1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
//! [ForLifetime]: trait@ForLifetime
#![doc = include_str!("../README.md")]
#![no_std]
#![forbid(unsafe_code)]
#![allow(type_alias_bounds, uncommon_codepoints)]
#![allow(
// in case `crate::ForLt!` does not resolve, we have the `crate::hkt_macro::*` fallback.
macro_expanded_macro_exports_accessed_by_absolute_paths,
)]
#![cfg_attr(feature = "better-docs",
feature(decl_macro, doc_cfg, rustc_attrs, trait_alias),
)]
#![cfg_attr(feature = "fn_traits",
feature(unboxed_closures),
)]
/// The crate's prelude.
pub
mod prelude {
#[doc(no_inline)]
pub use crate::{
ForLt,
ForLifetime,
extra_arities::*,
};
}
// macro internals
#[doc(hidden)] /** Not part of the public API */ pub
mod ඞ {
pub use {
::core, // or `std`
crate::{
extra_arities::{
for_lt_and_lt::WithLifetimes,
},
with_lifetime::{
WithLifetime,
},
},
};
#[cfg(feature = "fn_traits")]
pub use {
crate::{
fn_traits::{
Input as r#for,
Input as __,
},
},
};
/// Do not use this type!
pub
struct ForLt<T : ?Sized>(
::core::marker::PhantomData<fn(&()) -> &T>,
ǃ,
);
/// Do not use this type!
pub
struct ForLtAndLt<T : ?Sized>(
::core::marker::PhantomData<fn(&()) -> &T>,
ǃ,
);
use ::never_say_never::Never as ǃ;
}
use {
crate::{
with_lifetime::WithLifetime,
},
};
#[cfg_attr(feature = "docs-rs",
doc(cfg(advanced)),
)]
pub
mod extra_arities;
#[cfg(feature = "fn_traits")]
mod fn_traits;
#[allow(unused_imports)]
#[doc(hidden)]
pub use hkt_macro::*;
mod hkt_macro;
mod hkt_muncher;
#[cfg_attr(feature = "docs-rs",
doc(cfg(advanced)),
)]
pub
mod type_eq;
mod utils;
mod with_lifetime {
pub
trait WithLifetime<'lt>
:
Send + Sync + Unpin
{
type T;
}
impl<'lt, T : ?Sized + WithLifetime<'lt>>
WithLifetime<'lt>
for
crate::ඞ::ForLt<T>
{
type T = T::T;
}
}
/// The main trait of the crate. The one expressing `: <'_>`-genericity.
///
/// It is expected to be used as a bound on a `<T>` generic parameter,
/// thereby resulting in a <code><T : [ForLt]></code> generic API, which,
/// conceptually / sort to speak, is to be read as `<T : <'_>>`.
///
/// That is, **a _generic API_ whose generic parameter is, in and of itself,
/// _generic too_!**
///
/// - Such a "generic-generic API" is dubbed _higher-kinded_, which makes a
/// type such as `struct Example<T: <'_>>` then be dubbed _higher-kinded
/// type_, or **HKT**, for short.
///
/// From there, the whole concept of expressing genericity over
/// `: <'_>`-generic types can also be associated with the idea and concept
/// of higher-kinded types, much like the name of this crate indicates.
///
/// So, using this HKT terminology for something other than a type taking
/// a [`: For`-bounded] generic type is, if we are to be pedantic[^haskell]
/// about the topic, an abuse of terminology (one which I'll probably make
/// throughout this documentation).
///
///
/// [^haskell]: For Haskell enthusiasts, this [`: For`-bounded]-ness could be
/// called "Arrow-Kinded", as in, it matches the `… -> *` kind. \
/// \
/// Then, an Arrow-Kinded type which has, inside the `…`, yet another
/// Arrow-Kinded type, is what is called a Higher-Kinded Type: \
/// \
/// - "Arrow-Kinded Type": `… -> *`, such as `ForLt!(<'a> = &'a str) : ForLt`.
/// - Higher-Kinded Type: `(… -> *) -> *`, such as `struct Example<T : ForLt>`.
///
/// [`: For`-bounded]: extra_arities/index.html
///
/// [ForLt]: trait@ForLt
/// [`ForLt`]: trait@ForLt
///
/// It cannot be manually implemented: the only types implementing this trait
/// are the ones produced by the [`ForLt!`] macro.
///
/// ## HKT Usage
///
/// 1. Make your API take a generic <code>\<T : [ForLifetime]\></code>
/// parameter (conceptually, a <code>\<T : [Ofᐸᑊ_ᐳ]\></code> parameter).
///
/// Congratulations, you now have a _higher-kinded_ API: your API is
/// not only generic, but it is also taking a parameter which is, in turn,
/// generic.
///
/// 1. #### Callers
///
/// Call sites use the [`ForLt!`] macro to produce a type which they
/// can _and must_ turbofish to such APIs. For instance:
///
/// - <code>[ForLt!]\(&str\)</code> for the pervasive reference case
/// (which could also use the <code>[ForRef]\<str\></code> type alias
/// to avoid the macro),
///
/// or <code>[ForLt!]\(Cow\<\'_, str\>\)</code> for more complex
/// lifetime-infected types;
///
/// - <code>[ForLt!]\(u8\)</code> or other owned types work too: it is not
/// mandatory, at the call-site, to be lifetime-infected, it is just
/// _possible_ (maximally flexible API). See [`ForFixed`].
///
/// 1. #### Callee/API author
///
/// Make use of this nested genericity in your API!
///
/// Feed, somewhere, a lifetime parameter to this `T`:
///
/// ```rust
/// # #[cfg(any())] macro_rules! ignore {
/// T::Of<'some_lifetime_param>
/// # }
/// ```
///
/// There are two situations where this is handy:
///
/// - wanting to feed two different lifetimes to `T`:
///
/// ```rust
/// use ::higher_kinded_types::ForLifetime;
///
/// struct Example<'a, 'b, T : ForLifetime> {
/// a: T::Of<'a>,
/// b: T::Of<'b>,
/// }
/// ```
///
/// - wanting to "feed a lifetime later" / to feed a
/// `for<>`-quantified lifetime to your <code>impl [ForLt]</code> type:
///
/// ```rust
/// # #[cfg(any())] macro_rules! ignore {
/// use ::higher_kinded_types::ForLifetime as Ofᐸᑊ_ᐳ; // hopefully illustrative renaming.
///
/// fn slice_sort_by_key<Item, Key : Ofᐸᑊ_ᐳ> (
/// items: &'_ mut [Item],
/// mut get_key: impl FnMut(&'_ Item) -> Key::Of<'_>,
/// )
/// # }
/// ```
///
/// Full example:
///
/// <details class="custom"><summary><span class="summary-box"><span>Click to show</span></span></summary>
///
/// ```rust
/// use ::higher_kinded_types::ForLt;
///
/// fn slice_sort_by_key<Item, Key : ForLt> (
/// items: &'_ mut [Item],
/// mut get_key: impl for<'it> FnMut(&'it Item) -> Key::Of<'it>,
/// )
/// where
/// for<'it> Key::Of<'it> : Ord,
/// {
/// items.sort_by(|a: &'_ Item, b: &'_ Item| <Key::Of<'_>>::cmp(
/// &get_key(a),
/// &get_key(b),
/// ))
/// }
///
/// // Demo:
/// let clients: &mut [Client] = // …;
/// # &mut []; struct Client { key: String, version: u8 }
///
/// slice_sort_by_key::<_, ForLt!(&str)>(clients, |c| &c.key); // ✅
///
/// // Important: owned case works too!
/// slice_sort_by_key::<_, ForLt!(u8)>(clients, |c| c.version); // ✅
///
/// # #[cfg(any())] {
/// // But the classic `sort_by_key` stdlib API fails, since it does not use HKTs:
/// clients.sort_by_key(|c| &c.key); // ❌ Error: cannot infer an appropriate lifetime for autoref due to conflicting requirements
/// # }
/// ```
///
/// </details>
///
/// ### Wait a moment; this is just a GAT! Why are you talking of HKTs?
///
/// Indeed, the definition of the <code>[ForLt]</code> trait is basically that
/// of a trait featuring the simplest possible GAT:
///
/// ```rust
/// trait Trait { // basic trait
/// type Assoc<'lt>; // Associated Type which is itself Generic = GAT.
/// }
///
/// struct Struct<'a, 'b, T : Trait> {
/// a: T::Assoc<'a>,
/// b: T::Assoc<'b>,
/// }
/// ```
///
/// Yes, the `: <'_>` signature pattern of HKTs, and GATs, from this point of
/// view, are quite interchangeable:
///
/// - this whole crate is a demonstration of featuring `: <'_>` HKT idioms
/// through a [`ForLt`] GAT trait (+ some extra `for<>`-quantifications);
///
/// - in a world with HKTs and `: <'_>` as a first-class construct, GATs could
/// then just be HKT Associated Types (HATs instead of GATs 🤠).
///
/// ```rust ,ignore
/// //! pseudo-code!
/// trait LendingIterator {
/// type Item: <'_>;
///
/// fn next(&mut self) -> Self::Item<'_>;
/// }
/// ```
///
/// - Real code:
///
/// <details class="custom"><summary><span class="summary-box"><span>Click to show</span></span></summary>
///
/// ```rust
/// use ::higher_kinded_types::ForLt;
///
/// trait LendingIterator {
/// /// Look ma, "no" GATs!
/// type Item: ForLt;
///
/// fn next(&mut self) -> <Self::Item as ForLt>::Of<'_>;
/// }
/// ```
///
/// </details>
///
/// In a way, the similarity between these two paradigms is akin to that of
/// closure _vs._ object in more classic programming: you can always pick some
/// canonical object interface, say:
///
/// ```rust
/// trait Closure<Args> {
/// type Ret;
///
/// fn call(&self, _: Args) -> Self::Ret;
/// }
/// ```
///
/// and then use `Closure<Args, Ret = …>` where we currently use
/// `Fn(Args…) -> Output`: that is, the _canonical_ `Fn…` traits can easily be
/// polyfilled with any arbitrary trait of our choice featuring the same
/// functional API (same method signature).
///
/// or, _vice versa_, never define custom traits or interfaces, and always
/// use closures:
///
/// ```rust ,ignore
/// trait Display = Fn(&mut fmt::Formatter<'_>) -> fmt::Result;
/// // etc.
/// ```
///
/// - The astute reader may notice that we lose the _nominal typing_ aspect
/// of our current traits, which is what lets us, for instance, distinguish
/// between `Display` and `Debug`, even if both traits, _structurally_, are
/// equivalent / have exactly the same function signature.
///
/// - In general, Rust traits go way beyond the sheer API of their
/// methods. They can be used as (sometimes `unsafe`) marker traits, or
/// other API promises, _etc._
///
/// So, closures are just one specific interface/trait shape, which we could use
/// pervasively everywhere, if we did not mind the loss of "nominal typing" (the
/// trait name).
///
/// But they're actually more: closures would not be near as useful as they are
/// if we did not have **closure expressions**!
///
/// In fact, closure expressions are so handy that nowadays we have a bunch of
/// `impl Trait` constructors that take the raw/bare API/signature as a closure,
/// and then wrap it within the "name" of the trait:
///
/// - **[`Iterator`]**: from
/// `FnMut() -> Option<Item>`
/// using [`iter::from_fn()`][::core::iter::from_fn]
/// - **[`Future`]**: from
/// <code>FnMut\(\&mut [Context]\<\'_\>\) -\> [Poll]\<Output\></code>
/// using [`future::poll_fn()`][::core::future::poll_fn];
/// - **[`Stream`]**: from
/// `FnMut(Acc) -> impl Future<Output = (Item, Acc)>`
/// using [`stream::unfold()`]
///
/// [`Future`]: ::core::future::Future
/// [Context]: ::core::task::Context
/// [Poll]: ::core::task::Poll
/// [`Stream`]: https://docs.rs/futures/^0.3.28/futures/stream/trait.Stream.html
/// [`stream::unfold()`]: https://docs.rs/futures/^0.3.28/futures/stream/fn.unfold.html
///
/// And that same difference applies to arbitrary GATs _vs._ [`ForLt`]: the
/// ability to produce _ad-hoc_ / on-demand <code>impl [ForLt]</code> types /
/// [`ForLt`] type "expressions", thanks to the [`ForLt!`] macro, is what makes
/// [`ForLt`] convenient and flexible, _vs._ the overly cumbersome aspect of
/// manually using custom GATs.
///
/// Indeed, compare:
///
/// ```rust
/// trait ForLt {
/// type Assoc<'lt>;
/// }
///
/// enum StrRef {}
///
/// impl ForLt for StrRef {
/// type Assoc<'lt> = &'lt str;
/// }
/// ```
///
/// to:
///
/// ```rust
/// # use ::higher_kinded_types::ForLt;
/// type StrRef = ForLt!(<'lt> = &'lt str);
/// ```
///
/// ### Conclusion
///
/// So, to summarize, this <code>[ForLt] = ": \<\'_\>"</code> HKT pattern is just:
///
/// - some GAT API having been _canonical_-ized,
///
/// - much like how, in the realm of closures, the `Fn(Args…) -> R` was
/// picked (_vs._ any other signature-equivalent
/// `Closure<Args, Ret = R>` trait);
///
/// - which can be "inhabited" _on demand_ / in an _ad-hoc_ fashion thanks to
/// the <code>[ForLt!]\(\<\'input\> = Output…\)</code> macro,
///
/// - much like how, in the realm of closures, it is done with the
/// `|input…| output…` closure expressions.
///
/// In other words:
///
/// > `: <'_>` and HKTs are to GATs what closures are to traits.
///
/// (it's the `Fn(Lifetime) -> Type` of the type realm).
///
/// ___
///
/// Finally, another observation which I find interesting, is that:
///
/// ```rust
/// # use ::higher_kinded_types::ForLt;
/// #
/// type A = ForLt!(<'r> = &'r str);
/// // vs.
/// type B <'r> = &'r str;
/// ```
///
/// is an annoying limitation of Rust, which happens to feature a similar
/// distinction that certain past languages have had between values, and
/// functions, wherein they were treated separately (rather than as first-class
/// citizens, _i.e._, like the other values).
///
/// In Rust, `type B<'r> = &'r str;` suffers from this same kind of limitation,
/// only in the type realm this time: `type B<'r> =` is a special construct,
/// which yields a _"type" constructor_. That is, it yields some syntax, `B`, to
/// which we can feed a lifetime `'lt`, by writing `B<'lt>`, so as to end up
/// with a _type_.
///
/// **But `B`, in and of itself, _is not a type_**, even if we often call it a
/// "generic type" by abuse of terminology.
///
/// Which is why it cannot be fed, _alone_, to some type-generic API that would
/// want to be the one feeding the lifetime parameter: it does not play well
/// with "generic generics"!
///
/// In this example, the only true "generic _type_", that is, the _type_ which
/// is, itself, lifetime-generic, is `A`.
///
/// This is where [`ForLt!`] and HKTs, thus, shine.
pub
trait ForLifetime : seal::Sealed
// where
// Self : for<'any> WithLifetime<'any>,
{
/// "Instantiate lifetime" / "apply/feed lifetime" operation:
/// - Given <code>\<T : [ForLt]\></code>,
///
/// `T::Of<'lt>` stands for the HKT-conceptual `T<'lt>` type.
///
/// [ForLt]: trait@ForLt
type Of<'lt>;
}
/// Shorthand alias.
#[doc(no_inline)]
pub use ForLifetime as ForLt;
mod seal {
pub trait Sealed : Send + Sync + Unpin {}
#[cfg(not(feature = "better-docs"))]
impl<T : ?Sized> Sealed for crate::ඞ::ForLt<T> {}
#[cfg(feature = "better-docs")]
impl<T : ?Sized> Sealed for T where Self : Send + Sync + Unpin {}
}
#[doc(hidden)]
impl<T : ?Sized> ForLt for T
where
Self : for<'any> WithLifetime<'any> + seal::Sealed,
{
type Of<'lt> = <Self as WithLifetime<'lt>>::T;
}
crate::utils::cfg_match! {
feature = "better-docs" => (
/// <code>: [Ofᐸᑊ_ᐳ]</code> is a hopefully illustrative syntax that
/// serves as an alias for <code>: [ForLt]</code>.
///
/// [ForLt]: trait@ForLt
///
/// When trying to teach the notion of a HKT / "generic generic API" to
/// somebody who has never run into it, _e.g._, in introductory
/// documentation, blog posts, _etc._, the <code>: [Ofᐸᑊ_ᐳ]</code>
/// syntax ought to be more _intuitive_:
///
/// ```rust
/// use ::higher_kinded_types::*;
///
/// struct Example<'a, 'b, T : Ofᐸᑊ_ᐳ> {
/// a: T::Of<'a>,
/// b: T::Of<'b>,
/// }
/// ```
///
/// - (the idea being that `: Ofᐸᑊ_ᐳ` looks quite a bit like `: Of<'_>`).
///
/// - ⚠️ real code should nonetheless be using the <code>: [ForLt]</code>
/// syntax: ASCII characters are easier to type with a standard
/// keyboard layout, contrary to `Ofᐸᑊ_ᐳ`, which will probably require
/// copy-pasting.
#[doc(cfg(educational))]
pub trait Ofᐸᑊ_ᐳ = ForLt;
);
_ => (
mod r#trait {
#![allow(unused)]
pub use super::*;
macro_rules! __ {() => ()}
use __ as ForLt;
}
pub trait Ofᐸᑊ_ᐳ where Self : ForLt {}
impl<T : ?Sized> Ofᐸᑊ_ᐳ for T where Self : ForLt {}
);
}
/// <code>[ForFixed]\<T\></code> is a macro-free alias for
/// <code>[ForLt!]\(\<\'_unused\> = T\)</code>.
///
/// To be used when the generic lifetime parameter is to be ignored, while
/// calling into some HKT API.
pub
type ForFixed<T : Sized> = ForLt!(T);
/// <code>[ForRef]\<T\></code> is a macro-free alias for
/// <code>[ForLt!]\(\<\'any\> = \&\'any T\)</code>.
pub
type ForRef<T : ?Sized> = ForLt!(&'_ T);
/// <code>[ForRefMut]\<T\></code> is a macro-free alias for
/// <code>[ForLt!]\(\<\'any\> = \&\'any mut T\)</code>.
pub
type ForRefMut<T : ?Sized> = ForLt!(&'_ mut T);
#[cfg(feature = "ui-tests")]
#[doc = include_str!("compile_fail_tests.md")]
mod _compile_fail_tests {}