hidreport/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
// SPDX-License-Identifier: MIT
//
//! This crate provides parsing of HID Report Descriptors, including the [hid] module to inspect
//! a report descriptor in more detail. Check out the `hut` crate for known HID Usages to make
//! sense of the various HID fields.
//!
//! Entry point is usually [`ReportDescriptor::try_from(bytes)`](ReportDescriptor::try_from):
//!
//! ```
//! # use hidreport::*;
//! # let bytes: &[u8] = &[0x05, 0x01, 0x09, 0x02, 0xa1, 0x01, 0x05, 0x01, 0x09, 0x02, 0xa1, 0x02, 0x85, 0x1a, 0x09, 0x01, 0xa1, 0x00, 0x05, 0x09, 0x19, 0x01, 0x29, 0x05, 0x95, 0x05, 0x75, 0x01, 0x15, 0x00, 0x25, 0x01, 0x81, 0x02, 0x75, 0x03, 0x95, 0x01, 0x81, 0x01, 0x05, 0x01, 0x09, 0x30, 0x09, 0x31, 0x95, 0x02, 0x75, 0x10, 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, 0x81, 0x06, 0xa1, 0x02, 0x85, 0x12, 0x09, 0x48, 0x95, 0x01, 0x75, 0x02, 0x15, 0x00, 0x25, 0x01, 0x35, 0x01, 0x45, 0x0c, 0xb1, 0x02, 0x85, 0x1a, 0x09, 0x38, 0x35, 0x00, 0x45, 0x00, 0x95, 0x01, 0x75, 0x10, 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, 0x81, 0x06, 0xc0, 0xa1, 0x02, 0x85, 0x12, 0x09, 0x48, 0x75, 0x02, 0x15, 0x00, 0x25, 0x01, 0x35, 0x01, 0x45, 0x0c, 0xb1, 0x02, 0x35, 0x00, 0x45, 0x00, 0x75, 0x04, 0xb1, 0x01, 0x85, 0x1a, 0x05, 0x0c, 0x95, 0x01, 0x75, 0x10, 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, 0x0a, 0x38, 0x02, 0x81, 0x06, 0xc0, 0xc0, 0xc0, 0xc0, 0x05, 0x0c, 0x09, 0x01, 0xa1, 0x01, 0x05, 0x01, 0x09, 0x02, 0xa1, 0x02, 0x85, 0x1f, 0x05, 0x0c, 0x0a, 0x38, 0x02, 0x95, 0x01, 0x75, 0x10, 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, 0x81, 0x06, 0x85, 0x17, 0x06, 0x00, 0xff, 0x0a, 0x06, 0xff, 0x0a, 0x0f, 0xff, 0x15, 0x00, 0x25, 0x01, 0x35, 0x01, 0x45, 0x0c, 0x95, 0x02, 0x75, 0x02, 0xb1, 0x02, 0x0a, 0x04, 0xff, 0x35, 0x00, 0x45, 0x00, 0x95, 0x01, 0x75, 0x01, 0xb1, 0x02, 0x75, 0x03, 0xb1, 0x01, 0xc0, 0xc0];
//! # fn read_from_device() -> Vec<u8> {
//! # vec![0x1a, 0x00, 0xff, 0xff, 0xfe, 0xff, 00, 00, 00, 0x00]
//! # }
//! #
//! let rdesc: ReportDescriptor = ReportDescriptor::try_from(bytes).unwrap();
//! for r in rdesc.input_reports() {
//! println!("Input Report with report ID: {:?}", r.report_id());
//! }
//!
//! let input_report_bytes = read_from_device();
//! let report = rdesc.find_input_report(&input_report_bytes).unwrap();
//! println!("This is an input report for report ID: {:?}", report.report_id());
//! let field = report.fields().first().unwrap();
//! match field {
//! Field::Variable(var) => {
//! let val: u32 = var.extract(&input_report_bytes).unwrap().into();
//! println!("Field {:?} is of value {}", field, val);
//! }
//! Field::Array(arr) => {
//! let vals: Vec<u32> = arr.extract(&input_report_bytes).unwrap().iter().map(u32::from).collect();
//! println!("Field {:?} has values {:?}", field, vals);
//! }
//! Field::Constant(_) => {
//! println!("Field {:?} is <padding data>", field);
//! }
//! }
//! ```
//!
//! In this document and unless stated otherwise, a reference to "Section a.b.c" refers to the
//! [HID Device Class Definition for HID 1.11](https://www.usb.org/document-library/device-class-definition-hid-111).
use std::hash::{Hash, Hasher};
use std::ops::Range;
use thiserror::Error;
#[cfg(feature = "hut")]
use hut::{AsUsage, AsUsagePage};
pub mod hid;
pub mod types;
pub use hid::CollectionItem as CollectionType;
use hid::*;
pub use types::*;
macro_rules! ensure {
($cond:expr, $msg:literal) => {
if (!$cond) {
return Err(ParserError::InvalidData {
offset: 0,
message: $msg.into(),
});
}
};
($cond:expr, $err:expr) => {
if (!$cond) {
return Err($err);
}
};
}
pub(crate) use ensure;
/// Implements `From<Foo> for Bar` to call `From<&Foo> for Bar`
macro_rules! impl_from_without_ref {
($tipo:ty, $to_expr:ident, $to:ty) => {
impl From<$tipo> for $to {
fn from(f: $tipo) -> $to {
$to_expr::from(&f)
}
}
};
}
/// Extract the bit range from the given byte array, converting the
/// result into a [u32].
///
/// The number of bits in the range must be less or equal to 32.
fn extract_bits(bytes: &[u8], bits: &Range<usize>) -> u32 {
let nbits = bits.len();
assert_ne!(nbits, 0);
assert!(nbits <= 32);
let start_index = bits.start / 8;
let end_index = (bits.end - 1) / 8;
let bytes = &bytes[start_index..=end_index];
let value: u64 = Range {
start: 0u64,
end: bytes.len() as u64,
}
//.inspect(|idx| println!("Accessing index {idx}: {:x?}", bytes[*idx as usize]))
.fold(0u64, |acc: u64, idx| {
acc | (bytes[idx as usize] as u64) << (8 * idx)
});
let base_shift = bits.start % 8;
let mask_shift = 32 - nbits;
let mask = (!0) >> mask_shift;
let value = (value >> base_shift) as u32;
value & mask
}
/// Calculates the two's complement for a value with
/// a given number of of bits.
trait TwosComplement<To> {
/// Returns the two's complement for a value
/// with a given number of bits.
fn twos_comp(self, nbits: usize) -> To;
}
impl TwosComplement<i8> for u8 {
fn twos_comp(self, nbits: usize) -> i8 {
assert!(nbits > 0);
if nbits >= 8 || self & (1 << (nbits - 1)) == 0 {
self as i8
} else {
let s = self as i16;
let min = 1 << nbits;
(-min + s) as i8
}
}
}
impl TwosComplement<i16> for u16 {
fn twos_comp(self, nbits: usize) -> i16 {
assert!(nbits > 0);
if nbits >= 16 || self & (1 << (nbits - 1)) == 0 {
self as i16
} else {
let s = self as i32;
let min = 1 << nbits;
(-min + s) as i16
}
}
}
impl TwosComplement<i32> for u32 {
fn twos_comp(self, nbits: usize) -> i32 {
assert!(nbits > 0);
if nbits >= 32 || self & (1 << (nbits - 1)) == 0 {
self as i32
} else {
let s = self as i64;
let min = 1 << nbits;
(-min + s) as i32
}
}
}
/// A [ReportDescriptor] is the static set of [Items](hid::Item)
/// that define how data from the device should be interpreted.
///
/// A device may have up to three different types of [Reports](Report)
/// (Input, Output, and Feature), all of which are defined in the
/// single report descriptor.
///
/// ```
/// # use hidreport::*;
/// # let bytes: &[u8] = &[0x05, 0x01, 0x09, 0x02, 0xa1, 0x01, 0x05, 0x01, 0x09, 0x02, 0xa1, 0x02, 0x85, 0x1a, 0x09, 0x01, 0xa1, 0x00, 0x05, 0x09, 0x19, 0x01, 0x29, 0x05, 0x95, 0x05, 0x75, 0x01, 0x15, 0x00, 0x25, 0x01, 0x81, 0x02, 0x75, 0x03, 0x95, 0x01, 0x81, 0x01, 0x05, 0x01, 0x09, 0x30, 0x09, 0x31, 0x95, 0x02, 0x75, 0x10, 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, 0x81, 0x06, 0xa1, 0x02, 0x85, 0x12, 0x09, 0x48, 0x95, 0x01, 0x75, 0x02, 0x15, 0x00, 0x25, 0x01, 0x35, 0x01, 0x45, 0x0c, 0xb1, 0x02, 0x85, 0x1a, 0x09, 0x38, 0x35, 0x00, 0x45, 0x00, 0x95, 0x01, 0x75, 0x10, 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, 0x81, 0x06, 0xc0, 0xa1, 0x02, 0x85, 0x12, 0x09, 0x48, 0x75, 0x02, 0x15, 0x00, 0x25, 0x01, 0x35, 0x01, 0x45, 0x0c, 0xb1, 0x02, 0x35, 0x00, 0x45, 0x00, 0x75, 0x04, 0xb1, 0x01, 0x85, 0x1a, 0x05, 0x0c, 0x95, 0x01, 0x75, 0x10, 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, 0x0a, 0x38, 0x02, 0x81, 0x06, 0xc0, 0xc0, 0xc0, 0xc0, 0x05, 0x0c, 0x09, 0x01, 0xa1, 0x01, 0x05, 0x01, 0x09, 0x02, 0xa1, 0x02, 0x85, 0x1f, 0x05, 0x0c, 0x0a, 0x38, 0x02, 0x95, 0x01, 0x75, 0x10, 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, 0x81, 0x06, 0x85, 0x17, 0x06, 0x00, 0xff, 0x0a, 0x06, 0xff, 0x0a, 0x0f, 0xff, 0x15, 0x00, 0x25, 0x01, 0x35, 0x01, 0x45, 0x0c, 0x95, 0x02, 0x75, 0x02, 0xb1, 0x02, 0x0a, 0x04, 0xff, 0x35, 0x00, 0x45, 0x00, 0x95, 0x01, 0x75, 0x01, 0xb1, 0x02, 0x75, 0x03, 0xb1, 0x01, 0xc0, 0xc0];
/// # fn read_from_device() -> Vec<u8> {
/// # vec![0x1a, 0x00, 0xff, 0xff, 0xfe, 0xff, 00, 00, 00, 0x00]
/// # }
/// #
/// let rdesc: ReportDescriptor = ReportDescriptor::try_from(bytes).unwrap();
/// for r in rdesc.input_reports() {
/// println!("Input Report with report ID: {:?}", r.report_id());
/// }
/// let input_report_bytes = read_from_device();
/// let report = rdesc.find_input_report(&input_report_bytes).unwrap();
/// println!("This is an input report for report ID: {:?}", report.report_id());
/// let field = report.fields().first().unwrap();
/// match field {
/// Field::Variable(var) => println!("Field {:?} is of value {}", field, u32::from(var.extract(&input_report_bytes).unwrap())),
/// Field::Array(arr) => println!("Field {:?} has values {:?}", field, arr.extract(&input_report_bytes).unwrap().iter().map(u32::from)),
/// Field::Constant(_) => println!("Field {:?} is <padding data>", field),
/// }
/// ```
///
#[derive(Debug, Default)]
pub struct ReportDescriptor {
input_reports: Vec<RDescReport>,
output_reports: Vec<RDescReport>,
feature_reports: Vec<RDescReport>,
}
impl<'a> ReportDescriptor {
/// Returns the set of input reports or the empty
/// slice if none exist.
/// ```
/// # use hidreport::*;
/// # fn func(rdesc: &ReportDescriptor) {
/// let reports = rdesc.input_reports();
/// for report in reports {
/// println!("Report ID: {:?}", report.report_id());
/// }
/// # }
/// ```
pub fn input_reports(&self) -> &[impl Report] {
&self.input_reports
}
/// Returns the set of output reports or the empty
/// slice if none exist.
/// ```
/// # use hidreport::*;
/// # fn func(rdesc: &ReportDescriptor) {
/// let reports = rdesc.output_reports();
/// for report in reports {
/// println!("Report ID: {:?}", report.report_id());
/// }
/// # }
/// ```
pub fn output_reports(&self) -> &[impl Report] {
&self.output_reports
}
/// Returns the set of feature reports or the empty
/// slice if none exist.
/// ```
/// # use hidreport::*;
/// # fn func(rdesc: &ReportDescriptor) {
/// let reports = rdesc.feature_reports();
/// for report in reports {
/// println!("Report ID: {:?}", report.report_id());
/// }
/// # }
/// ```
pub fn feature_reports(&self) -> &[impl Report] {
&self.feature_reports
}
fn find_report(&'a self, list: &'a [RDescReport], prefix: u8) -> Option<&impl Report> {
let first = list.first()?;
let rid = Some(ReportId(prefix));
// Do we have report IDs? If not, the first report is what we want.
match first.report_id() {
None => Some(first),
Some(_) => list.iter().find(|r| r.report_id() == &rid),
}
}
/// Find the input report that matches this byte sequence.
///
/// ```
/// # use hidreport::*;
/// # fn func(bytes: &[u8], rdesc: &ReportDescriptor) {
/// // bytes was read from the device (or some other source)
/// let report = rdesc.find_input_report(bytes).unwrap();
/// for field in report.fields() {
/// // ...
/// }
/// # }
/// ```
///
/// ReportDescriptors with multiple reports require a report
/// to have a single byte prefix specifying the [ReportId].
pub fn find_input_report(&self, bytes: &[u8]) -> Option<&impl Report> {
self.find_report(&self.input_reports, bytes[0])
}
/// Find the output report that matches this byte sequence.
///
/// ```
/// # use hidreport::*;
/// # fn func(bytes: &[u8], rdesc: &ReportDescriptor) {
/// // bytes was read from the device (or some other source)
/// let report = rdesc.find_output_report(bytes).unwrap();
/// for field in report.fields() {
/// // ...
/// }
/// # }
/// ```
///
/// ReportDescriptors with multiple reports require a report
/// to have a single byte prefix specifying the [ReportId].
pub fn find_output_report(&self, bytes: &[u8]) -> Option<&impl Report> {
self.find_report(&self.input_reports, bytes[0])
}
/// Find the feature report that matches this byte sequence.
///
/// ```
/// # use hidreport::*;
/// # fn func(bytes: &[u8], rdesc: &ReportDescriptor) {
/// // bytes was read from the device (or some other source)
/// let report = rdesc.find_feature_report(bytes).unwrap();
/// for field in report.fields() {
/// // ...
/// }
/// # }
/// ```
///
/// ReportDescriptors with multiple reports require a report
/// to have a single byte prefix specifying the [ReportId].
pub fn find_feature_report(&self, bytes: &[u8]) -> Option<&impl Report> {
self.find_report(&self.input_reports, bytes[0])
}
}
impl TryFrom<&[u8]> for ReportDescriptor {
type Error = ParserError;
/// Try to parse the given byte array as a report descriptor.
fn try_from(bytes: &[u8]) -> Result<ReportDescriptor> {
parse_report_descriptor(bytes)
}
}
impl TryFrom<&Vec<u8>> for ReportDescriptor {
type Error = ParserError;
/// Try to parse the given byte array as a report descriptor.
fn try_from(bytes: &Vec<u8>) -> Result<ReportDescriptor> {
parse_report_descriptor(bytes)
}
}
#[derive(Copy, Clone, Debug)]
enum Direction {
Input,
Output,
Feature,
}
/// A HID Input, Output or Feature Report.
///
/// Where a report contains the [Report::report_id] the first
/// byte of the report is always that Report ID, followed
/// by the data in the sequence announced in the HID [ReportDescriptor].
///
/// Use [`size_in_bits()`][Report::size_in_bits] or
/// [`size_in_bytes()`](Report::size_in_bytes) to
/// get the length of this report.
///
/// Note that each of Input, Output and Feature Reports
/// have their own enumeration of Report IDs, i.e. an Input Report
/// with a Report ID of e.g. 1 may have a different size and/or [Field]s
/// to an Output Report with a Report ID of 1.
///
/// The Report ID has no meaning other than to distinguish
/// different reports. See Section 6.2.2.7 for details.
pub trait Report {
/// Returns the HID Report ID for this report, if any.
fn report_id(&self) -> &Option<ReportId>;
/// Returns the parsed HID Fields ID for this report. A caller should
/// iterate through these fields to find the ones it is interested
/// in and use the [Field::bits] to extract the data from future
/// reports.
fn fields(&self) -> &[Field];
/// The size in bits for this report.
fn size_in_bits(&self) -> usize;
/// The size in bytes for this object.
///
/// Where [`size_in_bits()`](Report::size_in_bits) is
/// not a multiple of 8, the [`size_in_bytes()`](Report::size_in_bytes) rounds up
/// fit all bits.
fn size_in_bytes(&self) -> usize {
(self.size_in_bits() + 7) / 8
}
}
/// A HID Input, Output or Feature Report.
///
/// Where a report contains the [Report::report_id] the first
/// byte of the report is always that Report ID, followed
/// by the data in the sequence announced in the HID [ReportDescriptor].
///
/// Note that each of Input, Output and Feature Reports
/// have their own enumeration of Report IDs, i.e. an Input Report
/// with a Report ID of e.g. 1 may have a different size and/or [Field]s
/// to an Output Report with a Report ID of 1.
///
/// The Report ID has no meaning other than to distinguish
/// different reports. See Section 6.2.2.7 for details.
#[derive(Debug)]
struct RDescReport {
/// The report ID, if any
id: Option<ReportId>,
/// The size of this report in bits
size: usize,
/// The fields present in this report
fields: Vec<Field>,
}
impl Report for RDescReport {
fn report_id(&self) -> &Option<ReportId> {
&self.id
}
fn fields(&self) -> &[Field] {
&self.fields
}
/// The size of this HID report on the wire, in bits
fn size_in_bits(&self) -> usize {
self.size
}
}
/// The usage of a [Field] defines the interpretation of a
/// data value. See the `hut` crate for a list of known Usages.
///
/// A Usage comprises of a 16 bit [UsagePage] and a 16 bit [UsageId].
///
/// ```
/// # use hidreport::*;
/// let up = UsagePage::from(0x01); // Generic Desktop
/// let uid = UsageId::from(0x02); // Mouse
/// let usage = Usage::from_page_and_id(up, uid);
/// ```
/// For known named usages see the `hut` crate.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Usage {
pub usage_page: UsagePage,
pub usage_id: UsageId,
}
impl Usage {
/// Create a [Usage] from a [UsagePage] and a [UsageId].
pub fn from_page_and_id(usage_page: UsagePage, usage_id: UsageId) -> Usage {
Usage {
usage_page,
usage_id,
}
}
}
impl From<u32> for Usage {
fn from(u: u32) -> Usage {
Usage {
usage_page: UsagePage::from((u >> 16) as u16),
usage_id: UsageId::from((u & 0xffff) as u16),
}
}
}
impl From<&Usage> for u32 {
fn from(u: &Usage) -> u32 {
(u16::from(u.usage_page) as u32) << 16 | u16::from(u.usage_id) as u32
}
}
impl_from_without_ref!(Usage, u32, u32);
impl From<&Usage> for UsageMinimum {
fn from(u: &Usage) -> UsageMinimum {
UsageMinimum(u32::from(u))
}
}
impl_from_without_ref!(Usage, UsageMinimum, UsageMinimum);
impl From<&Usage> for UsageMaximum {
fn from(u: &Usage) -> UsageMaximum {
UsageMaximum(u32::from(u))
}
}
impl_from_without_ref!(Usage, UsageMaximum, UsageMaximum);
#[cfg(feature = "hut")]
impl From<hut::Usage> for Usage {
fn from(usage: hut::Usage) -> Usage {
let usage_page = UsagePage::from(usage.usage_page_value());
let usage_id = UsageId::from(usage.usage_id_value());
Usage::from_page_and_id(usage_page, usage_id)
}
}
/// A unique (within this report descriptor) identifier for a [Field].
///
/// The [FieldId] does not exist in the actual ReportDescriptor, it is
/// a unique ID assigned by this crate to later identify a given field
/// for data extraction and/or further parsing.
#[derive(Clone, Copy, Debug, PartialEq, Hash, PartialOrd)]
pub struct FieldId(u32);
impl From<&FieldId> for u32 {
fn from(f: &FieldId) -> u32 {
f.0
}
}
impl_from_without_ref!(FieldId, u32, u32);
/// A wrapper around the value of a [Field] inside
/// a HID Report's byte array. This value may
/// be signed, depending on the [Field].
///
/// ```
/// # use hidreport::VariableField;
/// # fn read_from_device() -> Vec<u8> {
/// # vec![0x1a, 0x00, 0xff, 0xff, 0xfe, 0xff, 00, 00, 00, 0x00]
/// # }
/// #
/// # fn func(field: &VariableField, bytes: &[u8]) {
/// let bytes: Vec<u8> = read_from_device();
/// let val = field.extract(bytes.as_slice()).unwrap();
/// if val.is_signed() {
/// let unsigned: u32 = val.into();
/// } else {
/// let signed: i32 = val.into();
/// }
/// # }
/// ```
///
/// The value is always of size [u32] or [i32], regardless of the
/// number of bits in the HID Report. Cast to [u16], [u8], etc. as needed.
#[derive(Clone, Copy, Debug)]
pub struct FieldValue {
is_signed: bool,
value: u32,
}
impl FieldValue {
/// Returns `true` if the contained value is signed, `false` otherwise.
pub fn is_signed(&self) -> bool {
self.is_signed
}
}
impl From<&FieldValue> for u32 {
fn from(v: &FieldValue) -> u32 {
v.value
}
}
impl_from_without_ref!(FieldValue, u32, u32);
impl From<&FieldValue> for u16 {
fn from(v: &FieldValue) -> u16 {
v.value as u16
}
}
impl_from_without_ref!(FieldValue, u16, u16);
impl From<&FieldValue> for u8 {
fn from(v: &FieldValue) -> u8 {
v.value as u8
}
}
impl_from_without_ref!(FieldValue, u8, u8);
impl From<&FieldValue> for i32 {
fn from(v: &FieldValue) -> i32 {
v.value as i32
}
}
impl_from_without_ref!(FieldValue, i32, i32);
impl From<&FieldValue> for i16 {
fn from(v: &FieldValue) -> i16 {
v.value as i16
}
}
impl_from_without_ref!(FieldValue, i16, i16);
impl From<&FieldValue> for i8 {
fn from(v: &FieldValue) -> i8 {
v.value as i8
}
}
impl_from_without_ref!(FieldValue, i8, i8);
/// A single field inside a [Report].
///
/// Fields may be [Variable](Field::Variable) and represent a
/// single element of data or they may be
/// a [Array](Field::Array) that represent
/// multiple elements.
///
/// Fields of type [Constant](Field::Constant) should be ignored by
/// the caller.
///
/// Given a set of bytes that is a HID Report use [VariableField::extract()] or
/// [ArrayField::extract()] to extract the value for this field, for example:
/// ```
/// # use hidreport::VariableField;
/// # fn func(field: &VariableField, bytes: &[u8]) {
/// let val = field.extract(bytes).unwrap();
/// if val.is_signed() {
/// let unsigned: u32 = val.into();
/// } else {
/// let signed: i32 = val.into();
/// }
/// # }
/// ```
#[derive(Clone, Debug)]
pub enum Field {
/// A single element of data
Variable(VariableField),
/// A set of multiple fields
Array(ArrayField),
/// Padding
Constant(ConstantField),
}
impl Field {
/// Return the unique (within this report descriptor) ID for this field.
///
/// The [FieldId] does not exist in the actual ReportDescriptor, it is
/// a unique ID assigned by this crate to later identify a given field
/// for data extraction and/or further parsing.
pub fn id(&self) -> FieldId {
match self {
Field::Variable(f) => f.id,
Field::Array(f) => f.id,
Field::Constant(f) => f.id,
}
}
/// Returns the bit range that make up this field.
pub fn bits(&self) -> &Range<usize> {
match self {
Field::Variable(f) => &f.bits,
Field::Array(f) => &f.bits,
Field::Constant(f) => &f.bits,
}
}
/// Returns the Report ID this field belongs to, if any.
fn report_id(&self) -> &Option<ReportId> {
match self {
Field::Variable(f) => &f.report_id,
Field::Array(f) => &f.report_id,
Field::Constant(f) => &f.report_id,
}
}
fn update_bit_offset(&mut self, offset: usize) {
let r = self.bits();
let r = (offset + r.start)..(offset + r.end);
match self {
Field::Variable(f) => f.bits = r,
Field::Array(f) => f.bits = r,
Field::Constant(f) => f.bits = r,
};
}
/// The length of the field in bits
fn len(&self) -> usize {
return self.bits().len();
}
/// Return the set of collections this [Field] belongs to
/// or the empty slice.
pub fn collections(&self) -> &[Collection] {
match self {
Field::Variable(f) => &f.collections,
Field::Array(f) => &f.collections,
Field::Constant(..) => &[],
}
}
}
/// A [VariableField] represents a single physical control.
#[derive(Clone, Debug)]
pub struct VariableField {
id: FieldId,
report_id: Option<ReportId>,
pub bits: Range<usize>,
pub usage: Usage,
pub logical_minimum: LogicalMinimum,
pub logical_maximum: LogicalMaximum,
pub physical_minimum: Option<PhysicalMinimum>,
pub physical_maximum: Option<PhysicalMaximum>,
pub unit: Option<Unit>,
pub unit_exponent: Option<UnitExponent>,
pub collections: Vec<Collection>,
}
impl VariableField {
/// Returns true if this field contains signed values,
/// i.e. the LogicalMinimum is less than zero.
pub fn is_signed(&self) -> bool {
self.logical_minimum < LogicalMinimum(0)
}
/// Extract this field's value as [FieldValue] from a report's bytes.
/// The value is extracted as its correct bit size, the returned [FieldValue]
/// can then be casted in to a [u32], [i32], etc. via the [From] trait.
/// ```
/// # use hidreport::VariableField;
/// # fn func(field: &VariableField, bytes: &[u8]) {
/// let val = field.extract(bytes).unwrap();
/// if val.is_signed() {
/// let unsigned: u32 = val.into();
/// } else {
/// let signed: i32 = val.into();
/// }
/// # }
/// ```
pub fn extract(&self, bytes: &[u8]) -> Result<FieldValue> {
if let Some(report_id) = self.report_id {
if ReportId(bytes[0]) != report_id {
return Err(ParserError::MismatchingReportId);
}
}
let v = extract_bits(bytes, &self.bits);
let v = if self.is_signed() {
v.twos_comp(self.bits.len()) as u32
} else {
v
};
Ok(FieldValue {
is_signed: self.is_signed(),
value: v,
})
}
}
/// Wrapper around the commonly used [UsageMinimum] and [UsageMaximum].
#[derive(Debug)]
pub struct UsageRange {
usage_page: UsagePage,
minimum: UsageMinimum,
maximum: UsageMaximum,
}
impl UsageRange {
/// The [UsageMinimum]. Note that in reports and report descriptors
/// the Usage Minimum may or may not include the Usage Page. The
/// minimum returned here always includes the [UsagePage].
pub fn minimum(&self) -> UsageMinimum {
self.minimum
}
/// The [UsageMaximum]. Note that in reports and report descriptors
/// the Usage Maximum may or may not include the Usage Page. The
/// maximum returned here always includes the [UsagePage].
pub fn maximum(&self) -> UsageMaximum {
self.maximum
}
/// If the given usage falls within this usage range (i.e. it is of the
/// same [UsagePage] and it within the inclusive [UsageMinimum]/[UsageMaximum])
/// return the provided usage as [Option].
pub fn lookup_usage<'a>(&self, usage: &'a Usage) -> Option<&'a Usage> {
if usage.usage_page == self.usage_page
&& usage.usage_id >= self.minimum.usage_id()
&& usage.usage_id <= self.maximum.usage_id()
{
Some(usage)
} else {
None
}
}
/// Look up the given [UsageId] and return the corresponding
/// [Usage], if any. The [UsageId] is assumed to be in the same
/// [UsagePage] as this range, use [lookup_usage()][Self::lookup_usage] if you need
/// a check for the [UsagePage] as well.
pub fn lookup_id(&self, id: UsageId) -> Option<Usage> {
if id >= self.minimum.usage_id() && id <= self.maximum.usage_id() {
Some(Usage::from_page_and_id(self.usage_page, id))
} else {
None
}
}
}
/// An [ArrayField] represents a group of physical controls,
/// see section 6.2.2.5.
///
/// > An array provides an alternate means for
/// > describing the data returned from a group of
/// > buttons. Arrays are more efficient, if less flexible
/// > than variable items. Rather than returning a single
/// > bit for each button in the group, an array returns an
/// > index in each field that corresponds to the pressed
/// > button
#[derive(Clone, Debug)]
pub struct ArrayField {
id: FieldId,
report_id: Option<ReportId>,
pub bits: Range<usize>,
usages: Vec<Usage>,
pub report_count: ReportCount,
pub logical_minimum: LogicalMinimum,
pub logical_maximum: LogicalMaximum,
pub physical_minimum: Option<PhysicalMinimum>,
pub physical_maximum: Option<PhysicalMaximum>,
pub unit: Option<Unit>,
pub unit_exponent: Option<UnitExponent>,
pub collections: Vec<Collection>,
}
impl ArrayField {
/// Returns the set of usages for this field. This is the
/// inclusive range of [UsageMinimum]`..=`[UsageMaximum]
/// as defined for this field.
///
/// In most cases it's better to use [usage_range()](Self::usage_range)
/// instead.
pub fn usages(&self) -> &[Usage] {
&self.usages
}
/// Returns the [UsageRange] for this field.
pub fn usage_range(&self) -> UsageRange {
let min = self.usages.first().unwrap();
let max = self.usages.last().unwrap();
UsageRange {
usage_page: min.usage_page,
minimum: UsageMinimum::from(min),
maximum: UsageMaximum::from(max),
}
}
/// Returns true if this field contains signed values,.
/// i.e. the LogicalMinimum is less than zero.
pub fn is_signed(&self) -> bool {
self.logical_minimum < LogicalMinimum(0)
}
/// Extract this field's value as [FieldValue] from a report's bytes.
/// The value is extracted as its correct bit size, the returned [FieldValue]
/// can then be casted in to a [u32], [i32], etc. via the [From] trait.
///
/// ```
/// # use hidreport::ArrayField;
/// # fn func(field: &ArrayField, bytes: &[u8]) {
/// if field.is_signed() {
/// println!("Signed values: {:?}", field
/// .extract(bytes)
/// .unwrap()
/// .iter()
/// .map(i32::from)
/// .collect::<Vec<i32>>());
/// } else {
/// println!("Unsigned values: {:?}", field
/// .extract(bytes)
/// .unwrap()
/// .iter()
/// .map(u32::from)
/// .collect::<Vec<u32>>());
/// }
///
/// # }
/// ```
pub fn extract(&self, bytes: &[u8]) -> Result<Vec<FieldValue>> {
if let Some(report_id) = self.report_id {
if ReportId(bytes[0]) != report_id {
return Err(ParserError::MismatchingReportId);
}
}
let count = usize::from(self.report_count);
let values: Result<Vec<FieldValue>> =
(0..count).map(|idx| self.extract_one(bytes, idx)).collect();
values
}
/// Extract a single value from this array. See [ArrayField::extract].
///
/// The index must be less than [Self::report_count].
pub fn extract_one(&self, bytes: &[u8], idx: usize) -> Result<FieldValue> {
if idx >= usize::from(self.report_count) {
return Err(ParserError::OutOfBounds);
}
if let Some(report_id) = self.report_id {
if ReportId(bytes[0]) != report_id {
return Err(ParserError::MismatchingReportId);
}
}
let count = usize::from(self.report_count);
let bits_per_report = self.bits.len() / count;
let offset = self.bits.start + bits_per_report * idx;
let bits = offset..offset + bits_per_report;
let v = extract_bits(bytes, &bits);
let v = if self.is_signed() {
v.twos_comp(self.bits.len()) as u32
} else {
v
};
Ok(FieldValue {
is_signed: self.is_signed(),
value: v,
})
}
}
/// A [ConstantField] is one that represents a [hid::MainItem]
/// with Constant data, see Section 6.2.2.4.
///
/// > Constant indicates the item is a static read-only field in a
/// > report and cannot be modified (written) by the
/// > host.
///
/// Data in a [ConstantField] should be ignored by the caller, it
/// is merely used as padding, usually to align the subsequent
/// value on a byte boundary.
#[derive(Clone, Debug)]
pub struct ConstantField {
id: FieldId,
report_id: Option<ReportId>,
pub bits: Range<usize>,
usages: Vec<Usage>,
}
impl ConstantField {
pub fn usages(&self) -> &[Usage] {
&self.usages
}
}
/// A unique (within this report descriptor) identifier for a collection.
///
/// A device may have multiple collections that are otherwise identical
/// (in particular logical collections), the collection ID serves
/// to identify whether two fields are part of the same collection.
#[derive(Clone, Debug, PartialEq, Hash, PartialOrd)]
pub struct CollectionId(u32);
/// Collections group [Fields](Field) together into logical or physical
/// groups.
///
/// For example, a set of buttons and x/y axes may be grouped
/// together to represent a Mouse device.
/// Each [Field] may belong to a number of collections.
///
/// ```
/// # use hidreport::*;
/// # fn func(field: &VariableField) {
/// let collection = field.collections.first().unwrap();
/// match collection.collection_type() {
/// CollectionType::Physical => println!("This field is part of a physical collection"),
/// _ => {},
/// }
/// # }
/// ```
///
#[derive(Clone, Debug)]
pub struct Collection {
id: CollectionId,
collection_type: CollectionType,
usages: Vec<Usage>,
}
impl Collection {
/// Returns the unique ID for this collection
pub fn id(&self) -> &CollectionId {
&self.id
}
/// Return the type of this collection (e.g. physical, logical, ...)
pub fn collection_type(&self) -> CollectionType {
self.collection_type
}
/// Returns the usages assigned to this collection
pub fn usages(&self) -> &[Usage] {
&self.usages
}
}
impl PartialEq for Collection {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for Collection {}
impl Hash for Collection {
fn hash<H: Hasher>(&self, state: &mut H) {
self.id.hash(state);
}
}
#[derive(Error, Debug)]
pub enum ParserError {
#[error("Invalid data at offset {offset}: {message}")]
InvalidData { offset: usize, message: String },
#[error("Parsing would lead to out-of-bounds")]
OutOfBounds,
#[error("Mismatching Report ID")]
MismatchingReportId,
}
type Result<T> = std::result::Result<T, ParserError>;
#[derive(Clone, Copy, Debug, Default)]
struct Globals {
usage_page: Option<UsagePage>,
logical_minimum: Option<LogicalMinimum>,
logical_maximum: Option<LogicalMaximum>,
physical_minimum: Option<PhysicalMinimum>,
physical_maximum: Option<PhysicalMaximum>,
unit_exponent: Option<UnitExponent>,
unit: Option<Unit>,
report_size: Option<ReportSize>,
report_id: Option<ReportId>,
report_count: Option<ReportCount>,
}
/// Special struct for the [Locals] because the usage_page
/// is optional for those, unlike our [Usage] struct which is
/// the finalized one.
#[derive(Clone, Copy, Debug)]
struct LocalUsage {
usage_page: Option<UsagePage>,
usage_id: UsageId,
}
#[derive(Clone, Debug, Default)]
struct Locals {
usage: Vec<LocalUsage>,
// FIXME: needs the same LocalUsage treatment
usage_minimum: Option<UsageMinimum>,
usage_maximum: Option<UsageMaximum>,
designator_index: Option<DesignatorIndex>,
designator_minimum: Option<DesignatorMinimum>,
designator_maximum: Option<DesignatorMaximum>,
string_index: Option<StringIndex>,
string_minimum: Option<StringMinimum>,
string_maximum: Option<StringMaximum>,
delimiter: Option<Delimiter>,
}
#[derive(Debug)]
struct Stack {
globals: Vec<Globals>,
locals: Vec<Locals>,
pub collections: Vec<Collection>,
}
impl Stack {
fn new() -> Self {
Stack {
globals: vec![Globals::default()],
locals: vec![Locals::default()],
collections: vec![],
}
}
fn push(&mut self) {
let current = self.globals.last().unwrap();
self.globals.push(*current);
// FIXME: this clones the Usage vector which is likely to mess us up, I don't
// think they transfer across push/pop
let current = self.locals.last().unwrap().clone();
self.locals.push(current);
}
fn pop(&mut self) -> Result<()> {
ensure!(
!self.globals.is_empty() && !self.locals.is_empty(),
ParserError::InvalidData {
offset: 0,
message: "Too many Pops".into(),
}
);
self.globals.pop();
self.locals.pop();
ensure!(
!self.globals.is_empty() && !self.locals.is_empty(),
ParserError::InvalidData {
offset: 0,
message: "Too many Pops, not enough Pushes".into(),
}
);
Ok(())
}
fn reset_locals(&mut self) {
self.locals.pop();
self.locals.push(Locals::default());
}
fn globals(&mut self) -> &mut Globals {
self.globals.last_mut().unwrap()
}
fn locals(&mut self) -> &mut Locals {
self.locals.last_mut().unwrap()
}
// Should be globals and globals_mut but i'd have to
// update the update_stack macro for that.
fn globals_const(&self) -> &Globals {
self.globals.last().unwrap()
}
fn locals_const(&self) -> &Locals {
self.locals.last().unwrap()
}
}
fn compile_usages(globals: &Globals, locals: &Locals) -> Result<Vec<Usage>> {
// Prefer UsageMinimum/Maximum over Usage because the latter may be set from an earlier call
match locals.usage_minimum {
Some(_) => {
let Some(min) = locals.usage_minimum else {
return Err(ParserError::InvalidData {
offset: 0,
message: "Missing UsageMinimum in locals".into(),
});
};
let Some(max) = locals.usage_maximum else {
return Err(ParserError::InvalidData {
offset: 0,
message: "Missing UsageMaximum in locals".into(),
});
};
let Some(usage_page) = globals.usage_page else {
return Err(ParserError::InvalidData {
offset: 0,
message: "Missing UsagePage in globals".into(),
});
};
let min: u32 = min.into();
let max: u32 = max.into();
let usages = (min..=max)
.map(|u| Usage {
usage_page: UsagePage(usage_page.into()),
usage_id: UsageId(u as u16),
})
.collect();
Ok(usages)
}
None => {
let usages = locals
.usage
.iter()
.map(|usage| match usage {
// local item's Usage had a Usage Page included
LocalUsage {
usage_page: Some(up),
usage_id,
} => Usage {
usage_page: *up,
usage_id: *usage_id,
},
// Usage Page comes from the global item
LocalUsage {
usage_page: None,
usage_id,
} => {
let usage_page = globals.usage_page.expect("Missing UsagePage in globals");
Usage {
usage_page,
usage_id: *usage_id,
}
}
})
.collect();
Ok(usages)
}
}
}
fn handle_main_item(item: &MainItem, stack: &mut Stack, base_id: u32) -> Result<Vec<Field>> {
let globals = stack.globals_const();
let locals = stack.locals_const();
let report_id = globals.report_id;
let (is_constant, is_variable) = match item {
MainItem::Input(i) => (i.is_constant(), i.is_variable()),
MainItem::Output(i) => (i.is_constant(), i.is_variable()),
MainItem::Feature(i) => (i.is_constant(), i.is_variable()),
_ => panic!("Invalid item for handle_main_item()"),
};
let bit_offset = 0;
// We have HID report descriptors in the wild that do not set a report size/count/whatever.
// Since the most important implementations so far have been in C-like languages, they
// will likely default to zero for unset values (unlike our None).
// Let's do this here to be as compatible as possible.
let report_size = globals.report_size.unwrap_or(ReportSize(0));
let report_count = globals.report_count.unwrap_or(ReportCount(0));
if report_count == ReportCount(0) || report_size == ReportSize(0) {
return Ok(vec![]);
}
if is_constant {
let nbits = usize::from(report_size) * usize::from(report_count);
let bits = bit_offset..(bit_offset + nbits);
let field = ConstantField {
id: FieldId(base_id + bit_offset as u32),
bits,
report_id,
usages: vec![],
};
return Ok(vec![Field::Constant(field)]);
}
let logical_minimum = globals.logical_minimum.unwrap_or(LogicalMinimum(0));
let logical_maximum = globals.logical_maximum.unwrap_or(LogicalMaximum(0));
// Some report descriptors are missing either phys min or max, assume zero
// where one of them is not None
let physical_maximum: Option<PhysicalMaximum>;
let physical_minimum: Option<PhysicalMinimum>;
if globals.physical_minimum.is_some() != globals.physical_maximum.is_some() {
physical_maximum = globals.physical_maximum.or(Some(PhysicalMaximum(0)));
physical_minimum = globals.physical_minimum.or(Some(PhysicalMinimum(0)));
} else {
physical_maximum = globals.physical_maximum;
physical_minimum = globals.physical_minimum;
}
let unit = globals.unit;
let unit_exponent = globals.unit_exponent;
let usages = compile_usages(globals, locals)?;
ensure!(!usages.is_empty(), "Missing Usages for main item");
// This may be an empty vec
let collections = stack.collections.clone();
let fields: Vec<Field> = if is_variable {
let mut bit_offset = 0;
Range {
start: 0,
end: usize::from(report_count),
}
.map(|c| {
let nbits = usize::from(report_size);
let bits = bit_offset..(bit_offset + nbits);
bit_offset += nbits;
let usage = usages.get(c).or_else(|| usages.last()).unwrap();
let field = VariableField {
id: FieldId(base_id + bit_offset as u32),
usage: *usage,
bits,
logical_minimum,
logical_maximum,
physical_minimum,
physical_maximum,
unit,
unit_exponent,
collections: collections.clone(),
report_id,
};
Field::Variable(field)
})
.collect()
} else {
let bit_offset = 0;
let nbits = usize::from(report_size) * usize::from(report_count);
let bits = bit_offset..(bit_offset + nbits);
let field = ArrayField {
id: FieldId(base_id + bit_offset as u32),
usages,
bits,
logical_minimum,
logical_maximum,
physical_minimum,
physical_maximum,
unit,
unit_exponent,
collections,
report_id,
report_count,
};
vec![Field::Array(field)]
};
Ok(fields)
}
macro_rules! update_stack {
($stack:ident, $class:ident, $which:ident, $from:ident) => {
//println!("Updating {} with value {:?}", stringify!($which), &$from);
let state = $stack.$class();
state.$which = Some($from);
};
}
fn parse_report_descriptor(bytes: &[u8]) -> Result<ReportDescriptor> {
ensure!(!bytes.is_empty(), "Empty report descriptor");
let items = hid::ReportDescriptorItems::try_from(bytes)?;
let mut stack = Stack::new();
let mut rdesc = ReportDescriptor::default();
for rdesc_item in items.iter() {
//println!("Handling offset {}", rdesc_item.offset());
let item = rdesc_item.item();
match item.item_type() {
ItemType::Main(MainItem::Collection(i)) => {
let globals = stack.globals_const();
let locals = stack.locals_const();
// This may be an empty vec
let usages = match compile_usages(globals, locals) {
Ok(usages) => usages,
Err(ParserError::InvalidData { message, .. }) => {
return Err(ParserError::InvalidData {
offset: rdesc_item.offset(),
message,
})
}
Err(e) => return Err(e),
};
let c = Collection {
id: CollectionId(rdesc_item.offset() as u32),
collection_type: i,
usages,
};
stack.collections.push(c);
stack.reset_locals();
}
ItemType::Main(MainItem::EndCollection) => {
if stack.collections.pop().is_none() {
return Err(ParserError::InvalidData {
offset: rdesc_item.offset(),
message: "Too many EndCollection".into(),
});
};
stack.reset_locals();
}
ItemType::Main(item) => {
let mut fields =
match handle_main_item(&item, &mut stack, (rdesc_item.offset() * 8) as u32) {
Ok(fields) => fields,
Err(ParserError::InvalidData { message, .. }) => {
return Err(ParserError::InvalidData {
offset: rdesc_item.offset(),
message,
})
}
Err(e) => return Err(e),
};
stack.reset_locals();
// Report descriptors with a ReportCount or ReportSize of 0 (or those missing)
// will have an empty fields list. These exist in the wild.
if !fields.is_empty() {
// Now update the returned field(s) and push them into the right report
let direction = match item {
MainItem::Input(_) => Direction::Input,
MainItem::Output(_) => Direction::Output,
MainItem::Feature(_) => Direction::Feature,
_ => panic!("Invalid item for handle_main_item()"),
};
let reports: &mut Vec<RDescReport> = match direction {
Direction::Input => &mut rdesc.input_reports,
Direction::Output => &mut rdesc.output_reports,
Direction::Feature => &mut rdesc.feature_reports,
};
let report_id = fields.first().unwrap().report_id();
let report = match report_id {
None => reports.first_mut(),
Some(id) => reports
.iter_mut()
.find(|r| r.id.is_some() && &r.id.unwrap() == id),
};
let report = match report {
None => {
let initial_size = if report_id.is_some() { 8 } else { 0 };
reports.push(RDescReport {
id: *report_id,
size: initial_size,
fields: vec![],
});
reports.last_mut().unwrap()
}
Some(r) => r,
};
// We know which report the fields belong to, let's update the offsets and field id
let offset = report.size;
fields.iter_mut().for_each(|f| {
f.update_bit_offset(offset);
report.size += f.len();
});
report.fields.append(&mut fields);
}
}
ItemType::Long => {}
ItemType::Reserved => {}
ItemType::Global(GlobalItem::UsagePage(usage_page)) => {
update_stack!(stack, globals, usage_page, usage_page);
}
ItemType::Global(GlobalItem::LogicalMinimum(minimum)) => {
update_stack!(stack, globals, logical_minimum, minimum);
}
ItemType::Global(GlobalItem::LogicalMaximum(maximum)) => {
// We don't know if the maximum is signed or unsigned unless we
// look at the minimum value and check if that is signed or unsigned.
// We default to signed but if the minimum is unsigned, we might have
// to re-interpret.
let minimum = stack
.globals_const()
.logical_minimum
.unwrap_or(LogicalMinimum(0));
let mut maximum = maximum;
if minimum < LogicalMinimum(0) {
if let Some(data) = item.data() {
if data.len() > 0 {
maximum = LogicalMaximum(hid::hiddata_signed(&data).unwrap());
}
}
};
update_stack!(stack, globals, logical_maximum, maximum);
}
ItemType::Global(GlobalItem::PhysicalMinimum(minimum)) => {
update_stack!(stack, globals, physical_minimum, minimum);
}
ItemType::Global(GlobalItem::PhysicalMaximum(maximum)) => {
// We don't know if the maximum is signed or unsigned unless we
// look at the minimum value and check if that is signed or unsigned.
// We default to signed but if the minimum is unsigned, we might have
// to re-interpret.
let minimum = stack
.globals_const()
.physical_minimum
.unwrap_or(PhysicalMinimum(0));
let mut maximum = maximum;
if minimum < PhysicalMinimum(0) {
if let Some(data) = item.data() {
if data.len() > 0 {
maximum = PhysicalMaximum(hid::hiddata_signed(&data).unwrap())
}
}
};
update_stack!(stack, globals, physical_maximum, maximum);
}
ItemType::Global(GlobalItem::UnitExponent(exponent)) => {
update_stack!(stack, globals, unit_exponent, exponent);
}
ItemType::Global(GlobalItem::Unit(unit)) => {
update_stack!(stack, globals, unit, unit);
}
ItemType::Global(GlobalItem::ReportSize(size)) => {
update_stack!(stack, globals, report_size, size);
}
ItemType::Global(GlobalItem::ReportId(id)) => {
update_stack!(stack, globals, report_id, id);
}
ItemType::Global(GlobalItem::ReportCount(count)) => {
update_stack!(stack, globals, report_count, count);
}
ItemType::Global(GlobalItem::Push) => {
stack.push();
}
ItemType::Global(GlobalItem::Pop) => match stack.pop() {
Ok(_) => {}
Err(ParserError::InvalidData { message, .. }) => {
return Err(ParserError::InvalidData {
offset: rdesc_item.offset(),
message,
})
}
Err(e) => return Err(e),
},
ItemType::Global(GlobalItem::Reserved) => {}
ItemType::Local(LocalItem::Usage(usage_page, usage_id)) => {
let usage = LocalUsage {
usage_page: Some(usage_page),
usage_id,
};
stack.locals().usage.push(usage);
}
ItemType::Local(LocalItem::UsageId(usage_id)) => {
let usage = LocalUsage {
usage_page: None,
usage_id,
};
stack.locals().usage.push(usage);
}
ItemType::Local(LocalItem::UsageMinimum(minimum)) => {
update_stack!(stack, locals, usage_minimum, minimum);
}
ItemType::Local(LocalItem::UsageMaximum(maximum)) => {
update_stack!(stack, locals, usage_maximum, maximum);
}
ItemType::Local(LocalItem::DesignatorIndex(index)) => {
update_stack!(stack, locals, designator_index, index);
}
ItemType::Local(LocalItem::DesignatorMinimum(minimum)) => {
update_stack!(stack, locals, designator_minimum, minimum);
}
ItemType::Local(LocalItem::DesignatorMaximum(maximum)) => {
update_stack!(stack, locals, designator_maximum, maximum);
}
ItemType::Local(LocalItem::StringIndex(index)) => {
update_stack!(stack, locals, string_index, index);
}
ItemType::Local(LocalItem::StringMinimum(minimum)) => {
update_stack!(stack, locals, string_minimum, minimum);
}
ItemType::Local(LocalItem::StringMaximum(maximum)) => {
update_stack!(stack, locals, string_maximum, maximum);
}
ItemType::Local(LocalItem::Delimiter(delimiter)) => {
update_stack!(stack, locals, delimiter, delimiter);
}
ItemType::Local(LocalItem::Reserved { value: _ }) => {}
};
}
Ok(rdesc)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_twos_comp() {
assert_eq!(5u8.twos_comp(3), -3);
assert_eq!(5u8.twos_comp(4), 5);
assert_eq!(0xffu8.twos_comp(8), -1);
assert_eq!(5u16.twos_comp(3), -3);
assert_eq!(5u16.twos_comp(4), 5);
assert_eq!(0xffffu16.twos_comp(16), -1);
assert_eq!(5u32.twos_comp(3), -3);
assert_eq!(5u32.twos_comp(4), 5);
assert_eq!(0xffffffffu32.twos_comp(32), -1);
}
#[test]
fn extract() {
let bytes: [u8; 4] = [0b1100_1010, 0b1011_1001, 0b1001_0110, 0b0001_0101];
let test_field = |bits: Range<usize>, signed: bool| -> VariableField {
VariableField {
id: FieldId(0),
report_id: None,
bits,
usage: Usage::from(0),
logical_minimum: LogicalMinimum(if signed { -1 } else { 0 }),
logical_maximum: LogicalMaximum(0),
physical_minimum: None,
physical_maximum: None,
unit: None,
unit_exponent: None,
collections: vec![],
}
};
assert_eq!(0u8, test_field(0..1, false).extract(&bytes).unwrap().into());
assert_eq!(2u8, test_field(0..2, false).extract(&bytes).unwrap().into());
assert_eq!(
10u8,
test_field(0..4, false).extract(&bytes).unwrap().into()
);
assert_eq!(0i8, test_field(0..1, true).extract(&bytes).unwrap().into());
assert_eq!(-2i8, test_field(0..2, true).extract(&bytes).unwrap().into());
assert_eq!(-6i8, test_field(0..4, true).extract(&bytes).unwrap().into());
assert_eq!(
0b1001_1100u8,
test_field(4..12, true).extract(&bytes).unwrap().into()
);
assert_eq!(
0b1001_1100u8 as i8,
test_field(4..12, true).extract(&bytes).unwrap().into()
);
assert_eq!(
0u16,
test_field(0..1, false).extract(&bytes).unwrap().into()
);
assert_eq!(
2u16,
test_field(0..2, false).extract(&bytes).unwrap().into()
);
assert_eq!(
10u16,
test_field(0..4, false).extract(&bytes).unwrap().into()
);
assert_eq!(0i16, test_field(0..1, true).extract(&bytes).unwrap().into());
assert_eq!(
-2i16,
test_field(0..2, true).extract(&bytes).unwrap().into()
);
assert_eq!(
-6i16,
test_field(0..4, true).extract(&bytes).unwrap().into()
);
assert_eq!(
0b0110_1011_1001_1100,
test_field(4..20, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0b0110_1011_1001_1100,
test_field(4..20, true).extract(&bytes).unwrap().into()
);
assert_eq!(
0b1_0110_1011_1001_110u16 as i16,
test_field(5..21, true).extract(&bytes).unwrap().into()
);
assert_eq!(
0b0110_1011_1001_1100,
test_field(4..20, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0b0110_1011_1001_1100,
test_field(4..20, true).extract(&bytes).unwrap().into()
);
assert_eq!(
((0b1_0110_1011_1001_110u16 as i16) as i32),
test_field(5..21, true).extract(&bytes).unwrap().into()
);
assert_eq!(
((0b1_0110_1011_1001_110u16 as i16) as i32),
test_field(5..21, true).extract(&bytes).unwrap().into()
);
let bytes: [u8; 1] = [0x0f];
assert_eq!(0x3, test_field(0..2, false).extract(&bytes).unwrap().into());
assert_eq!(0xf, test_field(0..4, false).extract(&bytes).unwrap().into());
assert_eq!(0x0, test_field(4..8, false).extract(&bytes).unwrap().into());
assert_eq!(
0x0f,
test_field(0..8, false).extract(&bytes).unwrap().into()
);
let bytes: [u8; 2] = [0x0f, 0x5e];
assert_eq!(0x3, test_field(0..2, false).extract(&bytes).unwrap().into());
assert_eq!(0xf, test_field(0..4, false).extract(&bytes).unwrap().into());
assert_eq!(0x0, test_field(4..8, false).extract(&bytes).unwrap().into());
assert_eq!(
0xe0f,
test_field(0..12, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x5e0f,
test_field(0..16, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0xe,
test_field(8..12, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x5,
test_field(12..16, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x5e,
test_field(8..16, false).extract(&bytes).unwrap().into()
);
let bytes: [u8; 4] = [0x0f, 0x5e, 0xab, 0x78];
assert_eq!(0x3, test_field(0..2, false).extract(&bytes).unwrap().into());
assert_eq!(0xf, test_field(0..4, false).extract(&bytes).unwrap().into());
assert_eq!(0x0, test_field(4..8, false).extract(&bytes).unwrap().into());
assert_eq!(
0xe0f,
test_field(0..12, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x5e0f,
test_field(0..16, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0xe,
test_field(8..12, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x5,
test_field(12..16, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x5e,
test_field(8..16, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0xb5e0f,
test_field(0..20, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0xab5e0f,
test_field(0..24, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0xb5e0,
test_field(4..20, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0xab5e,
test_field(8..24, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0xb,
test_field(16..20, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0xab,
test_field(16..24, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x78ab5e0f,
test_field(0..32, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x7,
test_field(28..32, false).extract(&bytes).unwrap().into()
);
assert_eq!(
0x78,
test_field(24..32, false).extract(&bytes).unwrap().into()
);
}
}