hickory_proto/xfer/dnssec_dns_handle/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! The `DnssecDnsHandle` is used to validate all DNS responses for correct DNSSEC signatures.
use std::{
clone::Clone,
collections::{HashMap, HashSet},
pin::Pin,
sync::Arc,
time::{SystemTime, UNIX_EPOCH},
};
use async_recursion::async_recursion;
use futures_util::{
future::{self, TryFutureExt},
stream::{self, Stream, TryStreamExt},
};
use tracing::{debug, trace, warn};
use crate::{
dnssec::{
rdata::{DNSSECRData, DNSKEY, DS, RRSIG},
Algorithm, Proof, ProofError, ProofErrorKind, TrustAnchor, Verifier,
},
error::{ProtoError, ProtoErrorKind},
op::{Edns, Message, OpCode, Query},
rr::{resource::RecordRef, Name, RData, Record, RecordData, RecordType, SerialNumber},
xfer::{dns_handle::DnsHandle, DnsRequest, DnsRequestOptions, DnsResponse, FirstAnswer},
};
use self::rrset::Rrset;
use nsec3_validation::verify_nsec3;
mod nsec3_validation;
/// Performs DNSSEC validation of all DNS responses from the wrapped DnsHandle
///
/// This wraps a DnsHandle, changing the implementation `send()` to validate all
/// message responses for Query operations. Update operation responses are not validated by
/// this process.
#[derive(Clone)]
#[must_use = "queries can only be sent through a DnsHandle"]
pub struct DnssecDnsHandle<H>
where
H: DnsHandle + Unpin + 'static,
{
handle: H,
trust_anchor: Arc<TrustAnchor>,
request_depth: usize,
minimum_key_len: usize,
minimum_algorithm: Algorithm, // used to prevent down grade attacks...
}
impl<H> DnssecDnsHandle<H>
where
H: DnsHandle + Unpin + 'static,
{
/// Create a new DnssecDnsHandle wrapping the specified handle.
///
/// This uses the compiled in TrustAnchor default trusted keys.
///
/// # Arguments
/// * `handle` - handle to use for all connections to a remote server.
pub fn new(handle: H) -> Self {
Self::with_trust_anchor(handle, Arc::new(TrustAnchor::default()))
}
/// Create a new DnssecDnsHandle wrapping the specified handle.
///
/// This allows a custom TrustAnchor to be define.
///
/// # Arguments
/// * `handle` - handle to use for all connections to a remote server.
/// * `trust_anchor` - custom DNSKEYs that will be trusted, can be used to pin trusted keys.
pub fn with_trust_anchor(handle: H, trust_anchor: Arc<TrustAnchor>) -> Self {
Self {
handle,
trust_anchor,
request_depth: 0,
minimum_key_len: 0,
minimum_algorithm: Algorithm::RSASHA256,
}
}
/// An internal function used to clone the handle, but maintain some information back to the
/// original handle, such as the request_depth such that infinite recursion does
/// not occur.
fn clone_with_context(&self) -> Self {
Self {
handle: self.handle.clone(),
trust_anchor: Arc::clone(&self.trust_anchor),
request_depth: self.request_depth + 1,
minimum_key_len: self.minimum_key_len,
minimum_algorithm: self.minimum_algorithm,
}
}
}
impl<H> DnsHandle for DnssecDnsHandle<H>
where
H: DnsHandle + Sync + Unpin,
{
type Response = Pin<Box<dyn Stream<Item = Result<DnsResponse, ProtoError>> + Send>>;
fn is_verifying_dnssec(&self) -> bool {
// This handler is always verifying...
true
}
fn send<R: Into<DnsRequest>>(&self, request: R) -> Self::Response {
let mut request = request.into();
// backstop
if self.request_depth > request.options().max_request_depth {
return Box::pin(stream::once(future::err(ProtoError::from(
"exceeded max validation depth",
))));
}
// dnssec only matters on queries.
match request.op_code() {
OpCode::Query => {}
_ => return Box::pin(self.handle.send(request)),
}
// This will panic on no queries, that is a very odd type of request, isn't it?
// TODO: with mDNS there can be multiple queries
let query = if let Some(query) = request.queries().first().cloned() {
query
} else {
return Box::pin(stream::once(future::err(ProtoError::from(
"no query in request",
))));
};
let handle: Self = self.clone_with_context();
#[cfg(feature = "dnssec")]
{
request
.extensions_mut()
.get_or_insert_with(Edns::new)
.enable_dnssec();
}
request.set_authentic_data(true);
request.set_checking_disabled(false);
let options = *request.options();
Box::pin(
self.handle
.send(request)
.or_else(move |res| {
// Translate NoRecordsFound errors into a DnsResponse message so the rest of the
// DNSSEC handler chain can validate negative responses.
match res.kind() {
ProtoErrorKind::NoRecordsFound {
query,
authorities,
response_code,
..
} => {
let mut msg = Message::new();
debug!("translating NoRecordsFound to DnsResponse for {query}");
msg.add_query(*query.clone());
msg.set_response_code(*response_code);
if let Some(authorities) = authorities {
for ns in authorities.iter() {
msg.add_name_server(ns.clone());
}
}
match DnsResponse::from_message(msg) {
Ok(res) => future::ok(res),
Err(_e) => future::err(ProtoError::from(
"unable to construct DnsResponse: {_e:?}",
)),
}
}
_ => future::err(ProtoError::from(res.to_string())),
}
})
.and_then(move |message_response| {
verify_response(handle.clone(), message_response, options)
})
.and_then(move |verified_message| {
future::ready(check_nsec(verified_message, &query))
}),
)
}
}
/// TODO: I've noticed upstream resolvers don't always return NSEC responses
/// this causes bottom up evaluation to fail
///
/// at this point all of the message is verified.
/// This is where NSEC and NSEC3 validation occurs
fn check_nsec(verified_message: DnsResponse, query: &Query) -> Result<DnsResponse, ProtoError> {
if !verified_message.answers().is_empty() {
return Ok(verified_message);
}
if verified_message
.name_servers()
.iter()
.all(|x| x.proof() == Proof::Insecure)
{
return Ok(verified_message);
}
// get SOA name
let soa_name = if let Some(soa_name) = verified_message
.name_servers()
.iter()
// there should only be one
.find(|rr| rr.record_type() == RecordType::SOA)
.map(Record::name)
{
soa_name
} else {
return Err(ProtoError::from(
"could not validate negative response missing SOA",
));
};
let nsec3s = verified_message
.name_servers()
.iter()
.filter_map(|rr| {
rr.data()
.as_dnssec()?
.as_nsec3()
.map(|data| (rr.name(), data))
})
.collect::<Vec<_>>();
let nsecs = verified_message
.name_servers()
.iter()
.filter(|rr| is_dnssec(rr, RecordType::NSEC))
.collect::<Vec<_>>();
// Both NSEC and NSEC3 records cannot coexist during
// transition periods, as per RFC 5515 10.4.3 and
// 10.5.2
let nsec_proof = match (!nsec3s.is_empty(), !nsecs.is_empty()) {
(true, false) => verify_nsec3(
query,
soa_name,
verified_message.response_code(),
verified_message.answers(),
&nsec3s,
),
(false, true) => verify_nsec(query, soa_name, nsecs.as_slice()),
(true, true) => {
warn!("response contains both NSEC and NSEC3 records\nQuery:\n{query:?}\nResponse:\n{verified_message:?}");
Proof::Bogus
}
(false, false) => {
warn!("response does not contain NSEC or NSEC3 records. Query: {query:?} response: {verified_message:?}");
Proof::Bogus
}
};
if !nsec_proof.is_secure() {
debug!("returning Nsec error for {} {nsec_proof}", query.name());
// TODO change this to remove the NSECs, like we do for the others?
return Err(ProtoError::from(ProtoErrorKind::Nsec {
query: Box::new(query.clone()),
proof: nsec_proof,
}));
}
Ok(verified_message)
}
/// Extracts the different sections of a message and verifies the RRSIGs
async fn verify_response<H>(
handle: DnssecDnsHandle<H>,
mut message: DnsResponse,
options: DnsRequestOptions,
) -> Result<DnsResponse, ProtoError>
where
H: DnsHandle + Sync + Unpin,
{
debug!(
"validating message_response: {}, with {} trust_anchors",
message.id(),
handle.trust_anchor.len(),
);
// group the record sets by name and type
// each rrset type needs to validated independently
let answers = message.take_answers();
let nameservers = message.take_name_servers();
let additionals = message.take_additionals();
let answers = verify_rrsets(&handle, answers, options).await;
let nameservers = verify_rrsets(&handle, nameservers, options).await;
let additionals = verify_rrsets(&handle, additionals, options).await;
message.insert_answers(answers);
message.insert_name_servers(nameservers);
message.insert_additionals(additionals);
Ok(message)
}
/// This pulls all answers returned in a Message response and returns a future which will
/// validate all of them.
#[allow(clippy::type_complexity)]
async fn verify_rrsets<H>(
handle: &DnssecDnsHandle<H>,
records: Vec<Record>,
options: DnsRequestOptions,
) -> Vec<Record>
where
H: DnsHandle + Sync + Unpin,
{
let mut rrset_types: HashSet<(Name, RecordType)> = HashSet::new();
let mut rrset_proofs: HashMap<(Name, RecordType), (Proof, Option<u32>)> = HashMap::new();
for rrset in records
.iter()
.filter(|rr| {
!is_dnssec(rr, RecordType::RRSIG) &&
// if we are at a depth greater than 1, we are only interested in proving evaluation chains
// this means that only DNSKEY and DS are interesting at that point.
// this protects against looping over things like NS records and DNSKEYs in responses.
// TODO: is there a cleaner way to prevent cycles in the evaluations?
(handle.request_depth <= 1 ||
is_dnssec(rr, RecordType::DNSKEY) ||
is_dnssec(rr, RecordType::DS))
})
.map(|rr| (rr.name().clone(), rr.record_type()))
{
rrset_types.insert(rrset);
}
// there were no records to verify
if rrset_types.is_empty() {
return records;
}
// collect all the rrsets to verify
// TODO: is there a way to get rid of this clone() safely?
for (name, record_type) in rrset_types {
let mut rrs_to_verify = records
.iter()
.filter(|rr| rr.record_type() == record_type && rr.name() == &name);
let mut rrset = Rrset::new(rrs_to_verify.next().unwrap());
rrs_to_verify.for_each(|rr| rrset.add(rr));
// RRSIGS are never modified after this point
let rrsigs: Vec<_> = records
.iter()
.filter_map(|rr| rr.try_borrow::<RRSIG>())
.filter(|rr| rr.name() == &name)
.filter(|rrsig| rrsig.data().type_covered() == record_type)
.collect();
// if there is already an active validation going on, assume the other validation will
// complete properly or error if it is invalid
// TODO: support non-IN classes?
debug!(
"verifying: {name} record_type: {record_type}, rrsigs: {rrsig_len}",
rrsig_len = rrsigs.len()
);
// verify this rrset
let proof = verify_rrset(handle.clone_with_context(), rrset, rrsigs, options).await;
let (proof, adjusted_ttl) = match proof {
Ok((proof, adjusted_ttl)) => {
debug!("verified: {name} record_type: {record_type}",);
(proof, adjusted_ttl)
}
Err(ProofError { proof, kind }) => {
match kind {
ProofErrorKind::DsResponseNsec { .. } => {
debug!("verified insecure {name}/{record_type}")
}
_ => debug!("failed to verify: {name} record_type: {record_type}: {kind}"),
}
(proof, None)
}
};
rrset_proofs.insert((name, record_type), (proof, adjusted_ttl));
}
// set the proofs of all the records, all records are returned, it's up to downstream users to check for correctness
let mut records = records;
for record in &mut records {
// the RRSIG used to validate a record inherits the outcome of the validation
// for RRSIGs, we need to use their TYPE_COVERED field instead of `RecordType::RRSIG` as the
// `RecordType` key in `rrset_proofs`
let record_type = if let RData::DNSSEC(DNSSECRData::RRSIG(rrsig)) = record.data() {
rrsig.type_covered()
} else {
record.record_type()
};
if let Some((proof, adjusted_ttl)) = rrset_proofs.get(&(record.name().clone(), record_type))
{
record.set_proof(*proof);
if let (Proof::Secure, Some(ttl)) = (proof, adjusted_ttl) {
record.set_ttl(*ttl);
}
}
}
records
}
// TODO: is this method useful/necessary?
fn is_dnssec<D: RecordData>(rr: &Record<D>, dnssec_type: RecordType) -> bool {
rr.record_type().is_dnssec() && dnssec_type.is_dnssec() && rr.record_type() == dnssec_type
}
/// Generic entrypoint to verify any RRSET against the provided signatures.
///
/// Generally, the RRSET will be validated by `verify_default_rrset()`. There are additional
/// checks that happen after the RRSET is successfully validated. In the case of DNSKEYs this
/// triggers `verify_dnskey_rrset()`. If it's an NSEC record, then the NSEC record will be
/// validated to prove it's correctness. There is a special case for DNSKEY, where if the RRSET
/// is unsigned, `rrsigs` is empty, then an immediate `verify_dnskey_rrset()` is triggered. In
/// this case, it's possible the DNSKEY is a trust_anchor and is not self-signed.
async fn verify_rrset<H>(
handle: DnssecDnsHandle<H>,
rrset: Rrset<'_>,
rrsigs: Vec<RecordRef<'_, RRSIG>>,
options: DnsRequestOptions,
) -> Result<(Proof, Option<u32>), ProofError>
where
H: DnsHandle + Sync + Unpin,
{
// wrapper for some of the type conversion for typed DNSKEY fn calls.
if matches!(rrset.record_type(), RecordType::DNSKEY) {
let is_trust_anchor =
verify_dnskey_rrset(handle.clone_with_context(), &rrset, options).await?;
if is_trust_anchor {
return Ok((Proof::Secure, None));
}
}
verify_default_rrset(&handle.clone_with_context(), rrset, rrsigs, options).await
}
/// Additional, DNSKEY-specific verification
///
/// In addition to RRSIG validation, which happens in `verify_default_rrset`, a DNSKEY needs to be
/// checked against a DS record provided by the parent zone.
///
/// A DNSKEY that's part of the trust anchor does not need to have its DS record (which may
/// not exist as it's the case of the root zone) nor its RRSIG validated.
///
/// This function returns `true` when the DNSKEY is in the trust anchor; `false` when it's not and
/// its DS was validated; or an error when DS validation failed.
async fn verify_dnskey_rrset<H>(
handle: DnssecDnsHandle<H>,
rrset: &Rrset<'_>,
options: DnsRequestOptions,
) -> Result<bool, ProofError>
where
H: DnsHandle + Sync + Unpin,
{
trace!(
"dnskey validation {}, record_type: {:?}",
rrset.name(),
rrset.record_type()
);
// check the DNSKEYS against the trust_anchor, if it's approved allow it.
// this includes the root keys
let mut all_unsupported = None;
for r in rrset.records().iter() {
let Some(key_rdata) = DNSKEY::try_borrow(r.data()) else {
continue;
};
let algorithm = key_rdata.algorithm();
if algorithm.is_supported() {
all_unsupported = Some(false);
} else {
debug!("unsupported key algorithm {algorithm} in {key_rdata}",);
all_unsupported.get_or_insert(true);
continue;
}
if !handle
.trust_anchor
.contains_dnskey_bytes(key_rdata.public_key())
{
continue;
}
debug!(
"validated dnskey with trust_anchor: {}, {key_rdata}",
rrset.name(),
);
return Ok(true);
}
if all_unsupported.unwrap_or_default() {
// cannot validate; mark as insecure
return Err(ProofError::new(
Proof::Insecure,
ProofErrorKind::UnsupportedKeyAlgorithm,
));
}
// need to get DS records for each DNSKEY
// there will be a DS record for everything under the root keys
let ds_records = find_ds_records(&handle, rrset.name().clone(), options).await?;
for rr in rrset.records().iter() {
let Some(key_rdata) = DNSKEY::try_borrow(rr.data()) else {
continue;
};
let Ok(key_tag) = key_rdata.calculate_key_tag() else {
continue;
};
let key_algorithm = key_rdata.algorithm();
for (i, r) in ds_records.iter().enumerate() {
if i > MAX_KEY_TAG_COLLISIONS {
warn!("too many DS records ({i}) with key tag {key_tag}; skipping");
continue;
}
if r.data().algorithm() != key_algorithm {
trace!(
"skipping DS record due to algorithm mismatch, expected algorithm {}: ({}, {})",
key_algorithm,
r.name(),
r.data(),
);
continue;
}
if r.data().key_tag() != key_tag {
trace!(
"skipping DS record due to key tag mismatch, expected tag {key_tag}: ({}, {})",
r.name(),
r.data(),
);
continue;
}
if !r.data().covers(rrset.name(), key_rdata).unwrap_or(false) {
continue;
}
debug!(
"validated dnskey ({}, {key_rdata}) with {} {}",
rrset.name(),
r.name(),
r.data(),
);
// If all the keys are valid, then we are secure
// FIXME: what if only some are invalid? we should return the good ones?
return Ok(false);
}
}
if !ds_records.is_empty() {
// there were DS records, but no DNSKEYs, we're in a bogus state
trace!("bogus dnskey: {}", rrset.name());
Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::DsRecordsButNoDnskey {
name: rrset.name().clone(),
},
))
} else {
// if rrset.records.is_empty() && ds_records.is_empty()
// there were DS records, but no DNSKEYs, we're in a bogus state
// if there was no DS record, it should have gotten an NSEC upstream, and returned early above
// and all other cases...
trace!("no dnskey found: {}", rrset.name());
Err(ProofError::new(
Proof::Indeterminate,
ProofErrorKind::DnskeyNotFound {
name: rrset.name().clone(),
},
))
}
}
#[async_recursion]
async fn find_ds_records<H>(
handle: &DnssecDnsHandle<H>,
zone: Name,
options: DnsRequestOptions,
) -> Result<Vec<Record<DS>>, ProofError>
where
H: DnsHandle + Sync + Unpin,
{
// need to get DS records for each DNSKEY
// there will be a DS record for everything under the root keys
let ds_message = handle
.lookup(Query::query(zone.clone(), RecordType::DS), options)
.first_answer()
.await;
let error: ProtoError = match ds_message {
Ok(mut ds_message)
if ds_message
.answers()
.iter()
.filter(|r| r.record_type() == RecordType::DS)
.any(|r| r.proof().is_secure()) =>
{
// this is a secure DS record, perfect
let all_records = ds_message
.take_answers()
.into_iter()
.filter_map(|r| Record::<DS>::try_from(r).ok());
let mut supported_records = vec![];
let mut all_unknown = None;
for record in all_records {
if matches!(record.data().algorithm(), Algorithm::Unknown(_)) {
all_unknown.get_or_insert(true);
continue;
}
all_unknown = Some(false);
supported_records.push(record);
}
if all_unknown.unwrap_or(false) {
return Err(ProofError::new(
Proof::Insecure,
ProofErrorKind::UnknownKeyAlgorithm,
));
} else if !supported_records.is_empty() {
return Ok(supported_records);
} else {
ProtoError::from(ProtoErrorKind::NoError)
}
}
Ok(_) => ProtoError::from(ProtoErrorKind::NoError),
Err(error) => error,
};
// if the DS record was an NSEC then we have an insecure zone
if let Some((query, _proof)) = error
.kind()
.as_nsec()
.filter(|(_query, proof)| proof.is_insecure())
{
debug!(
"marking {} as insecure based on NSEC/NSEC3 proof",
query.name()
);
return Err(ProofError::new(
Proof::Insecure,
ProofErrorKind::DsResponseNsec {
name: query.name().to_owned(),
},
));
}
// otherwise we need to recursively discover the status of DS up the chain,
// if we find a valid DS, then we're in a Bogus state,
// if we find no records, then we are Indeterminate
// if we get ProofError, our result is the same
let parent = zone.base_name();
if zone == parent {
// zone is `.`. do not call `find_ds_records(.., parent, ..)` or that will lead to infinite
// recursion
return Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::DsRecordShouldExist { name: zone },
));
}
match find_ds_records(handle, parent, options).await {
Ok(ds_records) if !ds_records.is_empty() => Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::DsRecordShouldExist { name: zone },
)),
Ok(ds_records) if ds_records.is_empty() => Err(ProofError::new(
Proof::Indeterminate,
ProofErrorKind::DsHasNoDnssecProof { name: zone },
)),
err => err,
}
}
/// Verifies that a given RRSET is validly signed by any of the specified RRSIGs.
///
/// Invalid RRSIGs will be ignored. RRSIGs will only be validated against DNSKEYs which can
/// be validated through a chain back to the `trust_anchor`. As long as one RRSIG is valid,
/// then the RRSET will be valid.
#[allow(clippy::blocks_in_conditions)]
async fn verify_default_rrset<H>(
handle: &DnssecDnsHandle<H>,
rrset: Rrset<'_>,
rrsigs: Vec<RecordRef<'_, RRSIG>>,
options: DnsRequestOptions,
) -> Result<(Proof, Option<u32>), ProofError>
where
H: DnsHandle + Sync + Unpin,
{
if rrsigs.is_empty() {
// Decide if we're:
// 1) "indeterminate", i.e. no DNSSEC records are available back to the root
// 2) "insecure", the zone has a valid NSEC for the DS record in the parent zone
// 3) "bogus", the parent zone has a valid DS record, but the child zone didn't have the RRSIGs/DNSKEYs
let ds_records = find_ds_records(handle, rrset.name().clone(), options).await?; // insecure will return early here
if !ds_records.is_empty() {
return Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::DsRecordShouldExist {
name: rrset.name().clone(),
},
));
} else {
return Err(ProofError::new(
Proof::Indeterminate,
ProofErrorKind::RrsigsNotPresent {
name: rrset.name().clone(),
record_type: rrset.record_type(),
},
));
}
}
// the record set is going to be shared across a bunch of futures, Arc for that.
trace!(
"default validation {}, record_type: {:?}",
rrset.name(),
rrset.record_type()
);
// use the same current time value for all rrsig + rrset pairs.
let current_time = current_time();
// Special case for self-signed DNSKEYS, validate with itself...
if rrsigs.iter().any(|rrsig| {
RecordType::DNSKEY == rrset.record_type() && rrsig.data().signer_name() == rrset.name()
}) {
// in this case it was looks like a self-signed key, first validate the signature
// then return rrset. Like the standard case below, the DNSKEY is validated
// after this function. This function is only responsible for validating the signature
// the DNSKey validation should come after, see verify_rrset().
let (proof, adjusted_ttl) = rrsigs
.iter()
.find_map(|rrsig| {
rrset
.records()
.iter()
.filter_map(|r| r.try_borrow::<DNSKEY>())
// DNSKEY must be signed using a KSK
.filter(|r| r.data().is_key_signing_key())
.find_map(|dnskey| {
// If we had rrsigs to verify, then we want them to be secure, or the result is a Bogus proof
verify_rrset_with_dnskey(dnskey, *rrsig, &rrset, current_time).ok()
})
})
.ok_or_else(|| {
ProofError::new(
Proof::Bogus,
ProofErrorKind::SelfSignedKeyInvalid {
name: rrset.name().clone(),
},
)
})?;
// Getting here means the rrset (and records), have been verified
return Ok((proof, adjusted_ttl));
}
// we can validate with any of the rrsigs...
// i.e. the first that validates is good enough
// TODO: could there be a cert downgrade attack here with a MITM stripping stronger RRSIGs?
// we could check for the strongest RRSIG and only use that...
// though, since the entire package isn't signed any RRSIG could have been injected,
// right? meaning if there is an attack on any of the acceptable algorithms, we'd be
// susceptible until that algorithm is removed as an option.
// dns over TLS will mitigate this.
// TODO: strip RRSIGS to accepted algorithms and make algorithms configurable.
let verifications = rrsigs
.iter()
.enumerate()
.filter_map(|(i, rrsig)| {
let handle = handle.clone_with_context();
let query = Query::query(rrsig.data().signer_name().clone(), RecordType::DNSKEY);
if i > MAX_RRSIGS_PER_RRSET {
warn!("too many ({i}) RRSIGs for rrset {rrset:?}; skipping");
return None;
}
// TODO: Should this sig.signer_name should be confirmed to be in the same zone as the rrsigs and rrset?
Some(handle
.lookup(query.clone(), options)
.first_answer()
.map_err(|proto| {
ProofError::new(Proof::Indeterminate, ProofErrorKind::Proto { query, proto })
})
.map_ok(|message| {
let mut tag_count = HashMap::<u16, usize>::new();
// DNSKEYs were already validated by the inner query in the above lookup
let dnskeys = message
.answers()
.iter()
.filter_map(|r| {
let dnskey = r.try_borrow::<DNSKEY>()?;
let tag = match dnskey.data().calculate_key_tag() {
Ok(tag) => tag,
Err(e) => {
warn!("unable to calculate key tag: {e:?}; skipping key");
return None;
}
};
match tag_count.get_mut(&tag) {
Some(n_keys) => {
*n_keys += 1;
if *n_keys > MAX_KEY_TAG_COLLISIONS {
warn!("too many ({n_keys}) DNSKEYs with key tag {tag}; skipping");
return None;
}
}
None => _ = tag_count.insert(tag, 1),
}
Some(dnskey)
});
let mut all_insecure = None;
for dnskey in dnskeys {
match dnskey.proof() {
Proof::Secure => {
all_insecure = Some(false);
if let Ok(proof) =
verify_rrset_with_dnskey(dnskey, *rrsig, &rrset, current_time)
{
return Some(proof);
}
}
Proof::Insecure => {
all_insecure.get_or_insert(true);
}
_ => all_insecure = Some(false),
}
}
if all_insecure.unwrap_or(false) {
// inherit Insecure state
Some((Proof::Insecure, None))
} else {
None
}
}))
})
.collect::<Vec<_>>();
// if there are no available verifications, then we are in a failed state.
if verifications.is_empty() {
return Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::RrsigsNotPresent {
name: rrset.name().clone(),
record_type: rrset.record_type(),
},
));
}
// as long as any of the verifications is good, then the RRSET is valid.
let select = future::select_ok(verifications);
// this will return either a good result or the errors
let (proof, rest) = select.await?;
drop(rest);
proof.ok_or_else(||
// we are in a bogus state, DS records were available (see beginning of function), but RRSIGs couldn't be verified
ProofError::new(Proof::Bogus, ProofErrorKind::RrsigsUnverified{name: rrset.name().clone(), record_type: rrset.record_type()})
)
}
/// Verifies the given SIG of the RRSET with the DNSKEY.
#[cfg(feature = "dnssec")]
fn verify_rrset_with_dnskey(
dnskey: RecordRef<'_, DNSKEY>,
rrsig: RecordRef<'_, RRSIG>,
rrset: &Rrset<'_>,
current_time: u32,
) -> Result<(Proof, Option<u32>), ProofError> {
if dnskey.data().revoke() {
debug!("revoked");
return Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::DnsKeyRevoked {
name: dnskey.name().clone(),
key_tag: rrsig.data().key_tag(),
},
));
} // TODO: does this need to be validated? RFC 5011
if !dnskey.data().zone_key() {
return Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::NotZoneDnsKey {
name: dnskey.name().clone(),
key_tag: rrsig.data().key_tag(),
},
));
}
if dnskey.data().algorithm() != rrsig.data().algorithm() {
return Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::AlgorithmMismatch {
rrsig: rrsig.data().algorithm(),
dnskey: dnskey.data().algorithm(),
},
));
}
let validity = check_rrsig_validity(rrsig, rrset, dnskey, current_time);
if !matches!(validity, RrsigValidity::ValidRrsig) {
// TODO better error handling when the error payload is not immediately discarded by
// the caller
return Err(ProofError::new(
Proof::Bogus,
ProofErrorKind::Msg(format!("{:?}", validity)),
));
}
dnskey
.data()
.verify_rrsig(
rrset.name(),
rrset.record_class(),
rrsig.data(),
rrset.records().iter().copied(),
)
.map(|_| {
debug!(
"validated ({}, {:?}) with ({}, {})",
rrset.name(),
rrset.record_type(),
dnskey.name(),
dnskey.data()
);
(
Proof::Secure,
Some(rrsig.data().authenticated_ttl(rrset.record(), current_time)),
)
})
.map_err(|e| {
debug!(
"failed validation of ({}, {:?}) with ({}, {})",
rrset.name(),
rrset.record_type(),
dnskey.name(),
dnskey.data()
);
ProofError::new(
Proof::Bogus,
ProofErrorKind::DnsKeyVerifyRrsig {
name: dnskey.name().clone(),
key_tag: rrsig.data().key_tag(),
error: e,
},
)
})
}
// see section 5.3.1 of RFC4035 "Checking the RRSIG RR Validity"
fn check_rrsig_validity(
rrsig: RecordRef<'_, RRSIG>,
rrset: &Rrset<'_>,
dnskey: RecordRef<'_, DNSKEY>,
current_time: u32,
) -> RrsigValidity {
let current_time = SerialNumber(current_time);
let expiration = rrsig.data().sig_expiration();
let inception = rrsig.data().sig_inception();
let Ok(dnskey_key_tag) = dnskey.data().calculate_key_tag() else {
return RrsigValidity::WrongDnskey;
};
if !(
// "The RRSIG RR and the RRset MUST have the same owner name and the same class"
rrsig.name() == rrset.name() &&
rrsig.dns_class() == rrset.record_class() &&
// "The RRSIG RR's Signer's Name field MUST be the name of the zone that contains the RRset"
// TODO(^) the zone name is in the SOA record, which is not accessible from here
// "The RRSIG RR's Type Covered field MUST equal the RRset's type"
rrsig.data().type_covered() == rrset.record_type() &&
// "The number of labels in the RRset owner name MUST be greater than or equal to the value
// in the RRSIG RR's Labels field"
rrset.name().num_labels() >= rrsig.data().num_labels()
) {
return RrsigValidity::WrongRrsig;
}
// Section 3.1.5 of RFC4034 states that 'all comparisons involving these fields MUST use
// "Serial number arithmetic", as defined in RFC1982'
if !(
// "The validator's notion of the current time MUST be less than or equal to the time listed
// in the RRSIG RR's Expiration field"
current_time <= expiration &&
// "The validator's notion of the current time MUST be greater than or equal to the time
// listed in the RRSIG RR's Inception field"
current_time >= inception
) {
return RrsigValidity::ExpiredRrsig;
}
if !(
// "The RRSIG RR's Signer's Name, Algorithm, and Key Tag fields MUST match the owner name,
// algorithm, and key tag for some DNSKEY RR in the zone's apex DNSKEY RRset"
rrsig.data().signer_name() == dnskey.name() &&
rrsig.data().algorithm() == dnskey.data().algorithm() &&
rrsig.data().key_tag() == dnskey_key_tag &&
// "The matching DNSKEY RR MUST be present in the zone's apex DNSKEY RRset, and MUST have the
// Zone Flag bit (DNSKEY RDATA Flag bit 7) set"
dnskey.data().zone_key()
) {
return RrsigValidity::WrongDnskey;
}
RrsigValidity::ValidRrsig
}
#[derive(Clone, Copy, Debug)]
enum RrsigValidity {
/// RRSIG has already expired
ExpiredRrsig,
/// RRSIG is valid
ValidRrsig,
/// DNSKEY does not match RRSIG
WrongDnskey,
/// RRSIG does not match RRset
WrongRrsig,
}
/// Will always return an error. To enable record verification compile with the openssl feature.
#[cfg(not(feature = "dnssec"))]
fn verify_rrset_with_dnskey(_: &DNSKEY, _: &RRSIG, _: &Rrset) -> ProtoResult<()> {
Err(ProtoErrorKind::Message("openssl or ring feature(s) not enabled").into())
}
/// Verifies NSEC records
///
/// ```text
/// RFC 4035 DNSSEC Protocol Modifications March 2005
///
/// 5.4. Authenticated Denial of Existence
///
/// A resolver can use authenticated NSEC RRs to prove that an RRset is
/// not present in a signed zone. Security-aware name servers should
/// automatically include any necessary NSEC RRs for signed zones in
/// their responses to security-aware resolvers.
///
/// Denial of existence is determined by the following rules:
///
/// o If the requested RR name matches the owner name of an
/// authenticated NSEC RR, then the NSEC RR's type bit map field lists
/// all RR types present at that owner name, and a resolver can prove
/// that the requested RR type does not exist by checking for the RR
/// type in the bit map. If the number of labels in an authenticated
/// NSEC RR's owner name equals the Labels field of the covering RRSIG
/// RR, then the existence of the NSEC RR proves that wildcard
/// expansion could not have been used to match the request.
///
/// o If the requested RR name would appear after an authenticated NSEC
/// RR's owner name and before the name listed in that NSEC RR's Next
/// Domain Name field according to the canonical DNS name order
/// defined in [RFC4034], then no RRsets with the requested name exist
/// in the zone. However, it is possible that a wildcard could be
/// used to match the requested RR owner name and type, so proving
/// that the requested RRset does not exist also requires proving that
/// no possible wildcard RRset exists that could have been used to
/// generate a positive response.
///
/// In addition, security-aware resolvers MUST authenticate the NSEC
/// RRsets that comprise the non-existence proof as described in Section
/// 5.3.
///
/// To prove the non-existence of an RRset, the resolver must be able to
/// verify both that the queried RRset does not exist and that no
/// relevant wildcard RRset exists. Proving this may require more than
/// one NSEC RRset from the zone. If the complete set of necessary NSEC
/// RRsets is not present in a response (perhaps due to message
/// truncation), then a security-aware resolver MUST resend the query in
/// order to attempt to obtain the full collection of NSEC RRs necessary
/// to verify the non-existence of the requested RRset. As with all DNS
/// operations, however, the resolver MUST bound the work it puts into
/// answering any particular query.
///
/// Since a validated NSEC RR proves the existence of both itself and its
/// corresponding RRSIG RR, a validator MUST ignore the settings of the
/// NSEC and RRSIG bits in an NSEC RR.
/// ```
#[allow(clippy::blocks_in_conditions)]
#[doc(hidden)]
pub fn verify_nsec(query: &Query, soa_name: &Name, nsecs: &[&Record]) -> Proof {
// TODO: consider converting this to Result, and giving explicit reason for the failure
// DS queries resulting in NoData responses with accompanying NSEC records can prove that an
// insecure delegation exists; this is used to return Proof::Insecure instead of Proof::Secure
// in those situations.
let ds_proof_override = match query.query_type() {
RecordType::DS => Proof::Insecure,
_ => Proof::Secure,
};
// first look for a record with the same name
// if they are, then the query_type should not exist in the NSEC record.
// if we got an NSEC record of the same name, but it is listed in the NSEC types,
// WTF? is that bad server, bad record
if let Some(nsec) = nsecs.iter().find(|nsec| query.name() == nsec.name()) {
if nsec
.data()
.as_dnssec()
.and_then(DNSSECRData::as_nsec)
.map_or(false, |rdata| {
// this should not be in the covered list
!rdata.type_bit_maps().contains(&query.query_type())
})
{
return proof_log_yield(ds_proof_override, query.name(), "nsec1", "direct match");
} else {
return proof_log_yield(Proof::Bogus, query.name(), "nsec1", "direct match");
}
}
let verify_nsec_coverage = |name: &Name| -> bool {
nsecs.iter().any(|nsec| {
// the query name must be greater than nsec's label (or equal in the case of wildcard)
name >= nsec.name() && {
nsec.data()
.as_dnssec()
.and_then(DNSSECRData::as_nsec)
.map_or(false, |rdata| {
// the query name is less than the next name
// or this record wraps the end, i.e. is the last record
name < rdata.next_domain_name() || rdata.next_domain_name() < nsec.name()
})
}
})
};
// continue to validate there is no wildcard
if !verify_nsec_coverage(query.name()) {
return proof_log_yield(Proof::Bogus, query.name(), "nsec1", "no wildcard");
}
// validate ANY or *.domain record existence
// we need the wildcard proof, but make sure that it's still part of the zone.
let wildcard = query.name().base_name();
let wildcard = if soa_name.zone_of(&wildcard) {
wildcard
} else {
soa_name.clone()
};
// don't need to validate the same name again
if wildcard == *query.name() {
// this was validated by the nsec coverage over the query.name()
proof_log_yield(
ds_proof_override,
query.name(),
"nsec1",
"direct wildcard match",
)
} else {
// this is the final check, return it's value
// if there is wildcard coverage, we're good.
if verify_nsec_coverage(&wildcard) {
proof_log_yield(
ds_proof_override,
query.name(),
"nsec1",
"covering wildcard match",
)
} else {
proof_log_yield(
Proof::Bogus,
query.name(),
"nsec1",
"covering wildcard match",
)
}
}
}
/// Returns the current system time as Unix timestamp in seconds.
fn current_time() -> u32 {
SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap_or_default()
.as_secs() as u32
}
/// Logs a debug message and yields a Proof type for return
fn proof_log_yield(proof: Proof, name: &Name, nsec_type: &str, msg: &str) -> Proof {
debug!("{nsec_type} proof for {name}, returning {proof}: {msg}");
proof
}
mod rrset {
use crate::rr::{DNSClass, Name, Record, RecordType};
// TODO: combine this with crate::rr::RecordSet?
#[derive(Debug)]
pub(super) struct Rrset<'r> {
name: Name,
record_class: DNSClass,
record_type: RecordType,
records: Vec<&'r Record>,
}
impl<'r> Rrset<'r> {
pub(super) fn new(record: &'r Record) -> Self {
Self {
name: record.name().clone(),
record_class: record.dns_class(),
record_type: record.record_type(),
records: vec![record],
}
}
/// Adds `record` to this RRset IFF it belongs to it
pub(super) fn add(&mut self, record: &'r Record) {
if self.name == *record.name()
&& self.record_type == record.record_type()
&& self.record_class == record.dns_class()
{
self.records.push(record);
}
}
/// Returns the first (main) record.
pub(super) fn record(&self) -> &Record {
self.records[0]
}
pub(super) fn name(&self) -> &Name {
&self.name
}
pub(super) fn record_class(&self) -> DNSClass {
self.record_class
}
pub(super) fn record_type(&self) -> RecordType {
self.record_type
}
pub(super) fn records(&self) -> &[&Record] {
&self.records
}
}
}
/// The maximum number of key tag collisions to accept when:
///
/// 1) Retrieving DNSKEY records for a zone
/// 2) Retrieving DS records from a parent zone
///
/// Any colliding records encountered beyond this limit will be discarded.
const MAX_KEY_TAG_COLLISIONS: usize = 2;
/// The maximum number of RRSIGs to attempt to validate for each RRSET.
const MAX_RRSIGS_PER_RRSET: usize = 8;