 0xd7, 0xb0, 0xcc, 0x8f, 0x00, 0x08,
0x00, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00,
];
let mut decoder: BinDecoder<'_> = BinDecoder::new(&bytes);
let read_rdata = OPT::read_data(&mut decoder, Restrict::new(bytes.len() as u16));
assert!(
read_rdata.is_ok(),
"error decoding: {:?}",
read_rdata.unwrap_err()
);
let opt = read_rdata.unwrap();
let options = vec![
(
EdnsCode::Subnet,
EdnsOption::Subnet("0.0.0.0/0".parse().unwrap()),
),
(
EdnsCode::Cookie,
EdnsOption::Unknown(10, vec![0x0b, 0x64, 0xb4, 0xdc, 0xd7, 0xb0, 0xcc, 0x8f]),
),
(EdnsCode::Keepalive, EdnsOption::Unknown(11, vec![])),
];
let options = OPT::new(options);
assert_eq!(opt, options);
}
#[test]
fn test_multiple_options_with_same_code() {
let bytes: Vec<u8> = vec![
0x00, 0x0f, 0x00, 0x02, 0x00, 0x06, 0x00, 0x0f, 0x00, 0x0f, 0x00, 0x09, 0x55, 0x6E,
0x6B, 0x6E, 0x6F, 0x77, 0x6E, 0x20, 0x65, 0x72, 0x72, 0x6F, 0x72,
];
let mut decoder: BinDecoder<'_> = BinDecoder::new(&bytes);
let read_rdata = OPT::read_data(&mut decoder, Restrict::new(bytes.len() as u16));
assert!(
read_rdata.is_ok(),
"error decoding: {:?}",
read_rdata.unwrap_err()
);
let opt = read_rdata.unwrap();
let options = vec![
(
EdnsCode::Unknown(15u16),
EdnsOption::Unknown(15u16, vec![0x00, 0x06]),
),
(
EdnsCode::Unknown(15u16),
EdnsOption::Unknown(
15u16,
vec![
0x00, 0x09, 0x55, 0x6E, 0x6B, 0x6E, 0x6F, 0x77, 0x6E, 0x20, 0x65, 0x72,
0x72, 0x6F, 0x72,
],
),
),
];
let options = OPT::new(options);
assert_eq!(opt, options);
}
#[test]
fn test_write_client_subnet() {
let expected_bytes: Vec<u8> = vec![0x00, 0x01, 0x18, 0x00, 0xac, 0x01, 0x01];
let ecs: ClientSubnet = "172.1.1.1/24".parse().unwrap();
let bytes = Vec::<u8>::try_from(&ecs).unwrap();
println!("bytes: {bytes:?}");
assert_eq!(bytes, expected_bytes);
}
#[test]
fn test_read_client_subnet() {
let bytes: Vec<u8> = vec![0x00, 0x01, 0x18, 0x00, 0xac, 0x01, 0x01];
let ecs = ClientSubnet::try_from(bytes.as_slice()).unwrap();
assert_eq!(ecs, "172.1.1.0/24".parse().unwrap());
}
}