hickory_proto/rr/rdata/tlsa.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! TLSA records for storing TLS certificate validation information
#![allow(clippy::use_self)]
use std::fmt;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use super::sshfp;
use crate::{
error::{ProtoError, ProtoResult},
rr::{RData, RecordData, RecordDataDecodable, RecordType},
serialize::binary::{BinDecoder, BinEncodable, BinEncoder, Restrict, RestrictedMath},
};
/// [RFC 6698, DNS-Based Authentication for TLS](https://tools.ietf.org/html/rfc6698#section-2.1)
///
/// ```text
/// 2.1. TLSA RDATA Wire Format
///
/// The RDATA for a TLSA RR consists of a one-octet certificate usage
/// field, a one-octet selector field, a one-octet matching type field,
/// and the certificate association data field.
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Cert. Usage | Selector | Matching Type | /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
/// / /
/// / Certificate Association Data /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct TLSA {
cert_usage: CertUsage,
selector: Selector,
matching: Matching,
cert_data: Vec<u8>,
}
/// [RFC 6698, DNS-Based Authentication for TLS](https://tools.ietf.org/html/rfc6698#section-2.1.1)
///
/// ```text
/// 2.1.1. The Certificate Usage Field
///
/// A one-octet value, called "certificate usage", specifies the provided
/// association that will be used to match the certificate presented in
/// the TLS handshake. This value is defined in a new IANA registry (see
/// Section 7.2) in order to make it easier to add additional certificate
/// usages in the future. The certificate usages defined in this
/// document are:
///
/// 0 -- CA
///
/// 1 -- Service
///
/// 2 -- TrustAnchor
///
/// 3 -- DomainIssued
///
/// The certificate usages defined in this document explicitly only apply
/// to PKIX-formatted certificates in DER encoding [X.690]. If TLS
/// allows other formats later, or if extensions to this RRtype are made
/// that accept other formats for certificates, those certificates will
/// need their own certificate usage values.
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum CertUsage {
/// ```text
/// 0 -- Certificate usage 0 is used to specify a CA certificate, or
/// the public key of such a certificate, that MUST be found in any of
/// the PKIX certification paths for the end entity certificate given
/// by the server in TLS. This certificate usage is sometimes
/// referred to as "CA constraint" because it limits which CA can be
/// used to issue certificates for a given service on a host. The
/// presented certificate MUST pass PKIX certification path
/// validation, and a CA certificate that matches the TLSA record MUST
/// be included as part of a valid certification path. Because this
/// certificate usage allows both trust anchors and CA certificates,
/// the certificate might or might not have the basicConstraints
/// extension present.
/// ```
CA,
/// ```text
/// 1 -- Certificate usage 1 is used to specify an end entity
/// certificate, or the public key of such a certificate, that MUST be
/// matched with the end entity certificate given by the server in
/// TLS. This certificate usage is sometimes referred to as "service
/// certificate constraint" because it limits which end entity
/// certificate can be used by a given service on a host. The target
/// certificate MUST pass PKIX certification path validation and MUST
/// match the TLSA record.
/// ```
Service,
/// ```text
/// 2 -- Certificate usage 2 is used to specify a certificate, or the
/// public key of such a certificate, that MUST be used as the trust
/// anchor when validating the end entity certificate given by the
/// server in TLS. This certificate usage is sometimes referred to as
/// "trust anchor assertion" and allows a domain name administrator to
/// specify a new trust anchor -- for example, if the domain issues
/// its own certificates under its own CA that is not expected to be
/// in the end users' collection of trust anchors. The target
/// certificate MUST pass PKIX certification path validation, with any
/// certificate matching the TLSA record considered to be a trust
/// anchor for this certification path validation.
/// ```
TrustAnchor,
/// ```text
/// 3 -- Certificate usage 3 is used to specify a certificate, or the
/// public key of such a certificate, that MUST match the end entity
/// certificate given by the server in TLS. This certificate usage is
/// sometimes referred to as "domain-issued certificate" because it
/// allows for a domain name administrator to issue certificates for a
/// domain without involving a third-party CA. The target certificate
/// MUST match the TLSA record. The difference between certificate
/// usage 1 and certificate usage 3 is that certificate usage 1
/// requires that the certificate pass PKIX validation, but PKIX
/// validation is not tested for certificate usage 3.
/// ```
DomainIssued,
/// Unassigned at the time of this implementation
Unassigned(u8),
/// Private usage
Private,
}
impl From<u8> for CertUsage {
fn from(usage: u8) -> Self {
match usage {
0 => Self::CA,
1 => Self::Service,
2 => Self::TrustAnchor,
3 => Self::DomainIssued,
4..=254 => Self::Unassigned(usage),
255 => Self::Private,
}
}
}
impl From<CertUsage> for u8 {
fn from(usage: CertUsage) -> Self {
match usage {
CertUsage::CA => 0,
CertUsage::Service => 1,
CertUsage::TrustAnchor => 2,
CertUsage::DomainIssued => 3,
CertUsage::Unassigned(usage) => usage,
CertUsage::Private => 255,
}
}
}
/// [RFC 6698, DNS-Based Authentication for TLS](https://tools.ietf.org/html/rfc6698#section-2.1.1)
///
/// ```text
/// 2.1.2. The Selector Field
///
/// A one-octet value, called "selector", specifies which part of the TLS
/// certificate presented by the server will be matched against the
/// association data. This value is defined in a new IANA registry (see
/// Section 7.3). The selectors defined in this document are:
///
/// 0 -- Full
///
/// 1 -- Spki
///
/// (Note that the use of "selector" in this document is completely
/// unrelated to the use of "selector" in DomainKeys Identified Mail
/// (DKIM) [RFC6376].)
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum Selector {
/// Full certificate: the Certificate binary structure as defined in [RFC5280](https://tools.ietf.org/html/rfc5280)
Full,
/// SubjectPublicKeyInfo: DER-encoded binary structure as defined in [RFC5280](https://tools.ietf.org/html/rfc5280)
Spki,
/// Unassigned at the time of this writing
Unassigned(u8),
/// Private usage
Private,
}
impl From<u8> for Selector {
fn from(selector: u8) -> Self {
match selector {
0 => Self::Full,
1 => Self::Spki,
2..=254 => Self::Unassigned(selector),
255 => Self::Private,
}
}
}
impl From<Selector> for u8 {
fn from(selector: Selector) -> Self {
match selector {
Selector::Full => 0,
Selector::Spki => 1,
Selector::Unassigned(selector) => selector,
Selector::Private => 255,
}
}
}
/// [RFC 6698, DNS-Based Authentication for TLS](https://tools.ietf.org/html/rfc6698#section-2.1.3)
///
/// ```text
/// 2.1.3. The Matching Type Field
///
/// A one-octet value, called "matching type", specifies how the
/// certificate association is presented. This value is defined in a new
/// IANA registry (see Section 7.4). The types defined in this document
/// are:
///
/// 0 -- Raw
///
/// 1 -- Sha256
///
/// 2 -- Sha512
///
/// If the TLSA record's matching type is a hash, having the record use
/// the same hash algorithm that was used in the signature in the
/// certificate (if possible) will assist clients that support a small
/// number of hash algorithms.
/// ```
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum Matching {
/// Exact match on selected content
Raw,
/// SHA-256 hash of selected content [RFC6234](https://tools.ietf.org/html/rfc6234)
Sha256,
/// SHA-512 hash of selected content [RFC6234](https://tools.ietf.org/html/rfc6234)
Sha512,
/// Unassigned at the time of this writing
Unassigned(u8),
/// Private usage
Private,
}
impl From<u8> for Matching {
fn from(matching: u8) -> Self {
match matching {
0 => Self::Raw,
1 => Self::Sha256,
2 => Self::Sha512,
3..=254 => Self::Unassigned(matching),
255 => Self::Private,
}
}
}
impl From<Matching> for u8 {
fn from(matching: Matching) -> Self {
match matching {
Matching::Raw => 0,
Matching::Sha256 => 1,
Matching::Sha512 => 2,
Matching::Unassigned(matching) => matching,
Matching::Private => 255,
}
}
}
impl TLSA {
/// Constructs a new TLSA
///
/// [RFC 6698, DNS-Based Authentication for TLS](https://tools.ietf.org/html/rfc6698#section-2)
///
/// ```text
/// 2. The TLSA Resource Record
///
/// The TLSA DNS resource record (RR) is used to associate a TLS server
/// certificate or public key with the domain name where the record is
/// found, thus forming a "TLSA certificate association". The semantics
/// of how the TLSA RR is interpreted are given later in this document.
///
/// The type value for the TLSA RR type is defined in Section 7.1.
///
/// The TLSA RR is class independent.
///
/// The TLSA RR has no special Time to Live (TTL) requirements.
/// ```
pub fn new(
cert_usage: CertUsage,
selector: Selector,
matching: Matching,
cert_data: Vec<u8>,
) -> Self {
Self {
cert_usage,
selector,
matching,
cert_data,
}
}
/// Specifies the provided association that will be used to match the certificate presented in the TLS handshake
pub fn cert_usage(&self) -> CertUsage {
self.cert_usage
}
/// Specifies which part of the TLS certificate presented by the server will be matched against the association data
pub fn selector(&self) -> Selector {
self.selector
}
/// Specifies how the certificate association is presented
pub fn matching(&self) -> Matching {
self.matching
}
/// Binary data for validating the cert, see other members to understand format
pub fn cert_data(&self) -> &[u8] {
&self.cert_data
}
}
impl BinEncodable for TLSA {
fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
encoder.emit_u8(self.cert_usage.into())?;
encoder.emit_u8(self.selector.into())?;
encoder.emit_u8(self.matching.into())?;
encoder.emit_vec(&self.cert_data)?;
Ok(())
}
}
impl RecordDataDecodable<'_> for TLSA {
/// Read the RData from the given Decoder
///
/// ```text
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Cert. Usage | Selector | Matching Type | /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
/// / /
/// / Certificate Association Data /
/// / /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// ```
fn read_data(decoder: &mut BinDecoder<'_>, rdata_length: Restrict<u16>) -> ProtoResult<TLSA> {
let cert_usage = decoder.read_u8()?.unverified(/*CertUsage is verified*/).into();
let selector = decoder.read_u8()?.unverified(/*Selector is verified*/).into();
let matching = decoder.read_u8()?.unverified(/*Matching is verified*/).into();
// the remaining data is for the cert
let cert_len = rdata_length
.map(|u| u as usize)
.checked_sub(3)
.map_err(|_| ProtoError::from("invalid rdata length in TLSA"))?
.unverified(/*used purely as length safely*/);
let cert_data = decoder.read_vec(cert_len)?.unverified(/*will fail in usage if invalid*/);
Ok(Self {
cert_usage,
selector,
matching,
cert_data,
})
}
}
impl RecordData for TLSA {
fn try_from_rdata(data: RData) -> Result<Self, RData> {
match data {
RData::TLSA(data) => Ok(data),
_ => Err(data),
}
}
fn try_borrow(data: &RData) -> Option<&Self> {
match data {
RData::TLSA(data) => Some(data),
_ => None,
}
}
fn record_type(&self) -> RecordType {
RecordType::TLSA
}
fn into_rdata(self) -> RData {
RData::TLSA(self)
}
}
/// [RFC 6698, DNS-Based Authentication for TLS](https://tools.ietf.org/html/rfc6698#section-2.2)
///
/// ```text
/// 2.2. TLSA RR Presentation Format
///
/// The presentation format of the RDATA portion (as defined in
/// [RFC1035]) is as follows:
///
/// o The certificate usage field MUST be represented as an 8-bit
/// unsigned integer.
///
/// o The selector field MUST be represented as an 8-bit unsigned
/// integer.
///
/// o The matching type field MUST be represented as an 8-bit unsigned
/// integer.
///
/// o The certificate association data field MUST be represented as a
/// string of hexadecimal characters. Whitespace is allowed within
/// the string of hexadecimal characters, as described in [RFC1035].
///
/// 2.3. TLSA RR Examples
///
/// In the following examples, the domain name is formed using the rules
/// in Section 3.
///
/// An example of a hashed (SHA-256) association of a PKIX CA
/// certificate:
///
/// _443._tcp.www.example.com. IN TLSA (
/// 0 0 1 d2abde240d7cd3ee6b4b28c54df034b9
/// 7983a1d16e8a410e4561cb106618e971 )
///
/// An example of a hashed (SHA-512) subject public key association of a
/// PKIX end entity certificate:
///
/// _443._tcp.www.example.com. IN TLSA (
/// 1 1 2 92003ba34942dc74152e2f2c408d29ec
/// a5a520e7f2e06bb944f4dca346baf63c
/// 1b177615d466f6c4b71c216a50292bd5
/// 8c9ebdd2f74e38fe51ffd48c43326cbc )
///
/// An example of a full certificate association of a PKIX end entity
/// certificate:
///
/// _443._tcp.www.example.com. IN TLSA (
/// 3 0 0 30820307308201efa003020102020... )
/// ```
impl fmt::Display for TLSA {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
write!(
f,
"{usage} {selector} {matching} {cert}",
usage = u8::from(self.cert_usage),
selector = u8::from(self.selector),
matching = u8::from(self.matching),
cert = sshfp::HEX.encode(&self.cert_data),
)
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use super::*;
#[test]
fn read_cert_usage() {
assert_eq!(CertUsage::CA, CertUsage::from(0));
assert_eq!(CertUsage::Service, CertUsage::from(1));
assert_eq!(CertUsage::TrustAnchor, CertUsage::from(2));
assert_eq!(CertUsage::DomainIssued, CertUsage::from(3));
assert_eq!(CertUsage::Unassigned(4), CertUsage::from(4));
assert_eq!(CertUsage::Unassigned(254), CertUsage::from(254));
assert_eq!(CertUsage::Private, CertUsage::from(255));
assert_eq!(u8::from(CertUsage::CA), 0);
assert_eq!(u8::from(CertUsage::Service), 1);
assert_eq!(u8::from(CertUsage::TrustAnchor), 2);
assert_eq!(u8::from(CertUsage::DomainIssued), 3);
assert_eq!(u8::from(CertUsage::Unassigned(4)), 4);
assert_eq!(u8::from(CertUsage::Unassigned(254)), 254);
assert_eq!(u8::from(CertUsage::Private), 255);
}
#[test]
fn read_selector() {
assert_eq!(Selector::Full, Selector::from(0));
assert_eq!(Selector::Spki, Selector::from(1));
assert_eq!(Selector::Unassigned(2), Selector::from(2));
assert_eq!(Selector::Unassigned(254), Selector::from(254));
assert_eq!(Selector::Private, Selector::from(255));
assert_eq!(u8::from(Selector::Full), 0);
assert_eq!(u8::from(Selector::Spki), 1);
assert_eq!(u8::from(Selector::Unassigned(2)), 2);
assert_eq!(u8::from(Selector::Unassigned(254)), 254);
assert_eq!(u8::from(Selector::Private), 255);
}
#[test]
fn read_matching() {
assert_eq!(Matching::Raw, Matching::from(0));
assert_eq!(Matching::Sha256, Matching::from(1));
assert_eq!(Matching::Sha512, Matching::from(2));
assert_eq!(Matching::Unassigned(3), Matching::from(3));
assert_eq!(Matching::Unassigned(254), Matching::from(254));
assert_eq!(Matching::Private, Matching::from(255));
assert_eq!(u8::from(Matching::Raw), 0);
assert_eq!(u8::from(Matching::Sha256), 1);
assert_eq!(u8::from(Matching::Sha512), 2);
assert_eq!(u8::from(Matching::Unassigned(3)), 3);
assert_eq!(u8::from(Matching::Unassigned(254)), 254);
assert_eq!(u8::from(Matching::Private), 255);
}
fn test_encode_decode(rdata: TLSA) {
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
rdata.emit(&mut encoder).expect("failed to emit tlsa");
let bytes = encoder.into_bytes();
println!("bytes: {bytes:?}");
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let read_rdata = TLSA::read_data(&mut decoder, Restrict::new(bytes.len() as u16))
.expect("failed to read back");
assert_eq!(rdata, read_rdata);
}
#[test]
fn test_encode_decode_tlsa() {
test_encode_decode(TLSA::new(
CertUsage::Service,
Selector::Spki,
Matching::Sha256,
vec![1, 2, 3, 4, 5, 6, 7, 8],
));
test_encode_decode(TLSA::new(
CertUsage::CA,
Selector::Full,
Matching::Raw,
vec![1, 2, 3, 4, 5, 6, 7, 8],
));
test_encode_decode(TLSA::new(
CertUsage::DomainIssued,
Selector::Full,
Matching::Sha512,
vec![1, 2, 3, 4, 5, 6, 7, 8],
));
test_encode_decode(TLSA::new(
CertUsage::Unassigned(40),
Selector::Unassigned(39),
Matching::Unassigned(6),
vec![1, 2, 3, 4, 5, 6, 7, 8],
));
}
}