hickory_proto/rr/record_data.rs
1// Copyright 2015-2023 Benjamin Fry <benjaminfry@me.com>
2//
3// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
4// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
5// https://opensource.org/licenses/MIT>, at your option. This file may not be
6// copied, modified, or distributed except according to those terms.
7
8//! record data enum variants
9#![allow(deprecated, clippy::use_self)] // allows us to deprecate RData types
10
11use alloc::vec::Vec;
12#[cfg(test)]
13use core::convert::From;
14#[cfg(not(feature = "std"))]
15use core::net::{IpAddr, Ipv4Addr, Ipv6Addr};
16use core::{cmp::Ordering, fmt};
17#[cfg(feature = "std")]
18use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
19
20use enum_as_inner::EnumAsInner;
21#[cfg(feature = "serde")]
22use serde::{Deserialize, Serialize};
23use tracing::{trace, warn};
24
25use crate::{
26 error::{ProtoError, ProtoErrorKind, ProtoResult},
27 rr::{
28 RecordData, RecordDataDecodable,
29 rdata::{
30 A, AAAA, ANAME, CAA, CERT, CNAME, CSYNC, HINFO, HTTPS, MX, NAPTR, NS, NULL, OPENPGPKEY,
31 OPT, PTR, SOA, SRV, SSHFP, SVCB, TLSA, TXT,
32 },
33 record_type::RecordType,
34 },
35 serialize::binary::{BinDecodable, BinDecoder, BinEncodable, BinEncoder, Restrict},
36};
37
38#[cfg(feature = "__dnssec")]
39use crate::dnssec::rdata::DNSSECRData;
40
41/// Record data enum variants for all valid DNS data types.
42///
43/// This is used to represent the generic Record as it is read off the wire. Allows for a Record to be abstractly referenced without knowing it's internal until runtime.
44///
45/// [RFC 1035](https://tools.ietf.org/html/rfc1035), DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION, November 1987
46///
47/// ```text
48/// 3.3. Standard RRs
49///
50/// The following RR definitions are expected to occur, at least
51/// potentially, in all classes. In particular, NS, SOA, CNAME, and PTR
52/// will be used in all classes, and have the same format in all classes.
53/// Because their RDATA format is known, all domain names in the RDATA
54/// section of these RRs may be compressed.
55///
56/// <domain-name> is a domain name represented as a series of labels, and
57/// terminated by a label with zero length. <character-string> is a single
58/// length octet followed by that number of characters. <character-string>
59/// is treated as binary information, and can be up to 256 characters in
60/// length (including the length octet).
61/// ```
62#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
63#[derive(Debug, EnumAsInner, PartialEq, Clone, Eq)]
64#[non_exhaustive]
65pub enum RData {
66 /// ```text
67 /// -- RFC 1035 -- Domain Implementation and Specification November 1987
68 ///
69 /// 3.4. Internet specific RRs
70 ///
71 /// 3.4.1. A RDATA format
72 ///
73 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
74 /// | ADDRESS |
75 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
76 ///
77 /// where:
78 ///
79 /// ADDRESS A 32 bit Internet address.
80 ///
81 /// Hosts that have multiple Internet addresses will have multiple A
82 /// records.
83 ///
84 /// A records cause no additional section processing. The RDATA section of
85 /// an A line in a Zone File is an Internet address expressed as four
86 /// decimal numbers separated by dots without any embedded spaces (e.g.,
87 /// "10.2.0.52" or "192.0.5.6").
88 /// ```
89 A(A),
90
91 /// ```text
92 /// -- RFC 1886 -- IPv6 DNS Extensions December 1995
93 ///
94 /// 2.2 AAAA data format
95 ///
96 /// A 128 bit IPv6 address is encoded in the data portion of an AAAA
97 /// resource record in network byte order (high-order byte first).
98 /// ```
99 AAAA(AAAA),
100
101 /// ```text
102 /// 2. The ANAME resource record
103 ///
104 /// This document defines the "ANAME" DNS resource record type, with RR
105 /// TYPE value [TBD].
106 ///
107 /// 2.1. Presentation and wire format
108 ///
109 /// The ANAME presentation format is identical to that of CNAME
110 /// [RFC1033]:
111 ///
112 /// owner ttl class ANAME target
113 /// ```
114 ANAME(ANAME),
115
116 /// ```text
117 /// -- RFC 6844 Certification Authority Authorization January 2013
118 ///
119 /// 5.1. Syntax
120 ///
121 /// A CAA RR contains a single property entry consisting of a tag-value
122 /// pair. Each tag represents a property of the CAA record. The value
123 /// of a CAA property is that specified in the corresponding value field.
124 ///
125 /// A domain name MAY have multiple CAA RRs associated with it and a
126 /// given property MAY be specified more than once.
127 ///
128 /// The CAA data field contains one property entry. A property entry
129 /// consists of the following data fields:
130 ///
131 /// +0-1-2-3-4-5-6-7-|0-1-2-3-4-5-6-7-|
132 /// | Flags | Tag Length = n |
133 /// +----------------+----------------+...+---------------+
134 /// | Tag char 0 | Tag char 1 |...| Tag char n-1 |
135 /// +----------------+----------------+...+---------------+
136 /// +----------------+----------------+.....+----------------+
137 /// | Value byte 0 | Value byte 1 |.....| Value byte m-1 |
138 /// +----------------+----------------+.....+----------------+
139 ///
140 /// Where n is the length specified in the Tag length field and m is the
141 /// remaining octets in the Value field (m = d - n - 2) where d is the
142 /// length of the RDATA section.
143 /// ```
144 CAA(CAA),
145
146 /// ```text
147 /// -- RFC 4398 -- Storing Certificates in DNS November 1987
148 /// The CERT resource record (RR) has the structure given below. Its RR
149 /// type code is 37.
150 ///
151 /// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
152 /// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
153 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
154 /// | type | key tag |
155 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
156 /// | algorithm | /
157 /// +---------------+ certificate or CRL /
158 /// / /
159 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
160 //// ```
161 CERT(CERT),
162
163 /// ```text
164 /// 3.3. Standard RRs
165 ///
166 /// The following RR definitions are expected to occur, at least
167 /// potentially, in all classes. In particular, NS, SOA, CNAME, and PTR
168 /// will be used in all classes, and have the same format in all classes.
169 /// Because their RDATA format is known, all domain names in the RDATA
170 /// section of these RRs may be compressed.
171 ///
172 /// <domain-name> is a domain name represented as a series of labels, and
173 /// terminated by a label with zero length. <character-string> is a single
174 /// length octet followed by that number of characters. <character-string>
175 /// is treated as binary information, and can be up to 256 characters in
176 /// length (including the length octet).
177 ///
178 /// 3.3.1. CNAME RDATA format
179 ///
180 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
181 /// / CNAME /
182 /// / /
183 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
184 ///
185 /// where:
186 ///
187 /// CNAME A <domain-name> which specifies the canonical or primary
188 /// name for the owner. The owner name is an alias.
189 ///
190 /// CNAME RRs cause no additional section processing, but name servers may
191 /// choose to restart the query at the canonical name in certain cases. See
192 /// the description of name server logic in [RFC-1034] for details.
193 /// ```
194 CNAME(CNAME),
195
196 /// ```text
197 /// 2.1. The CSYNC Resource Record Format
198 ///
199 /// 2.1.1. The CSYNC Resource Record Wire Format
200 ///
201 /// The CSYNC RDATA consists of the following fields:
202 ///
203 /// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
204 /// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
205 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
206 /// | SOA Serial |
207 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
208 /// | Flags | Type Bit Map /
209 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
210 /// / Type Bit Map (continued) /
211 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
212 /// ```
213 CSYNC(CSYNC),
214
215 /// ```text
216 /// 3.3.2. HINFO RDATA format
217 ///
218 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
219 /// / CPU /
220 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
221 /// / OS /
222 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
223 ///
224 /// where:
225 ///
226 /// CPU A <character-string> which specifies the CPU type.
227 ///
228 /// OS A <character-string> which specifies the operating
229 /// system type.
230 ///
231 /// Standard values for CPU and OS can be found in [RFC-1010].
232 ///
233 /// HINFO records are used to acquire general information about a host. The
234 /// main use is for protocols such as FTP that can use special procedures
235 /// when talking between machines or operating systems of the same type.
236 /// ```
237 ///
238 /// `HINFO` is also used by [RFC 8482](https://tools.ietf.org/html/rfc8482)
239 HINFO(HINFO),
240
241 /// [RFC draft-ietf-dnsop-svcb-https-03, DNS SVCB and HTTPS RRs](https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-03#section-8)
242 ///
243 /// ```text
244 /// 8. Using SVCB with HTTPS and HTTP
245 ///
246 /// Use of any protocol with SVCB requires a protocol-specific mapping
247 /// specification. This section specifies the mapping for HTTPS and
248 /// HTTP.
249 ///
250 /// To enable special handling for the HTTPS and HTTP use-cases, the
251 /// HTTPS RR type is defined as a SVCB-compatible RR type, specific to
252 /// the https and http schemes. Clients MUST NOT perform SVCB queries or
253 /// accept SVCB responses for "https" or "http" schemes.
254 ///
255 /// The HTTPS RR wire format and presentation format are identical to
256 /// SVCB, and both share the SvcParamKey registry. SVCB semantics apply
257 /// equally to HTTPS RRs unless specified otherwise. The presentation
258 /// format of the record is:
259 ///
260 /// Name TTL IN HTTPS SvcPriority TargetName SvcParams
261 /// ```
262 HTTPS(HTTPS),
263
264 /// ```text
265 /// 3.3.9. MX RDATA format
266 ///
267 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
268 /// | PREFERENCE |
269 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
270 /// / EXCHANGE /
271 /// / /
272 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
273 ///
274 /// where:
275 ///
276 /// PREFERENCE A 16 bit integer which specifies the preference given to
277 /// this RR among others at the same owner. Lower values
278 /// are preferred.
279 ///
280 /// EXCHANGE A <domain-name> which specifies a host willing to act as
281 /// a mail exchange for the owner name.
282 ///
283 /// MX records cause type A additional section processing for the host
284 /// specified by EXCHANGE. The use of MX RRs is explained in detail in
285 /// [RFC-974].
286 /// ```
287 MX(MX),
288
289 /// [RFC 3403 DDDS DNS Database, October 2002](https://tools.ietf.org/html/rfc3403#section-4)
290 ///
291 /// ```text
292 /// 4.1 Packet Format
293 ///
294 /// The packet format of the NAPTR RR is given below. The DNS type code
295 /// for NAPTR is 35.
296 ///
297 /// The packet format for the NAPTR record is as follows
298 /// 1 1 1 1 1 1
299 /// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
300 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
301 /// | ORDER |
302 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
303 /// | PREFERENCE |
304 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
305 /// / FLAGS /
306 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
307 /// / SERVICES /
308 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
309 /// / REGEXP /
310 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
311 /// / REPLACEMENT /
312 /// / /
313 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
314 ///
315 /// <character-string> and <domain-name> as used here are defined in RFC
316 /// 1035 [7].
317 ///
318 /// ORDER
319 /// A 16-bit unsigned integer specifying the order in which the NAPTR
320 /// records MUST be processed in order to accurately represent the
321 /// ordered list of Rules. The ordering is from lowest to highest.
322 /// If two records have the same order value then they are considered
323 /// to be the same rule and should be selected based on the
324 /// combination of the Preference values and Services offered.
325 ///
326 /// PREFERENCE
327 /// Although it is called "preference" in deference to DNS
328 /// terminology, this field is equivalent to the Priority value in the
329 /// DDDS Algorithm. It is a 16-bit unsigned integer that specifies
330 /// the order in which NAPTR records with equal Order values SHOULD be
331 /// processed, low numbers being processed before high numbers. This
332 /// is similar to the preference field in an MX record, and is used so
333 /// domain administrators can direct clients towards more capable
334 /// hosts or lighter weight protocols. A client MAY look at records
335 /// with higher preference values if it has a good reason to do so
336 /// such as not supporting some protocol or service very well.
337 ///
338 /// The important difference between Order and Preference is that once
339 /// a match is found the client MUST NOT consider records with a
340 /// different Order but they MAY process records with the same Order
341 /// but different Preferences. The only exception to this is noted in
342 /// the second important Note in the DDDS algorithm specification
343 /// concerning allowing clients to use more complex Service
344 /// determination between steps 3 and 4 in the algorithm. Preference
345 /// is used to give communicate a higher quality of service to rules
346 /// that are considered the same from an authority standpoint but not
347 /// from a simple load balancing standpoint.
348 ///
349 /// It is important to note that DNS contains several load balancing
350 /// mechanisms and if load balancing among otherwise equal services
351 /// should be needed then methods such as SRV records or multiple A
352 /// records should be utilized to accomplish load balancing.
353 ///
354 /// FLAGS
355 /// A <character-string> containing flags to control aspects of the
356 /// rewriting and interpretation of the fields in the record. Flags
357 /// are single characters from the set A-Z and 0-9. The case of the
358 /// alphabetic characters is not significant. The field can be empty.
359 ///
360 /// It is up to the Application specifying how it is using this
361 /// Database to define the Flags in this field. It must define which
362 /// ones are terminal and which ones are not.
363 ///
364 /// SERVICES
365 /// A <character-string> that specifies the Service Parameters
366 /// applicable to this this delegation path. It is up to the
367 /// Application Specification to specify the values found in this
368 /// field.
369 ///
370 /// REGEXP
371 /// A <character-string> containing a substitution expression that is
372 /// applied to the original string held by the client in order to
373 /// construct the next domain name to lookup. See the DDDS Algorithm
374 /// specification for the syntax of this field.
375 ///
376 /// As stated in the DDDS algorithm, The regular expressions MUST NOT
377 /// be used in a cumulative fashion, that is, they should only be
378 /// applied to the original string held by the client, never to the
379 /// domain name produced by a previous NAPTR rewrite. The latter is
380 /// tempting in some applications but experience has shown such use to
381 /// be extremely fault sensitive, very error prone, and extremely
382 /// difficult to debug.
383 ///
384 /// REPLACEMENT
385 /// A <domain-name> which is the next domain-name to query for
386 /// depending on the potential values found in the flags field. This
387 /// field is used when the regular expression is a simple replacement
388 /// operation. Any value in this field MUST be a fully qualified
389 /// domain-name. Name compression is not to be used for this field.
390 ///
391 /// This field and the REGEXP field together make up the Substitution
392 /// Expression in the DDDS Algorithm. It is simply a historical
393 /// optimization specifically for DNS compression that this field
394 /// exists. The fields are also mutually exclusive. If a record is
395 /// returned that has values for both fields then it is considered to
396 /// be in error and SHOULD be either ignored or an error returned.
397 /// ```
398 NAPTR(NAPTR),
399
400 /// ```text
401 /// 3.3.10. NULL RDATA format (EXPERIMENTAL)
402 ///
403 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
404 /// / <anything> /
405 /// / /
406 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
407 ///
408 /// Anything at all may be in the RDATA field so long as it is 65535 octets
409 /// or less.
410 ///
411 /// NULL records cause no additional section processing. NULL RRs are not
412 /// allowed in Zone Files. NULLs are used as placeholders in some
413 /// experimental extensions of the DNS.
414 /// ```
415 NULL(NULL),
416
417 /// ```text
418 /// 3.3.11. NS RDATA format
419 ///
420 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
421 /// / NSDNAME /
422 /// / /
423 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
424 ///
425 /// where:
426 ///
427 /// NSDNAME A <domain-name> which specifies a host which should be
428 /// authoritative for the specified class and domain.
429 ///
430 /// NS records cause both the usual additional section processing to locate
431 /// a type A record, and, when used in a referral, a special search of the
432 /// zone in which they reside for glue information.
433 ///
434 /// The NS RR states that the named host should be expected to have a zone
435 /// starting at owner name of the specified class. Note that the class may
436 /// not indicate the protocol family which should be used to communicate
437 /// with the host, although it is typically a strong hint. For example,
438 /// hosts which are name servers for either Internet (IN) or Hesiod (HS)
439 /// class information are normally queried using IN class protocols.
440 /// ```
441 NS(NS),
442
443 /// [RFC 7929](https://tools.ietf.org/html/rfc7929#section-2.1)
444 ///
445 /// ```text
446 /// The RDATA portion of an OPENPGPKEY resource record contains a single
447 /// value consisting of a Transferable Public Key formatted as specified
448 /// in [RFC4880].
449 /// ```
450 OPENPGPKEY(OPENPGPKEY),
451
452 /// ```text
453 /// RFC 6891 EDNS(0) Extensions April 2013
454 /// 6.1.2. Wire Format
455 ///
456 /// +------------+--------------+------------------------------+
457 /// | Field Name | Field Type | Description |
458 /// +------------+--------------+------------------------------+
459 /// | NAME | domain name | MUST be 0 (root domain) |
460 /// | TYPE | u_int16_t | OPT (41) |
461 /// | CLASS | u_int16_t | requestor's UDP payload size |
462 /// | TTL | u_int32_t | extended RCODE and flags |
463 /// | RDLEN | u_int16_t | length of all RDATA |
464 /// | RDATA | octet stream | {attribute,value} pairs |
465 /// +------------+--------------+------------------------------+
466 ///
467 /// The variable part of an OPT RR may contain zero or more options in
468 /// the RDATA. Each option MUST be treated as a bit field. Each option
469 /// is encoded as:
470 ///
471 /// +0 (MSB) +1 (LSB)
472 /// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
473 /// 0: | OPTION-CODE |
474 /// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
475 /// 2: | OPTION-LENGTH |
476 /// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
477 /// 4: | |
478 /// / OPTION-DATA /
479 /// / /
480 /// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
481 /// ```
482 OPT(OPT),
483
484 /// ```text
485 /// 3.3.12. PTR RDATA format
486 ///
487 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
488 /// / PTRDNAME /
489 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
490 ///
491 /// where:
492 ///
493 /// PTRDNAME A <domain-name> which points to some location in the
494 /// domain name space.
495 ///
496 /// PTR records cause no additional section processing. These RRs are used
497 /// in special domains to point to some other location in the domain space.
498 /// These records are simple data, and don't imply any special processing
499 /// similar to that performed by CNAME, which identifies aliases. See the
500 /// description of the IN-ADDR.ARPA domain for an example.
501 /// ```
502 PTR(PTR),
503
504 /// ```text
505 /// 3.3.13. SOA RDATA format
506 ///
507 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
508 /// / MNAME /
509 /// / /
510 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
511 /// / RNAME /
512 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
513 /// | SERIAL |
514 /// | |
515 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
516 /// | REFRESH |
517 /// | |
518 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
519 /// | RETRY |
520 /// | |
521 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
522 /// | EXPIRE |
523 /// | |
524 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
525 /// | MINIMUM |
526 /// | |
527 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
528 ///
529 /// where:
530 ///
531 /// MNAME The <domain-name> of the name server that was the
532 /// original or primary source of data for this zone.
533 ///
534 /// RNAME A <domain-name> which specifies the mailbox of the
535 /// person responsible for this zone.
536 ///
537 /// SERIAL The unsigned 32 bit version number of the original copy
538 /// of the zone. Zone transfers preserve this value. This
539 /// value wraps and should be compared using sequence space
540 /// arithmetic.
541 ///
542 /// REFRESH A 32 bit time interval before the zone should be
543 /// refreshed.
544 ///
545 /// RETRY A 32 bit time interval that should elapse before a
546 /// failed refresh should be retried.
547 ///
548 /// EXPIRE A 32 bit time value that specifies the upper limit on
549 /// the time interval that can elapse before the zone is no
550 /// longer authoritative.
551 ///
552 /// MINIMUM The unsigned 32 bit minimum TTL field that should be
553 /// exported with any RR from this zone.
554 ///
555 /// SOA records cause no additional section processing.
556 ///
557 /// All times are in units of seconds.
558 ///
559 /// Most of these fields are pertinent only for name server maintenance
560 /// operations. However, MINIMUM is used in all query operations that
561 /// retrieve RRs from a zone. Whenever a RR is sent in a response to a
562 /// query, the TTL field is set to the maximum of the TTL field from the RR
563 /// and the MINIMUM field in the appropriate SOA. Thus MINIMUM is a lower
564 /// bound on the TTL field for all RRs in a zone. Note that this use of
565 /// MINIMUM should occur when the RRs are copied into the response and not
566 /// when the zone is loaded from a Zone File or via a zone transfer. The
567 /// reason for this provision is to allow future dynamic update facilities to
568 /// change the SOA RR with known semantics.
569 /// ```
570 SOA(SOA),
571
572 /// ```text
573 /// RFC 2782 DNS SRV RR February 2000
574 ///
575 /// The format of the SRV RR
576 ///
577 /// _Service._Proto.Name TTL Class SRV Priority Weight Port Target
578 /// ```
579 SRV(SRV),
580
581 /// [RFC 4255](https://tools.ietf.org/html/rfc4255#section-3.1)
582 ///
583 /// ```text
584 /// 3.1. The SSHFP RDATA Format
585 ///
586 /// The RDATA for a SSHFP RR consists of an algorithm number, fingerprint
587 /// type and the fingerprint of the public host key.
588 ///
589 /// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
590 /// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
591 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
592 /// | algorithm | fp type | /
593 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
594 /// / /
595 /// / fingerprint /
596 /// / /
597 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
598 ///
599 /// 3.1.1. Algorithm Number Specification
600 ///
601 /// This algorithm number octet describes the algorithm of the public
602 /// key. The following values are assigned:
603 ///
604 /// Value Algorithm name
605 /// ----- --------------
606 /// 0 reserved
607 /// 1 RSA
608 /// 2 DSS
609 ///
610 /// Reserving other types requires IETF consensus [4].
611 ///
612 /// 3.1.2. Fingerprint Type Specification
613 ///
614 /// The fingerprint type octet describes the message-digest algorithm
615 /// used to calculate the fingerprint of the public key. The following
616 /// values are assigned:
617 ///
618 /// Value Fingerprint type
619 /// ----- ----------------
620 /// 0 reserved
621 /// 1 SHA-1
622 ///
623 /// Reserving other types requires IETF consensus [4].
624 ///
625 /// For interoperability reasons, as few fingerprint types as possible
626 /// should be reserved. The only reason to reserve additional types is
627 /// to increase security.
628 ///
629 /// 3.1.3. Fingerprint
630 ///
631 /// The fingerprint is calculated over the public key blob as described
632 /// in [7].
633 ///
634 /// The message-digest algorithm is presumed to produce an opaque octet
635 /// string output, which is placed as-is in the RDATA fingerprint field.
636 /// ```
637 ///
638 /// The algorithm and fingerprint type values have been updated in
639 /// [RFC 6594](https://tools.ietf.org/html/rfc6594) and
640 /// [RFC 7479](https://tools.ietf.org/html/rfc7479).
641 SSHFP(SSHFP),
642
643 /// [RFC draft-ietf-dnsop-svcb-https-03, DNS SVCB and HTTPS RRs](https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-03#section-2)
644 ///
645 /// ```text
646 /// 2. The SVCB record type
647 ///
648 /// The SVCB DNS resource record (RR) type (RR type 64) is used to locate
649 /// alternative endpoints for a service.
650 ///
651 /// The algorithm for resolving SVCB records and associated address
652 /// records is specified in Section 3.
653 ///
654 /// Other SVCB-compatible resource record types can also be defined as-
655 /// needed. In particular, the HTTPS RR (RR type 65) provides special
656 /// handling for the case of "https" origins as described in Section 8.
657 ///
658 /// SVCB RRs are extensible by a list of SvcParams, which are pairs
659 /// consisting of a SvcParamKey and a SvcParamValue. Each SvcParamKey
660 /// has a presentation name and a registered number. Values are in a
661 /// format specific to the SvcParamKey. Their definition should specify
662 /// both their presentation format and wire encoding (e.g., domain names,
663 /// binary data, or numeric values). The initial SvcParamKeys and
664 /// formats are defined in Section 6.
665 /// ```
666 SVCB(SVCB),
667
668 /// [RFC 6698, DNS-Based Authentication for TLS](https://tools.ietf.org/html/rfc6698#section-2.1)
669 ///
670 /// ```text
671 /// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
672 /// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
673 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
674 /// | Cert. Usage | Selector | Matching Type | /
675 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
676 /// / /
677 /// / Certificate Association Data /
678 /// / /
679 /// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
680 /// ```
681 TLSA(TLSA),
682
683 /// ```text
684 /// 3.3.14. TXT RDATA format
685 ///
686 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
687 /// / TXT-DATA /
688 /// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
689 ///
690 /// where:
691 ///
692 /// TXT-DATA One or more <character-string>s.
693 ///
694 /// TXT RRs are used to hold descriptive text. The semantics of the text
695 /// depends on the domain where it is found.
696 /// ```
697 TXT(TXT),
698
699 /// A DNSSEC- or SIG(0)- specific record. See `DNSSECRData` for details.
700 ///
701 /// These types are in `DNSSECRData` to make them easy to disable when
702 /// crypto functionality isn't needed.
703 #[cfg(feature = "__dnssec")]
704 DNSSEC(DNSSECRData),
705
706 /// Unknown RecordData is for record types not supported by Hickory DNS
707 Unknown {
708 /// RecordType code
709 code: RecordType,
710 /// RData associated to the record
711 rdata: NULL,
712 },
713
714 /// Update record with RDLENGTH = 0 (RFC2136)
715 Update0(RecordType),
716
717 /// This corresponds to a record type of 0, unspecified
718 #[deprecated(note = "Use None for the RData in the resource record instead")]
719 ZERO,
720}
721
722impl RData {
723 fn to_bytes(&self) -> Vec<u8> {
724 let mut buf: Vec<u8> = Vec::new();
725 {
726 let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut buf);
727 self.emit(&mut encoder).unwrap_or_else(|_| {
728 warn!("could not encode RDATA: {:?}", self);
729 });
730 }
731 buf
732 }
733
734 /// Converts this to a Recordtype
735 pub fn record_type(&self) -> RecordType {
736 match self {
737 Self::A(..) => RecordType::A,
738 Self::AAAA(..) => RecordType::AAAA,
739 Self::ANAME(..) => RecordType::ANAME,
740 Self::CAA(..) => RecordType::CAA,
741 Self::CERT(..) => RecordType::CERT,
742 Self::CNAME(..) => RecordType::CNAME,
743 Self::CSYNC(..) => RecordType::CSYNC,
744 Self::HINFO(..) => RecordType::HINFO,
745 Self::HTTPS(..) => RecordType::HTTPS,
746 Self::MX(..) => RecordType::MX,
747 Self::NAPTR(..) => RecordType::NAPTR,
748 Self::NS(..) => RecordType::NS,
749 Self::NULL(..) => RecordType::NULL,
750 Self::OPENPGPKEY(..) => RecordType::OPENPGPKEY,
751 Self::OPT(..) => RecordType::OPT,
752 Self::PTR(..) => RecordType::PTR,
753 Self::SOA(..) => RecordType::SOA,
754 Self::SRV(..) => RecordType::SRV,
755 Self::SSHFP(..) => RecordType::SSHFP,
756 Self::SVCB(..) => RecordType::SVCB,
757 Self::TLSA(..) => RecordType::TLSA,
758 Self::TXT(..) => RecordType::TXT,
759 #[cfg(feature = "__dnssec")]
760 Self::DNSSEC(rdata) => DNSSECRData::to_record_type(rdata),
761 Self::Unknown { code, .. } => *code,
762 Self::Update0(record_type) => *record_type,
763 Self::ZERO => RecordType::ZERO,
764 }
765 }
766
767 /// If this is an A or AAAA record type, then an IpAddr will be returned
768 pub fn ip_addr(&self) -> Option<IpAddr> {
769 match self {
770 Self::A(a) => Some(IpAddr::from(a.0)),
771 Self::AAAA(aaaa) => Some(IpAddr::from(aaaa.0)),
772 _ => None,
773 }
774 }
775
776 /// Read data from the decoder
777 pub fn read(
778 decoder: &mut BinDecoder<'_>,
779 record_type: RecordType,
780 length: Restrict<u16>,
781 ) -> ProtoResult<Self> {
782 let start_idx = decoder.index();
783
784 let result = match record_type {
785 RecordType::A => {
786 trace!("reading A");
787 A::read(decoder).map(Self::A)
788 }
789 RecordType::AAAA => {
790 trace!("reading AAAA");
791 AAAA::read(decoder).map(Self::AAAA)
792 }
793 RecordType::ANAME => {
794 trace!("reading ANAME");
795 ANAME::read(decoder).map(Self::ANAME)
796 }
797 rt @ RecordType::ANY | rt @ RecordType::AXFR | rt @ RecordType::IXFR => {
798 return Err(ProtoErrorKind::UnknownRecordTypeValue(rt.into()).into());
799 }
800 RecordType::CAA => {
801 trace!("reading CAA");
802 CAA::read_data(decoder, length).map(Self::CAA)
803 }
804 RecordType::CERT => {
805 trace!("reading CERT");
806 CERT::read_data(decoder, length).map(Self::CERT)
807 }
808 RecordType::CNAME => {
809 trace!("reading CNAME");
810 CNAME::read(decoder).map(Self::CNAME)
811 }
812 RecordType::CSYNC => {
813 trace!("reading CSYNC");
814 CSYNC::read_data(decoder, length).map(Self::CSYNC)
815 }
816 RecordType::HINFO => {
817 trace!("reading HINFO");
818 HINFO::read_data(decoder, length).map(Self::HINFO)
819 }
820 RecordType::HTTPS => {
821 trace!("reading HTTPS");
822 HTTPS::read_data(decoder, length).map(Self::HTTPS)
823 }
824 RecordType::ZERO => {
825 trace!("reading EMPTY");
826 // we should never get here, since ZERO should be 0 length, and None in the Record.
827 // this invariant is verified below, and the decoding will fail with an err.
828 #[allow(deprecated)]
829 Ok(Self::ZERO)
830 }
831 RecordType::MX => {
832 trace!("reading MX");
833 MX::read_data(decoder, length).map(Self::MX)
834 }
835 RecordType::NAPTR => {
836 trace!("reading NAPTR");
837 NAPTR::read_data(decoder, length).map(Self::NAPTR)
838 }
839 RecordType::NULL => {
840 trace!("reading NULL");
841 NULL::read_data(decoder, length).map(Self::NULL)
842 }
843 RecordType::NS => {
844 trace!("reading NS");
845 NS::read(decoder).map(Self::NS)
846 }
847 RecordType::OPENPGPKEY => {
848 trace!("reading OPENPGPKEY");
849 OPENPGPKEY::read_data(decoder, length).map(Self::OPENPGPKEY)
850 }
851 RecordType::OPT => {
852 trace!("reading OPT");
853 OPT::read_data(decoder, length).map(Self::OPT)
854 }
855 RecordType::PTR => {
856 trace!("reading PTR");
857 PTR::read(decoder).map(Self::PTR)
858 }
859 RecordType::SOA => {
860 trace!("reading SOA");
861 SOA::read_data(decoder, length).map(Self::SOA)
862 }
863 RecordType::SRV => {
864 trace!("reading SRV");
865 SRV::read_data(decoder, length).map(Self::SRV)
866 }
867 RecordType::SSHFP => {
868 trace!("reading SSHFP");
869 SSHFP::read_data(decoder, length).map(Self::SSHFP)
870 }
871 RecordType::SVCB => {
872 trace!("reading SVCB");
873 SVCB::read_data(decoder, length).map(Self::SVCB)
874 }
875 RecordType::TLSA => {
876 trace!("reading TLSA");
877 TLSA::read_data(decoder, length).map(Self::TLSA)
878 }
879 RecordType::TXT => {
880 trace!("reading TXT");
881 TXT::read_data(decoder, length).map(Self::TXT)
882 }
883 #[cfg(feature = "__dnssec")]
884 r if r.is_dnssec() => DNSSECRData::read(decoder, record_type, length).map(Self::DNSSEC),
885 record_type => {
886 trace!("reading Unknown record: {}", record_type);
887 NULL::read_data(decoder, length).map(|rdata| Self::Unknown {
888 code: record_type,
889 rdata,
890 })
891 }
892 };
893
894 // we should have read rdata_length, but we did not
895 let read = decoder.index() - start_idx;
896 length
897 .map(|u| u as usize)
898 .verify_unwrap(|rdata_length| read == *rdata_length)
899 .map_err(|rdata_length| {
900 ProtoError::from(ProtoErrorKind::IncorrectRDataLengthRead {
901 read,
902 len: rdata_length,
903 })
904 })?;
905
906 result
907 }
908}
909
910impl BinEncodable for RData {
911 /// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-6), DNSSEC Resource Records, March 2005
912 ///
913 /// ```text
914 /// 6.2. Canonical RR Form
915 ///
916 /// For the purposes of DNS security, the canonical form of an RR is the
917 /// wire format of the RR where:
918 ///
919 /// ...
920 ///
921 /// 3. if the type of the RR is NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
922 /// HINFO, MINFO, MX, HINFO, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
923 /// SRV, DNAME, A6, RRSIG, or (rfc6840 removes NSEC), all uppercase
924 /// US-ASCII letters in the DNS names contained within the RDATA are replaced
925 /// by the corresponding lowercase US-ASCII letters;
926 /// ```
927 ///
928 /// Canonical name form for all non-1035 records:
929 /// [RFC 3579](https://tools.ietf.org/html/rfc3597)
930 /// ```text
931 /// 4. Domain Name Compression
932 ///
933 /// RRs containing compression pointers in the RDATA part cannot be
934 /// treated transparently, as the compression pointers are only
935 /// meaningful within the context of a DNS message. Transparently
936 /// copying the RDATA into a new DNS message would cause the compression
937 /// pointers to point at the corresponding location in the new message,
938 /// which now contains unrelated data. This would cause the compressed
939 /// name to be corrupted.
940 ///
941 /// To avoid such corruption, servers MUST NOT compress domain names
942 /// embedded in the RDATA of types that are class-specific or not well-
943 /// known. This requirement was stated in [RFC1123] without defining the
944 /// term "well-known"; it is hereby specified that only the RR types
945 /// defined in [RFC1035] are to be considered "well-known".
946 ///
947 /// The specifications of a few existing RR types have explicitly allowed
948 /// compression contrary to this specification: [RFC2163] specified that
949 /// compression applies to the PX RR, and [RFC2535] allowed compression
950 /// in SIG RRs and NXT RRs records. Since this specification disallows
951 /// compression in these cases, it is an update to [RFC2163] (section 4)
952 /// and [RFC2535] (sections 4.1.7 and 5.2).
953 ///
954 /// Receiving servers MUST decompress domain names in RRs of well-known
955 /// type, and SHOULD also decompress RRs of type RP, AFSDB, RT, SIG, PX,
956 /// NXT, NAPTR, and SRV (although the current specification of the SRV RR
957 /// in [RFC2782] prohibits compression, [RFC2052] mandated it, and some
958 /// servers following that earlier specification are still in use).
959 ///
960 /// Future specifications for new RR types that contain domain names
961 /// within their RDATA MUST NOT allow the use of name compression for
962 /// those names, and SHOULD explicitly state that the embedded domain
963 /// names MUST NOT be compressed.
964 ///
965 /// As noted in [RFC1123], the owner name of an RR is always eligible for
966 /// compression.
967 ///
968 /// ...
969 /// As a courtesy to implementors, it is hereby noted that the complete
970 /// set of such previously published RR types that contain embedded
971 /// domain names, and whose DNSSEC canonical form therefore involves
972 /// downcasing according to the DNS rules for character comparisons,
973 /// consists of the RR types NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
974 /// HINFO, MINFO, MX, HINFO, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX, SRV,
975 /// DNAME, and A6.
976 /// ...
977 /// ```
978 fn emit(&self, encoder: &mut BinEncoder<'_>) -> ProtoResult<()> {
979 match self {
980 Self::A(address) => address.emit(encoder),
981 Self::AAAA(address) => address.emit(encoder),
982 Self::ANAME(name) => encoder.with_canonical_names(|encoder| name.emit(encoder)),
983 Self::CAA(caa) => encoder.with_canonical_names(|encoder| caa.emit(encoder)),
984 Self::CERT(cert) => cert.emit(encoder),
985 Self::CNAME(cname) => cname.emit(encoder),
986 Self::NS(ns) => ns.emit(encoder),
987 Self::PTR(ptr) => ptr.emit(encoder),
988 Self::CSYNC(csync) => csync.emit(encoder),
989 Self::HINFO(hinfo) => hinfo.emit(encoder),
990 Self::HTTPS(https) => https.emit(encoder),
991 Self::ZERO => Ok(()),
992 Self::MX(mx) => mx.emit(encoder),
993 Self::NAPTR(naptr) => encoder.with_canonical_names(|encoder| naptr.emit(encoder)),
994 Self::NULL(null) => null.emit(encoder),
995 Self::OPENPGPKEY(openpgpkey) => {
996 encoder.with_canonical_names(|encoder| openpgpkey.emit(encoder))
997 }
998 Self::OPT(opt) => opt.emit(encoder),
999 Self::SOA(soa) => soa.emit(encoder),
1000 Self::SRV(srv) => encoder.with_canonical_names(|encoder| srv.emit(encoder)),
1001 Self::SSHFP(sshfp) => encoder.with_canonical_names(|encoder| sshfp.emit(encoder)),
1002 Self::SVCB(svcb) => svcb.emit(encoder),
1003 Self::TLSA(tlsa) => encoder.with_canonical_names(|encoder| tlsa.emit(encoder)),
1004 Self::TXT(txt) => txt.emit(encoder),
1005 #[cfg(feature = "__dnssec")]
1006 Self::DNSSEC(rdata) => encoder.with_canonical_names(|encoder| rdata.emit(encoder)),
1007 Self::Unknown { rdata, .. } => rdata.emit(encoder),
1008 Self::Update0(_) => Ok(()),
1009 }
1010 }
1011}
1012
1013impl RecordData for RData {
1014 fn try_from_rdata(data: RData) -> Result<Self, RData> {
1015 Ok(data)
1016 }
1017
1018 fn try_borrow(data: &RData) -> Option<&Self> {
1019 Some(data)
1020 }
1021
1022 fn record_type(&self) -> RecordType {
1023 self.record_type()
1024 }
1025
1026 fn into_rdata(self) -> RData {
1027 self
1028 }
1029
1030 fn is_update(&self) -> bool {
1031 matches!(self, RData::Update0(_))
1032 }
1033}
1034
1035impl fmt::Display for RData {
1036 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
1037 fn w<D: fmt::Display>(f: &mut fmt::Formatter<'_>, rdata: D) -> Result<(), fmt::Error> {
1038 write!(f, "{rdata}")
1039 }
1040
1041 match self {
1042 Self::A(address) => w(f, address),
1043 Self::AAAA(address) => w(f, address),
1044 Self::ANAME(name) => w(f, name),
1045 Self::CAA(caa) => w(f, caa),
1046 Self::CERT(cert) => w(f, cert),
1047 // to_lowercase for rfc4034 and rfc6840
1048 Self::CNAME(cname) => w(f, cname),
1049 Self::NS(ns) => w(f, ns),
1050 Self::PTR(ptr) => w(f, ptr),
1051 Self::CSYNC(csync) => w(f, csync),
1052 Self::HINFO(hinfo) => w(f, hinfo),
1053 Self::HTTPS(https) => w(f, https),
1054 Self::ZERO => Ok(()),
1055 // to_lowercase for rfc4034 and rfc6840
1056 Self::MX(mx) => w(f, mx),
1057 Self::NAPTR(naptr) => w(f, naptr),
1058 Self::NULL(null) => w(f, null),
1059 Self::OPENPGPKEY(openpgpkey) => w(f, openpgpkey),
1060 // Opt has no display representation
1061 Self::OPT(_) => Err(fmt::Error),
1062 // to_lowercase for rfc4034 and rfc6840
1063 Self::SOA(soa) => w(f, soa),
1064 // to_lowercase for rfc4034 and rfc6840
1065 Self::SRV(srv) => w(f, srv),
1066 Self::SSHFP(sshfp) => w(f, sshfp),
1067 Self::SVCB(svcb) => w(f, svcb),
1068 Self::TLSA(tlsa) => w(f, tlsa),
1069 Self::TXT(txt) => w(f, txt),
1070 #[cfg(feature = "__dnssec")]
1071 Self::DNSSEC(rdata) => w(f, rdata),
1072 Self::Unknown { rdata, .. } => w(f, rdata),
1073 Self::Update0(_) => w(f, "UPDATE"),
1074 }
1075 }
1076}
1077
1078impl PartialOrd<Self> for RData {
1079 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1080 Some(self.cmp(other))
1081 }
1082}
1083
1084impl Ord for RData {
1085 // RFC 4034 DNSSEC Resource Records March 2005
1086 //
1087 // 6.3. Canonical RR Ordering within an RRset
1088 //
1089 // For the purposes of DNS security, RRs with the same owner name,
1090 // class, and type are sorted by treating the RDATA portion of the
1091 // canonical form of each RR as a left-justified unsigned octet sequence
1092 // in which the absence of an octet sorts before a zero octet.
1093 //
1094 // [RFC2181] specifies that an RRset is not allowed to contain duplicate
1095 // records (multiple RRs with the same owner name, class, type, and
1096 // RDATA). Therefore, if an implementation detects duplicate RRs when
1097 // putting the RRset in canonical form, it MUST treat this as a protocol
1098 // error. If the implementation chooses to handle this protocol error
1099 // in the spirit of the robustness principle (being liberal in what it
1100 // accepts), it MUST remove all but one of the duplicate RR(s) for the
1101 // purposes of calculating the canonical form of the RRset.
1102 fn cmp(&self, other: &Self) -> Ordering {
1103 // TODO: how about we just store the bytes with the decoded data?
1104 // the decoded data is useful for queries, the encoded data is needed for transfers, signing
1105 // and ordering.
1106 self.to_bytes().cmp(&other.to_bytes())
1107 }
1108}
1109
1110impl From<IpAddr> for RData {
1111 fn from(ip: IpAddr) -> Self {
1112 match ip {
1113 IpAddr::V4(ip) => RData::A(A(ip)),
1114 IpAddr::V6(ip) => RData::AAAA(AAAA(ip)),
1115 }
1116 }
1117}
1118
1119impl From<Ipv4Addr> for RData {
1120 fn from(ip: Ipv4Addr) -> Self {
1121 RData::A(A(ip))
1122 }
1123}
1124
1125impl From<Ipv6Addr> for RData {
1126 fn from(ip: Ipv6Addr) -> Self {
1127 RData::AAAA(AAAA(ip))
1128 }
1129}
1130
1131#[cfg(test)]
1132mod tests {
1133 #![allow(clippy::dbg_macro, clippy::print_stdout)]
1134
1135 use alloc::string::ToString;
1136 use core::str::FromStr;
1137 #[cfg(feature = "std")]
1138 use std::println;
1139
1140 use super::*;
1141 use crate::rr::domain::Name;
1142 use crate::rr::rdata::{MX, SOA, SRV, TXT};
1143 use crate::serialize::binary::bin_tests::test_emit_data_set;
1144 #[allow(clippy::useless_attribute)]
1145 #[allow(unused)]
1146 use crate::serialize::binary::*;
1147
1148 fn get_data() -> Vec<(RData, Vec<u8>)> {
1149 vec![
1150 (
1151 RData::CNAME(CNAME(Name::from_str("www.example.com.").unwrap())),
1152 vec![
1153 3, b'w', b'w', b'w', 7, b'e', b'x', b'a', b'm', b'p', b'l', b'e', 3, b'c',
1154 b'o', b'm', 0,
1155 ],
1156 ),
1157 (
1158 RData::MX(MX::new(256, Name::from_str("n.").unwrap())),
1159 vec![1, 0, 1, b'n', 0],
1160 ),
1161 (
1162 RData::NS(NS(Name::from_str("www.example.com.").unwrap())),
1163 vec![
1164 3, b'w', b'w', b'w', 7, b'e', b'x', b'a', b'm', b'p', b'l', b'e', 3, b'c',
1165 b'o', b'm', 0,
1166 ],
1167 ),
1168 (
1169 RData::PTR(PTR(Name::from_str("www.example.com.").unwrap())),
1170 vec![
1171 3, b'w', b'w', b'w', 7, b'e', b'x', b'a', b'm', b'p', b'l', b'e', 3, b'c',
1172 b'o', b'm', 0,
1173 ],
1174 ),
1175 (
1176 RData::SOA(SOA::new(
1177 Name::from_str("www.example.com.").unwrap(),
1178 Name::from_str("xxx.example.com.").unwrap(),
1179 u32::MAX,
1180 -1,
1181 -1,
1182 -1,
1183 u32::MAX,
1184 )),
1185 vec![
1186 3, b'w', b'w', b'w', 7, b'e', b'x', b'a', b'm', b'p', b'l', b'e', 3, b'c',
1187 b'o', b'm', 0, 3, b'x', b'x', b'x', 0xC0, 0x04, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
1188 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
1189 0xFF, 0xFF,
1190 ],
1191 ),
1192 (
1193 RData::TXT(TXT::new(vec![
1194 "abcdef".to_string(),
1195 "ghi".to_string(),
1196 "".to_string(),
1197 "j".to_string(),
1198 ])),
1199 vec![
1200 6, b'a', b'b', b'c', b'd', b'e', b'f', 3, b'g', b'h', b'i', 0, 1, b'j',
1201 ],
1202 ),
1203 (RData::A(A::from(Ipv4Addr::UNSPECIFIED)), vec![0, 0, 0, 0]),
1204 (
1205 RData::AAAA(AAAA::from(Ipv6Addr::UNSPECIFIED)),
1206 vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
1207 ),
1208 (
1209 RData::SRV(SRV::new(
1210 1,
1211 2,
1212 3,
1213 Name::from_str("www.example.com.").unwrap(),
1214 )),
1215 vec![
1216 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 3, b'w', b'w', b'w', 7, b'e', b'x', b'a',
1217 b'm', b'p', b'l', b'e', 3, b'c', b'o', b'm', 0,
1218 ],
1219 ),
1220 (
1221 RData::HINFO(HINFO::new("cpu".to_string(), "os".to_string())),
1222 vec![3, b'c', b'p', b'u', 2, b'o', b's'],
1223 ),
1224 ]
1225 }
1226
1227 // TODO this test kinda sucks, shows the problem with not storing the binary parts
1228 #[test]
1229 fn test_order() {
1230 let ordered: Vec<RData> = vec![
1231 RData::A(A::from(Ipv4Addr::UNSPECIFIED)),
1232 RData::AAAA(AAAA::from(Ipv6Addr::UNSPECIFIED)),
1233 RData::SRV(SRV::new(
1234 1,
1235 2,
1236 3,
1237 Name::from_str("www.example.com").unwrap(),
1238 )),
1239 RData::MX(MX::new(256, Name::from_str("n").unwrap())),
1240 RData::CNAME(CNAME(Name::from_str("www.example.com").unwrap())),
1241 RData::PTR(PTR(Name::from_str("www.example.com").unwrap())),
1242 RData::NS(NS(Name::from_str("www.example.com").unwrap())),
1243 RData::SOA(SOA::new(
1244 Name::from_str("www.example.com").unwrap(),
1245 Name::from_str("xxx.example.com").unwrap(),
1246 u32::MAX,
1247 -1,
1248 -1,
1249 -1,
1250 u32::MAX,
1251 )),
1252 RData::TXT(TXT::new(vec![
1253 "abcdef".to_string(),
1254 "ghi".to_string(),
1255 "".to_string(),
1256 "j".to_string(),
1257 ])),
1258 ];
1259 let mut unordered = vec![
1260 RData::CNAME(CNAME(Name::from_str("www.example.com").unwrap())),
1261 RData::MX(MX::new(256, Name::from_str("n").unwrap())),
1262 RData::PTR(PTR(Name::from_str("www.example.com").unwrap())),
1263 RData::NS(NS(Name::from_str("www.example.com").unwrap())),
1264 RData::SOA(SOA::new(
1265 Name::from_str("www.example.com").unwrap(),
1266 Name::from_str("xxx.example.com").unwrap(),
1267 u32::MAX,
1268 -1,
1269 -1,
1270 -1,
1271 u32::MAX,
1272 )),
1273 RData::TXT(TXT::new(vec![
1274 "abcdef".to_string(),
1275 "ghi".to_string(),
1276 "".to_string(),
1277 "j".to_string(),
1278 ])),
1279 RData::A(A::from(Ipv4Addr::UNSPECIFIED)),
1280 RData::AAAA(AAAA::from(Ipv6Addr::UNSPECIFIED)),
1281 RData::SRV(SRV::new(
1282 1,
1283 2,
1284 3,
1285 Name::from_str("www.example.com").unwrap(),
1286 )),
1287 ];
1288
1289 unordered.sort();
1290 assert_eq!(ordered, unordered);
1291 }
1292
1293 #[test]
1294 #[cfg_attr(not(feature = "std"), expect(clippy::unused_enumerate_index))]
1295 fn test_read() {
1296 for (_test_pass, (expect, binary)) in get_data().into_iter().enumerate() {
1297 #[cfg(feature = "std")]
1298 println!("test {_test_pass}: {binary:?}");
1299 let length = binary.len() as u16; // pre exclusive borrow
1300 let mut decoder = BinDecoder::new(&binary);
1301
1302 assert_eq!(
1303 RData::read(
1304 &mut decoder,
1305 record_type_from_rdata(&expect),
1306 Restrict::new(length)
1307 )
1308 .unwrap(),
1309 expect
1310 );
1311 }
1312 }
1313
1314 fn record_type_from_rdata(rdata: &RData) -> crate::rr::record_type::RecordType {
1315 match rdata {
1316 RData::A(..) => RecordType::A,
1317 RData::AAAA(..) => RecordType::AAAA,
1318 RData::ANAME(..) => RecordType::ANAME,
1319 RData::CAA(..) => RecordType::CAA,
1320 RData::CERT(..) => RecordType::CERT,
1321 RData::CNAME(..) => RecordType::CNAME,
1322 RData::CSYNC(..) => RecordType::CSYNC,
1323 RData::HINFO(..) => RecordType::HINFO,
1324 RData::HTTPS(..) => RecordType::HTTPS,
1325 RData::MX(..) => RecordType::MX,
1326 RData::NAPTR(..) => RecordType::NAPTR,
1327 RData::NS(..) => RecordType::NS,
1328 RData::NULL(..) => RecordType::NULL,
1329 RData::OPENPGPKEY(..) => RecordType::OPENPGPKEY,
1330 RData::OPT(..) => RecordType::OPT,
1331 RData::PTR(..) => RecordType::PTR,
1332 RData::SOA(..) => RecordType::SOA,
1333 RData::SRV(..) => RecordType::SRV,
1334 RData::SSHFP(..) => RecordType::SSHFP,
1335 RData::SVCB(..) => RecordType::SVCB,
1336 RData::TLSA(..) => RecordType::TLSA,
1337 RData::TXT(..) => RecordType::TXT,
1338 #[cfg(feature = "__dnssec")]
1339 RData::DNSSEC(rdata) => rdata.to_record_type(),
1340 RData::Unknown { code, .. } => *code,
1341 RData::Update0(record_type) => *record_type,
1342 RData::ZERO => RecordType::ZERO,
1343 }
1344 }
1345
1346 #[test]
1347 fn test_write_to() {
1348 test_emit_data_set(get_data(), |e, d| d.emit(e));
1349 }
1350}